中性点接地方式及其影响
- 格式:doc
- 大小:22.50 KB
- 文档页数:2
发电机中性点接地方式及作用
发电机中性点接地一般有以下几类:
1.中性点不接地:当发生单相接地故障时,其故障电流就是发电机三相对地电容电流,当此电流小于5A时,并没有烧毁铁芯的危险;发电机中性点不接地方式,一般适用于小容量的发电机;
2.中性点经单相电压互感器接地:实际上这也是一种中性点不接地方式,单相电压互感器仅仅用来测量发电机中性点的基波和三次谐波电压;这种接地方式能实现无死区的定子接地保护;
3.中性点经单相变压器高阻接地:发电机中性点通过二次侧接有电阻的接地变压器接地,实际上就是经大电阻接地,变压器的作用就是使低压小电阻起高压大电阻的作用,这样可以简化电阻器结构、降低造价;大电阻为故障点提供纯阻性的电流,同时大电阻也起到了限制发生弧光接地时产生的过电压的作用;注意发电机起励升压前要检查接地变压器上端的中性点接地刀闸合好;
4.中性点经消弧线圈接地:在发生单相接地故障时,消弧线圈将在零序电压作用下产生感性电流,从而对单相接地时的电容电流起补偿作用采用过补偿方式,以避免串联谐振过电压;这种方式也可以实现高灵敏度既无死区的定子接地保护;
5.中性点直接接地:在这种接地种方式下,接地电流很大,需要立即跳开发电机灭磁开关和出口断路器或发变组出口断路器;。
电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。
中性点接地方式有直接接地、不接地和经消弧线圈接地。
中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。
中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。
1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。
实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。
系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。
一般单相短路电流不大于同一地点三相短路电流。
此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。
当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。
接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。
单相接地电流较大,对邻近通信线路电磁干扰较强。
我国380/220V三相四线系统,中性点直接接地。
2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。
因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。
同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。
规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。
单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。
发电机中性点接地方式及作用随着现代电力系统的发展,发电机的中性点接地方式也越来越多样化。
发电机的中性点接地方式根据电力系统的要求和实际情况选择,以确保系统的安全运行和设备的可靠工作。
本文将介绍几种常见的发电机中性点接地方式及其作用。
1.无中性点接地方式无中性点接地方式是指发电机中性点不接地,即不与任何接地点相连。
这种方式适用于一些特殊的发电机系统,如高压直流输电系统或其他要求无中性点接地的电力系统。
该方式的作用是防止中性点电流的产生,以及减小对系统产生的潮流冲击。
2.直接接地方式直接接地方式是指发电机中性点直接接地。
这种方式适用于小型和中型的发电机系统,一般用于低电压和小容量的发电机组。
直接接地方式的作用是将发电机的中性点电位固定在地电位,避免中性点电位漂移造成的不稳定。
3.高阻抗接地方式高阻抗接地方式是指通过中性点接线电抗或电容将发电机中性点与地相连。
这种方式适用于中型和大型的发电机系统,一般用于额定电压为10kV以上的发电机组。
高阻抗接地方式的作用是限制中性点电流的大小,减小对系统的影响,并增强系统的抗干扰能力。
4.低阻抗接地方式低阻抗接地方式是指通过中性点接线电阻将发电机中性点与地相连。
这种方式适用于大型的发电机系统,一般用于输电系统或大容量的发电机组。
低阻抗接地方式的作用是提供系统的绝对保护,能够及时检测和隔离发电机的接地故障,并快速恢复电力系统的运行。
除了上述几种常见的发电机中性点接地方式,还有一些其他的方式,如星形接地方式、虚地方式等。
每种方式都有其特点和适用范围,选择时需根据具体情况综合考虑。
发电机的中性点接地方式在电力系统中具有重要的作用,它能够保护电力设备和人身安全,减小电力系统的故障和事故发生的概率,提高电力系统的可靠性和稳定性。
总之,发电机的中性点接地方式是电力系统中重要的技术措施,它能够保证系统的安全运行和设备的可靠工作。
各种接地方式具有不同的作用和适用范围,选择时应根据实际情况进行合理选择,并加强对接地方式的监测和维护,以确保电力系统的正常运行。
1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。
2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。
适用于农村10kV架空线路为主的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。
在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。
由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。
编订:__________________审核:__________________单位:__________________中性点接地方式及其影响Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.Word格式 / 完整 / 可编辑文件编号:KG-AO-7559-45 中性点接地方式及其影响使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
摘要:中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
关键词:中性点接地方式1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
中性点接地方式对配电网可靠性的影响随着电力系统的不断发展,中性点接地方式成为了配电网中一个重要的技术问题。
中性点接地方式直接影响着配电网的运行安全和可靠性。
深入研究中性点接地方式对配电网可靠性的影响,对配电网的稳定运行和安全供电具有重要的意义。
一、中性点接地方式的概念中性点接地方式是指在三相四线系统中,在发生单相接地故障时,中性点采取何种接地方式的一种选择。
中性点接地方式通常有降压中性点接地、零序中性点接地和继电保护接地等多种方式。
1. 降压中性点接地降压中性点接地是指在中性点接地时增加降压电感,将零序电流限制到较小范围内的一种方式。
通过此方式可以减小单相接地故障时的零序电流,降低对电力设备的冲击。
零序中性点接地是指在中性点接地时通过特殊的接地装置,将零序电流短接到地,以减小对系统的影响。
这种方式能够快速将故障电流短接到地,减小故障面积,有利于提高系统的可靠性。
3. 继电保护接地继电保护接地通过继电保护装置实现对中性点的接地方式的选择,能够在故障发生时快速切除故障部分,并实现对剩余系统的保护。
采用继电保护接地方式能够提高配电网的可靠性,减小故障对系统的影响,提高系统的稳定性和安全性。
在实际的配电网中,如何选择合适的中性点接地方式对系统的可靠性具有重要的影响。
需要充分考虑系统的运行特性、设备的性能和线路的特点,选择合适的中性点接地方式。
需要根据系统的实际运行情况和故障特性,及时调整中性点接地方式,提高系统的可靠性和稳定性。
需要加强对中性点接地方式的研究和应用,不断优化接地方式,提高系统的安全性和可靠性。
中性点接地方式介绍一、基本概念电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。
三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。
中性点接地方式涉及电网的安全可靠性、经济性,同时直接影响系统设备绝缘水平的选择、过电压水平、继电保护方式及通讯干扰等。
二、基本接地方式我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。
1.中性点不接地当中性点不接地系统发生单相接地故障时,故障相电压为零。
非故障相相电压上升为线电压,为原来的1.732倍。
但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。
故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。
当电压高、线路长时才妾地电流较大。
可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加,上述优点便不存在了。
2、中性点经消弧线圈接地单相接地时,当接地电流大于IOA而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。
该方式就是在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流补偿线路接地的电容电流,使流过接地点的电流减小到能自行熄灭的范围。
中性点经消弧线圈接地,保留了中性点不接地方式的全部优点。
由于消弧线圈的电感电流补偿了电网接地电容电流,使得接地点残流减少到5A及以下,降低了故障相接地电弧恢复电压的上升速度,以致电弧能够自行熄灭,从而提高供电可靠性。
i3、中性点直接接地对于高压系统,如I1OkV及以上的供电系统,电压高,考虑成本的条件下,设备绝缘不会设计得很大。
中性点接地系统分类及其优缺点中性点接地系统是电力系统中常见的一种保护措施,用于减少电力系统的短路故障时对设备和人员的损害。
中性点接地系统可以分为直接接地系统、小电阻接地系统和不对称接地系统三种类型。
不同类型的中性点接地系统具有不同的特点和优缺点。
1.直接接地系统:直接接地系统是指将电力系统的中性点与大地直接连通,并与大地形成有一定电阻的接地通路。
直接接地系统的优点包括:-设备简单:直接接地系统不需要添加额外的设备或装置,设备布置和维护较为简单。
-成本低廉:直接接地系统不需要大量的设备投资和维护费用,成本相对较低。
-适用性广泛:直接接地系统适用于大多数低电压电力系统。
直接接地系统的缺点包括:-地电压过高:直接接地系统存在着地电压过高的问题,在系统发生故障时,会导致接地电流增大,增加设备损坏的风险。
-故障隐患:直接接地系统一旦出现了接地故障,可能会导致电力系统的停运,对生产和生活造成不便。
2.小电阻接地系统:小电阻接地系统是指在中性点接地通路中添加一个小电阻,将接地电流限制在较低水平的接地系统。
小电阻接地系统的优点包括:-地电压低:相比于直接接地系统,小电阻接地系统的地电压较低,减少了设备损坏的风险。
-故障性能改善:小电阻接地系统能够提供较高的故障电流,使故障点更易于检测和定位,有利于故障的快速修复。
小电阻接地系统的缺点包括:-投资成本高:相比直接接地系统,小电阻接地系统需要添加电阻器等设备,投资成本较高。
-维护困难:小电阻接地系统的设备较多,维护和检修较为复杂,需要专业技术支持。
3.不对称接地系统:不对称接地系统是指将电力系统中性点的一相与大地直接接地,而其余相则通常通过电感、电容等器件接地。
不对称接地系统的优点包括:-地电压低:不对称接地系统能够通过合理设置接地电感和电容,将地电压限制在较低水平。
-故障定位准确:不对称接地系统能够通过检测故障电流和相位差,准确地确定故障点。
不对称接地系统的缺点包括:-技术较复杂:不对称接地系统需要精确地设置接地电感和电容,需要较高的技术水平。
编号:SM-ZD-64515 中性点接地方式及其影响Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives编制:____________________审核:____________________时间:____________________本文档下载后可任意修改中性点接地方式及其影响简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目标统一,行动协调,过程有条不紊。
文档可直接下载或修改,使用时请详细阅读内容。
摘要:中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
关键词:中性点接地方式1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
中性点接地方式(一)电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。
中性点接地方式直接影响到系统设备绝缘水平、系统过电压水平、过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。
我国的110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1。
4运行相电压;暂态过电压水平也相对较低;继电保护装置能迅速断开故障线路,设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。
在三相交流电力系统中,作为供电电源的发电机和变压器的中性点,有三种运行方式:一种是电源中性点不接地;一种是电源中性点经消弧线圈接地;一种是电源中性点直接接地。
前两种合称为中性点非有效接地,或小电流接地系统,后一种中性点直接接地称为中性点有效接地,或大电流接地.1电源中性点不接地电力系统(3—63kV系统大多数采用电源中性点不接地运行方式)。
电源中性点不接地系统发生单相接地时,如C相单相接地,那么完好的A、B 两相对地电压都由原来的相电压升高到线电压,即升高为原对地电压的√3倍,C相接地的电容电流为正常运行时每相对地电容电流的3倍.当发生单相接地时,三相用电设备的正常工作未受到影响,因为线路的线电压无论相位和量值均未发生变化,因此三相用电设备仍然照常运行。
但电力部门只允许运行2小时,因为一旦另一相又发生接地故障时,就形成两相接地短路,产生很大的短路电流,可能损坏线路设备.2电源中性点经消弧线圈接地的电力系统。
在中性点不接地的电力系统中,有一种情况比较危险,即在单相接地时,如果接地电流较大,将出现断续电弧,这可使线路发生电压谐振现象,在线路上形成一个R-L-C的串联谐振电路,从而使线路上出现危险的过电压(可达相电压的2.5-3倍),导致线路上绝缘薄弱地点的绝缘击穿。
电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。
我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。
⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。
1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。
这时中性点接地与否对各相对地电压没有任何影响。
可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。
这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。
在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。
⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。
但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。
所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。
当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。
⼀相接地系统允许继续运⾏的时间,最长不得超过2h。
三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。
弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。
故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。
2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。
电力系统中性点接地方式电力系统中性点接地方式有两大类:一类是中性点直接接地或经过低阻抗接地,称为大接地电流系统;另一类是中性点不接地,经过消弧线圈或高阻抗接地,称为小接地电流系统。
其中采用最广泛的是中性点接地、中性点经过消弧线圈接地和中性点直接接地等三种方式。
(一)中性点不接地系统当中性点不接地的系统中发生一相接地时,接在相间电压上的受电器的供电并未遭到破坏,它们可以继续运行,但是这种电网长期在一相接地的状态下运行,也是不能允许的,因为这时非故障相电压升高,绝缘薄弱点很可能被击穿,而引起两相接地短路,将严重地损坏电气设备。
所以,在中性点不接地电网中,必须设专门的监察装置,以便使运行人员及时地发现一相接地故障,从而切除电网中的故障部分。
在中性点不接地系统中,当接地的电容电流较大时,在接地处引起的电弧就很难自行熄灭。
在接地处还可能出现所谓间隙电弧,即周期地熄灭与重燃的电弧。
由于电网是一个具有电感和电容的振荡回路,间歇电弧将引起相对地的过电压,其数值可达(2.5~3)Ux。
这种过电压会传输到与接地点有直接电连接的整个电网上,更容易引起另一相对地击穿,而形成两相接地短路。
在电压为3-10kV的电力网中,一相接地时的电容电流不允许大于30A,否则,电弧不能自行熄灭。
在20~60kV电压级的电力网中,间歇电弧所引起的过电压,数值更大,对于设备绝缘更为危险,而且由于电压较高,电弧更难自行熄灭。
因此,在这些电网中,规定一相接地电流不得大于10A。
(二)中性点经消弧线圈接地系统当一相接地电容电流超过了上述的允许值时,可以用中性点经消弧线圈接地的方法来解决,该系统即称为中性点经消弧线圈接地系统。
消弧线圈主要有带气隙的铁芯和套在铁芯上的绕组组成,它们被放在充满变压器油的油箱内。
绕组的电阻很小,电抗很大。
消弧线圈的电感,可用改变接入绕组的匝数加以调节。
显然,在正常的运行状态下,由于系统中性点的电压三相不对称电压,数值很小,所以通过消弧线圈的电流也很小。
变压器中性点接地方式优缺点的分析1.零序接地:零序接地指的是变压器的中性点通过零序电流予以接地,具体实施方式有星形接地和虚地法等。
零序接地的优点如下:(1)对系统的短路电流影响小。
由于变压器中性点接地,零序电流只有在发生相间短路时才会通过中性点,其他时候零序电流几乎为零,对系统的短路电流影响较小。
(2)提高系统的可靠性。
零序接地可以减小故障电流的大小,降低设备的故障损坏率,提高系统的可靠性。
(3)容错能力强。
当发生相间短路时,系统可以自动切断故障线路,减少对其他正常运行的线路的影响。
(4)适用范围广。
零序接地可以应用于不同电压等级和不同容量的变压器系统,具有较大的适用范围。
零序接地的缺点如下:(1)对设备安全影响大。
相间短路时,会形成高电压的电压极降。
如果设备绝缘不良,可能导致设备击穿,造成设备损坏。
(2)对故障的定位困难。
由于零序电流对地进行了接地,故障相地电流难以获得,因此对故障的定位会有一定的困难。
2.高阻抗接地:高阻抗接地指的是通过接地电阻来限制故障电流的流动。
高阻抗接地的优点如下:(1)降低设备损坏率。
高阻抗接地限制了故障电流的流动,减小了设备损坏的可能性。
(2)减少对系统的干扰。
高阻抗接地可以减少电网因短路引起的干扰,提高电网的稳定性和可靠性。
(3)提供多重故障电流路径。
高阻抗接地通过接地电阻的方式为故障电流提供多重路径,提高了设备的容错能力。
高阻抗接地的缺点如下:(1)设备造价较高。
高阻抗接地需要设置接地电阻器和监测装置,增加了设备的造价。
(2)需要额外的维护工作。
高阻抗接地需要定期检查接地电阻器的工作状态,进行维护和保养。
3.低阻抗接地:低阻抗接地指的是变压器中性点通过低阻抗接地装置进行接地。
低阻抗接地的优点如下:(1)对设备保护较好。
故障发生时,低阻抗接地可以迅速将故障电流引走,保护设备不受损坏。
(2)对故障定位有利。
低阻抗接地可以通过检测故障电流的幅值和相位来定位故障点,提高了故障定位的准确性。
中性点接地方式及其影响1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。
2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。
适用于农村10kV架空线路为主的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。
在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。
由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。
第二节中性点接地方式对绝缘水平的影响中性点接地方式对绝缘水平的影响主要体现在以下几个方面:电气设备的可靠性、电气设备的安全性、系统的操作性以及电气设备的经济性。
首先,中性点接地方式对电气设备的可靠性具有重要影响。
中性点接地方式是指将电力系统的中性点与地进行连接,一般分为直接接地、阻抗接地和混合接地三种方式。
直接接地方式实际上是短路了中性点和地之间的电流,可以有效地限制故障电流的大小,提高系统的抗电力故障能力,从而提高电气设备的可靠性。
阻抗接地方式通过设置中性点接地电阻,限制中性点接地故障电流的大小,也能起到保护电气设备的作用。
而混合接地方式是直接接地和阻抗接地方式的结合,可以灵活调节中性点接地电阻的大小,使得系统能够适应不同的工作条件,进一步提高电气设备的可靠性。
其次,中性点接地方式对电气设备的安全性具有重要影响。
电力系统中的故障电流会导致电压的不对称和电压的过高等问题,严重时可能导致设备的过电压击穿、烧毁等事故。
中性点接地方式可以限制故障电流的大小,减小电压的不对称,有效地保护电气设备的安全。
与此同时,中性点接地方式能够提前检测电力系统中的接地故障,及时采取措施进行修复,进一步提高电气设备的安全性。
第三,中性点接地方式对系统的操作性具有重要影响。
不同的中性点接地方式对电力系统的工作方式和故障处理方法有不同的要求。
直接接地方式需要快速检测和隔离故障,操作起来相对简单。
而阻抗接地方式需要合理设置中性点接地电阻,保证故障时系统的稳定性,对操作人员的技术要求较高。
混合接地方式的操作性介于直接接地和阻抗接地之间,能够根据具体情况进行调整。
因此,在选择中性点接地方式时需要综合考虑系统的操作技术状况,确保系统能够安全稳定地运行。
最后,中性点接地方式对电气设备的经济性有一定影响。
直接接地方式不需要设置中性点接地设备,因此成本相对较低,但故障电流较大,维护起来相对困难。
阻抗接地方式需要设置中性点接地电阻和监测设备,虽然成本较高,但能够有效地保护电气设备,减少故障损失。
中性点接地方式及其影响
金秋生
摘要:中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
关键词:中性点接地方式
1 中性点直接接地
中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。
2 中性点不接地
中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。
适用于农村10kV架空线路为主的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。
在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。
由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。
此外,由于电网存在电容和电感元件,在一定条件下,因倒闸操作或故障,容易引发线性谐振或铁磁谐振,这时馈线较短的电网会激发高频谐振,产生较高谐振过电压,导致电压互感器击穿。
对馈线较长的电网却易激发起分频铁磁谐振,在分频谐振时,电压互感器呈较小阻抗,其通过电流将成倍增加,引起熔丝熔断或电压互感器过热而损坏。
3 中性点经消弧线圈接地
中性点经消弧线圈接地方式,即是在中性点和大地之间接入一个电感消弧线圈。
当电网发生单相接地故障时,其接地电流大于30A,产生的电弧往往不能自熄,造成弧光接地过电压概率增大,不利于电网安全运行。
为此,利用消弧线圈的电感电流对接地电容电流进行补偿,使通过故障点的电流减小到能自行熄弧范围。
通过对消弧线圈无载分接开关的操作,使之能在一定范围内达到过补偿运行,从而达到减小接地电流。
这可使电网持续运行一段时间,相对地提高了供电可靠性。
该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找发现故障点比较难。
消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。
消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压。
消弧线圈能使单相接地电流得到补偿而变小,这对实现继电保护比较困难。
4 中性点经电阻接地
中性点经电阻接地方式,即是中性点与大地之间接入一定电阻值的电阻。
该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。
中性点经电阻接地的方式有高电阻接地、中电阻接地、低电阻接地等三种方式。
这三种电阻接地方式各有优缺点,要根据具体情况选定。
5 结束语
随着社会经济的发展和科学技术现代化对电力依赖和消费程度越来越高,对用户供电的可靠性,也不再是靠带单相接地故障运行2h来保证,而是靠电网结构和电力调度控制来保证。
随着电网规模扩大,单相接地电流也随之增大,而威胁到设备的安全。
为此,10kV单电源辐射形或树状形供电,必须向环网双电源供电改造。
此外,由于现代化城镇建设对市容的要求,10kV架空线路应改造为以电缆供电为主,架空线路为辅,这也成必然趋势。
所以10kV电网中性点不接地或经消弧线圈接地方式,将随用电负荷逐年递增与电网结构的变化而变化。
为满足今后电力发展的需要,必须根据电力负荷、电网结构、电缆回数、过电压保护、跳闸方式,以及继电保护构成和电力系统稳定性等因素,对10kV电网中性点接地方式进行选择确定,从而达到中性点接地方式的优化。