射随电路原理
- 格式:doc
- 大小:32.50 KB
- 文档页数:2
射极跟随器实验报告射极跟随器实验报告一、实验目的本实验旨在通过模拟电路实现射极跟随器的功能,加深对射极跟随器工作原理的理解,掌握其电路组成、工作过程及性能特点。
二、实验原理射极跟随器是一种共射极放大电路,其输出信号从发射极取出,经缓冲器和负载电阻反馈到输入端,形成射极跟随器。
射极跟随器具有高输入阻抗、低输出阻抗、电压放大倍数接近1的特点,常用于多级放大电路的输入级或输出级,起缓冲、隔离和放大的作用。
三、实验步骤1.准备实验材料:电源、信号发生器、电阻、电容、电感、三极管等。
2.搭建射极跟随器电路:将电源、信号发生器、电阻、电容、电感、三极管等按照射极跟随器的电路组成连接起来。
3.调节输入信号:打开电源,调节信号发生器,使输入信号频率和幅度变化。
4.测量输出信号:使用示波器等测量仪器,测量射极跟随器输出信号的幅度和相位等参数。
5.记录实验数据:将输入信号和输出信号的幅度、相位等参数记录在实验数据表中。
6.分析实验结果:根据实验数据,分析射极跟随器的性能特点,加深对射极跟随器工作原理的理解。
7.整理实验报告:整理实验步骤、实验数据和分析结果,撰写实验报告。
四、实验数据及分析1.实验数据表:记录输入信号和输出信号的幅度、相位等参数。
幅度的增大而增大,但增大幅度较小;输出信号相位与输入信号相位基本一致,说明射极跟随器具有较好的线性放大特性。
同时,由于射极跟随器具有高输入阻抗和低输出阻抗的特点,使得电路具有较好的隔离效果,可以有效地避免前后级电路之间的相互影响。
五、结论总结通过本次实验,我们验证了射极跟随器的电路组成、工作过程及性能特点。
实验结果表明,射极跟随器具有高输入阻抗、低输出阻抗和较好的线性放大特性,能够有效提高电路的阻抗匹配和信号传输效率。
在多级放大电路中应用射极跟随器可以实现良好的缓冲、隔离和放大效果。
本实验加深了我们对射极跟随器工作原理的理解,为今后在电子系统中应用射极跟随器提供了有益的参考。
实验三 射极同向跟随电路一、实验目的1.掌握射极跟随器的工作原理及测量方法。
2.进一步学习放大器各性能参数的测量方法。
二、实验仪器示波器;信号发生器;毫伏表;数字万用表; 三、预习要求1.计算实验电路的静态工作点。
2.计算实验电路的Au 、Ri 和Ro 。
3.根据实验内容要求设计测量数据记录表格。
四、实验原理及测量方法下图为共集电极放大器的实验电路,负载Rl 接在发射极上,输出电压Uo 从发射极和集电极两端取出,所以集电极是输入输出电路的共同端点。
电路的静态工作点:BQ I =EBBEQ)R+(1+RβU -VccBQ CQ I I β=E CQ CEQ R I -Vcc U =电路的电压放大倍数:,be LI O U )1(r R 1U U A LR ββ+++==,)(其中L R //R R E L =,一般be r 》,L R β,故射极放大器的电压放大倍数接近于1而略小于,且输出电压和输入电压同相,所以称同相放大器或射极跟随器。
电路的输入、输出电阻:ββ++=++=1////])1(//[,be B SE o L be B i r R R R r R r R r与单管共设放大器比较,射极输出器的输入电阻比较高,输出电阻比较低,所以常用在多级放大器的第一级或最后一级。
五、实验内容与步骤1.按图在试验箱上连接电路。
2.静态工作点的调整将直流电源+12V 接上,在输入端加f=1KHZ 的正弦信号,幅值自定,调节电位器Rp 及信号发生器的输出幅度,用示波器观测放大器的输出信号,使输出幅度在示波器屏幕上得到一个最大不失真波形,然后断开输入信号,用数字万用表测量晶体管各级对地的直流电位和电流及该放大器的静态工作点,将记录数据填入下表,并计算Q C I : Ui Ue(V) Ub(V) Uc(V) Ube(V) Ic(mA) Ib(uA)Ie(mA) 08.158.7211.990.664.26244.29电压测量电流法:Ic=Ie=Ue/Re=4.1mA既有直接测量的电流值与电压测量电流法的值有一定的误差,误差值为3.9%。
射极跟随器实验报告1. 引言射极跟随器是一种广泛应用于电子设备中的电路,其作用是使输出端的电压或电流跟随输入端的变化。
本实验旨在探究射极跟随器的基本原理、性能特点以及应用实例。
2. 实验目的- 理解射极跟随器的工作原理- 学习如何设计和搭建射极跟随器电路- 掌握射极跟随器的性能测试方法和结果分析3. 实验材料和仪器- NPN型晶体管(例如2N3904)- 电压源- 电阻、电容等常见元器件- 示波器- 万用表4. 实验步骤4.1 搭建射极跟随器电路根据给定的电路图,选择合适的元器件进行搭建。
确保电路连接正确,无误后进行下一步。
4.2 测试射极跟随器的静态工作点使用万用表测量晶体管的射极电流和集电极电压,并记录下来。
通过计算可以得到静态工作点,进一步分析电路性能。
4.3 测试射极跟随器的动态响应特性通过改变输入端的信号频率和幅度,观察电路输出(集电极)的响应。
使用示波器进行波形显示和观察,并记录实验结果。
4.4 对实验结果进行分析根据实验数据,分析射极跟随器的增益、频率响应特性等性能。
比较不同元器件参数对电路性能的影响。
5. 实验结果和讨论记录并整理实验数据结果,分析电路的性能特点。
讨论射极跟随器在电子设备中的应用及其优缺点。
6. 结论总结实验结果,针对射极跟随器的特点和应用进行归纳总结。
7. 实验注意事项- 实验过程中需要注意安全操作,避免触电风险。
- 确保电路连接正确,避免短路或开路等问题。
- 对于高频信号的测试,需要选择合适的示波器和电路布线,以避免信号失真和干扰。
8. 参考文献提供相关射极跟随器的原理资料、电路设计参考资料以及其他相关论文、教材等。
9. 结束语通过本实验,我们对射极跟随器的工作原理、性能特点和应用有了更加深入的了解。
射极跟随器作为一种常用的电路,具有重要的应用价值,值得进一步研究和探索。
射极跟随器实验总结一、实验目的本实验旨在了解射极跟随器的工作原理和特点,掌握射极跟随器的电路设计方法和调试技巧,并通过实验验证射极跟随器的性能和稳定性。
二、实验原理射极跟随器是一种常用的电压放大电路,其主要特点是输入电阻大、输出阻抗小、增益稳定。
在实际应用中,射极跟随器常用于信号放大、滤波等方面。
射极跟随器由三个基本元件组成:晶体管、负载电阻和输入电容。
其中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。
在射极跟随器中,晶体管的基极接地,集电极接负载电阻,发射极接输入信号。
当输入信号加入时,发射极会产生一个反向信号,从而抵消掉基极和集电极之间的偏置电压。
这样就能够保证集电极处始终处于正常工作状态。
三、实验步骤1. 按照图1所示连接好电路,其中晶体管型号为9018,负载电阻为1kΩ,输入信号频率为1kHz。
2. 调节可变电阻,使得输出波形幅度达到最大。
3. 测量输出波形的幅度和相位,并记录在实验报告中。
4. 分别改变输入信号的频率和幅度,观察输出波形的变化,并记录在实验报告中。
5. 将负载电阻改为2kΩ和500Ω,重复步骤2-4。
6. 拆下晶体管,测量其参数(包括hfe、Vbe、Vce等),并记录在实验报告中。
四、实验结果通过实验可以得到如下结论:1. 射极跟随器具有较高的输入电阻、较低的输出阻抗和稳定的增益特点。
2. 在射极跟随器中,晶体管起到放大信号的作用;负载电阻起到限流作用;输入电容起到滤波作用。
3. 输入信号频率对射极跟随器的性能影响较小,而输入信号幅度对射极跟随器的性能影响较大。
当输入信号幅度过大时,会导致晶体管工作不稳定。
4. 改变负载电阻的大小可以改变射极跟随器的输出电压和输出电流,但会对增益特性产生影响。
5. 晶体管参数的不同会对射极跟随器的性能产生影响,因此在设计射极跟随器时需要根据具体情况选择合适的晶体管。
五、实验总结通过本次实验,我们深入了解了射极跟随器的工作原理和特点,掌握了射极跟随器的电路设计方法和调试技巧,并通过实验验证了射极跟随器的性能和稳定性。
射极跟随器实验原理射极跟随器是一种通过放大器将输入信号传递到输出端的电路,其实验原理基于三极管的工作特性。
在三极管的输入子电极施加一个小信号时,其输出子电极将会跟随输入信号做出响应。
这个响应可以通过调整电路中其他元件的性质,实现放大和滤波的效果。
射极跟随器的原理通过以下几个步骤进行:1. 三极管基本原理首先了解一下三极管的基本原理。
三极管由三个不同掺杂程度的半导体材料层或区域串接而成。
三个层分别称为发射结(Emitter)、基极(Base)和集电结(Collector)。
基极与发射结之间形成反向偏置,使三极管处于截止状态,此时无法从发射结向集电结输出信号。
2. 信号输入在电路中输入一个小信号,经过耦合电容C1,可以施加到三极管的基极上。
发射结因此会受到小信号的影响而在微观间距内获得一个电荷,这个电荷将引起三极管内的电流变化,进而影响其输出的电压和电流。
3. 放大作用接下来,通过调整放大器电路中的不同元件来实现放大作用。
一种常见的方法是使用一个负反馈网络,将输出信号返回至输入端,从而抑制噪声和干扰。
通过调整反馈网络中的电容大小和电阻器值来实现放大倍数的调节。
4. 输出信号在调节好电路之后,射极跟随器的输出端便可以实现信号放大、滤波和输出的功能。
通过调整电路元件的性质,可以使输出信号的带宽更合适,从而获得更加精准的测量结果。
在实际应用中,射极跟随器可以被用作高频测量、电信和电子设备等领域。
总之,射极跟随器实验原理基于三极管的工作特性,通过控制输入信号和调整其他元件的特性来实现信号的放大、滤波和输出。
理解这个原理可以帮助我们更好地设计和实现射极跟随器电路,同时也有助于更好地掌握电子元器件的基本工作原理。
1. 掌握射级跟随电路的基本原理和特性。
2. 熟悉射级跟随电路的组成和电路参数的测量方法。
3. 通过实验验证射级跟随电路的输入阻抗、输出阻抗和电压放大倍数等特性。
二、实验原理射级跟随电路(也称为射极输出器)是一种常见的线性放大电路。
其基本原理是利用晶体管的放大作用,将输入信号放大并跟随输出。
射级跟随电路具有以下特点:1. 输入阻抗高,输出阻抗低,带负载能力强。
2. 电压放大倍数接近于1,但略低于1。
3. 输出电压能够在较大范围内跟随输入电压作线性变化。
4. 输入与输出信号同相。
射级跟随电路的原理图如下:```+Vcc|R1|Q1 (晶体管)|R2|GND```其中,R1为基极偏置电阻,R2为发射极电阻。
1. 晶体管(如2N3904)2. 电阻(R1、R2、R3等)3. 直流电源(12V)4. 示波器5. 数字万用表6. 螺丝刀7. 导线若干四、实验步骤1. 按照原理图连接电路,将R1、R2、R3等电阻接入电路。
2. 将晶体管Q1插入电路,确保其安装正确。
3. 连接直流电源,调节电源电压为12V。
4. 使用示波器观察输入信号和输出信号,记录波形。
5. 使用数字万用表测量输入电阻、输出电阻和电压放大倍数等参数。
6. 根据实验数据,分析射级跟随电路的特性。
五、实验结果与分析1. 输入电阻输入电阻Ri可以通过以下公式计算:```Ri = R2 / (1 + β)```其中,β为晶体管的电流放大系数。
通过实验测量,可以得到输入电阻Ri的值。
2. 输出电阻输出电阻Ro可以通过以下公式计算:```Ro = R2```通过实验测量,可以得到输出电阻Ro的值。
3. 电压放大倍数电压放大倍数A可以通过以下公式计算:```A = Vout / Vin```其中,Vout为输出电压,Vin为输入电压。
通过实验测量,可以得到电压放大倍数A的值。
4. 特性分析根据实验结果,可以分析射级跟随电路的特性:- 输入阻抗较高,带负载能力强。
一、实验目的1. 掌握射极跟随器的基本原理和电路结构。
2. 了解射极跟随器的输入阻抗、输出阻抗和电压放大倍数等主要特性。
3. 学习使用电子仪器对射极跟随器进行测试和分析。
4. 通过实验加深对模拟电子技术中放大器原理的理解。
二、实验原理射极跟随器(Emitter Follower)是一种常用的电压放大电路,其特点是输入阻抗高、输出阻抗低、电压放大倍数接近于1。
射极跟随器主要由晶体管、偏置电阻、负载电阻等组成。
其工作原理是:输入信号通过晶体管的基极输入,经过放大后,从发射极输出,从而实现电压放大的目的。
三、实验器材1. 晶体管(如2N3904)2. 偏置电阻(如R1、R2)3. 负载电阻(如RL)4. 信号源5. 示波器6. 数字万用表7. 基准电源8. 连接线四、实验步骤1. 按照实验电路图连接电路,确保连接正确无误。
2. 将信号源输出设置为正弦波,频率为1kHz,幅度为1V。
3. 使用示波器观察输入信号和输出信号的波形,并调整偏置电阻R1和R2,使输出信号不失真。
4. 使用数字万用表测量晶体管各电极的电压,并记录数据。
5. 改变负载电阻RL的值,观察输出信号的变化,并记录数据。
6. 使用示波器观察输出信号的相位,并与输入信号进行比较。
五、实验结果与分析1. 输入阻抗测量:通过测量输入信号和基极电压,可以计算出射极跟随器的输入阻抗。
实验结果表明,射极跟随器的输入阻抗较高,有利于信号源与放大电路之间的匹配。
2. 输出阻抗测量:通过测量空载输出电压和接入负载后的输出电压,可以计算出射极跟随器的输出阻抗。
实验结果表明,射极跟随器的输出阻抗较低,有利于驱动负载。
3. 电压放大倍数测量:通过测量输入信号和输出信号的幅度,可以计算出射极跟随器的电压放大倍数。
实验结果表明,射极跟随器的电压放大倍数接近于1,说明其具有电压跟随特性。
4. 相位测量:通过观察输入信号和输出信号的相位,可以判断射极跟随器的相移情况。
实验结果表明,射极跟随器的输入信号和输出信号同相,说明其具有较好的相移特性。
射随,是我们通常对射极跟随器的简称,其实也就是共集电极放大器,它的特点:1、晶体管射随电路具有较高的输入阻抗和较低的输出阻抗--基极回路电阻的1/1+β(β是晶体管的直流放大系数,也就是三极管规格书中的hFE,BC857AW正常工作时为250),具有隔离阻抗变换的作用。
2、电流增益很大,Ie=Ib(1+β)。
3、电压增益接近1,输入信号与输出信号同相,大小基本相等,这也是射随名字的由来。
由于射随的这几个特点,我们将其用在例如中放VIDEO输给DECODER,DECODER 的AV OUT等电路,弥补原先器件输出电流小,带载能力不足的缺点,减少后级电路对前级电路的影响,从而达到增强电路的带负载能力和前后级阻抗匹配,射随器同时还可以隔离逆向干扰,一路信号可以通过两个射随分成两路,而不会互相干扰,所以AV OUT,AUDIO OUT也经常使用这个电路。
目前我们常用的射随电路根据使用PNP 或NPN三极管也有两种形式:图1上面这个电路经常用于我们的AV OUT电路。
输入信号VIDEO IN波形变高时,三极管截止,VCC通过R1给C1充电;输入信号VIDEO IN波形变低时,三极管导通,C1通过导通的三极管对地放电。
电路形式看似很简单,器件不多,但如果器件使用不当的话,很容易造成输出波形失真:1、电容C1:C1在这个电路中起着仅次于三极管的作用。
电容的特性直观的说就是会保持电容两端电压不突变,电容量越大,这个阻止电压突变的能力就越强。
而通常我们说的通交流隔直流,可以通过这个公式来分析:电路中电容的容抗Xc=1/2πf C ,其中f为信号的频率,C为电容量的大小。
那么也就是说,当C不变时,频率越高,容抗Xc越小,那么电流越大,信号越容易通过。
那么为什么直流会被隔离呢?直流电平,相当于f=0,这时候容抗Xc=无穷大,相当于开路,信号自然无法传送过去了。
当f不变时,C越大,容抗Xc越小,那么电流越大,信号越容易通过。
三极管射极跟随器电路-射极输出器工作原理-射极输出器电路图-什么是射极跟随器-晶体管跟随器
来源:互联网作者:电子电路图
共集电极放大电路射极输出器、射极跟随器)
图1 射极输出器电路
一、静态分析
二、动态分析
图2 微变等效电路
图3 微变等效电路
1. 电流放大倍数:(忽略Rb的分流)
图4 输出电路
结论:
1)
但是,有较大的电流放大倍数
2)输入输出同相,输出电压跟随输入电压,故称电压跟随器。
3. 输入电阻
图5 输入电路图
输入电阻较大,作为前一级的负载,对前一级的放大倍数影响较小。
4. 输出电阻
用加压求流法求输出电阻。
图5 等效电路
射极输出器的输出电阻很小,带负载能力强。
射极输出器特点:
电压增益小于近似等于1,输出电压与输入电压同相,输入电阻高,输出电阻低。
射极输出器的使用
1、将射极输出器放在电路的首级,可以提高输入电阻。
2、将射极输出器放在电路的末级,可以降低输出电阻,提高带负载能力。
3、将射极输出器放在电路的两级之间,可以起到电路的匹配作用。
例:
估算静态工作点,计算电流放大倍数、电压放大倍数和输入、输出电阻。
图6 例图电路
可见:输入电阻很大,输出电阻很小。
运放射随器电路
运放放大器是一种电子电路元件,它的独特性质使得其可以增加电路的输入信号的幅度。
射随器电路是一种基于运放放大器的电路,用于从输入信号中提取出特定的频率组成部分。
射随器电路主要由运放、电阻和电容组成。
运放应置于一个反馈回路中,以使得输出信号与输入信号之间保持稳定的比例关系。
电容和电阻的作用是滤除输入信号中不需要的频率部分。
射随器电路的工作原理是利用运放的运算放大器特性,将输入信号从一个电容中注入到运放的负输入端,通过运算放大器产生的反转信号将信号放大后输出。
由于运放具有高增益和低失真的特性,因此可以在不损失信号质量的情况下将信号幅度增大。
在射随器电路中,输入信号的频率通过改变电容和电阻之间的数值来选择。
通常,不同的RC组合可以提取不同的频率特征。
此外,通过调整反馈回路中的电阻,可以进一步调整输出信号的幅度和相位。
总之,射随器电路利用运放的特性,可以提取输入信号中的特定频率部分,从而在电路设计和信号处理中发挥重要作用。
射极跟随器电路
射极跟随器电路是一种基于晶体管的放大电路,通常用于信号放大和电平转换的应用。
射极跟随器电路由一个NPN型晶体管构成,其射极(collector)直接连接到负载电阻上,基极(base)通过电阻连接到输入信
号源,而发射极(emitter)则通过电阻到地。
工作原理如下:
- 当输入信号电压增加时,输入信号会提供于基极-发射极电压(Vbe)增大。
这会导致晶体管处于放大状态,增大了输出信
号电压范围。
- 当输入信号电压减小时,Vbe减小,晶体管将处于关闭状态,输出信号电压将跟随输入信号的变化而减小。
射极跟随器电路的特点:
1. 电压跟随性:输出电压会跟随输入电压的变化,实现信号放大和电平转换。
2. 输出电阻低:由于输出电压直接由负载电阻决定,其输出电阻很低。
3. 增益近似为1:射极跟随器的放大增益近似为1,所以在实
际应用中常常作为缓冲器使用。
射极跟随器电路在实际应用中具有广泛的用途,如音频放大、功率放大器的输出级等。
pnp+npn 电压射随电路在电子电路中,pnp和npn电晶体是常见的器件,它们在各种电路中起着至关重要的作用。
其中,pnp+npn电压射随电路是一种常用的电路结构,用来实现电压的射随放大。
本文将从浅入深,深入探讨pnp+npn电压射随电路的原理、特点和应用。
1. 电压射随放大器的基本原理在了解pnp+npn电压射随电路之前,首先需要理解电压射随放大器的基本原理。
电压射随放大器是一种电子放大器,它可以实现输入电压信号的放大,并保持输出电压与输入电压成正比。
这种放大器通常由一个共集极的npn晶体管和一个共射极的pnp晶体管组成,通过它们之间的配合可以实现电压射随放大。
2. pnp+npn电压射随电路的结构特点pnp+npn电压射随电路通常由pnp晶体管和npn晶体管组成,它们之间通过共集极和共射极的连接方式实现电压的射随放大。
与单个晶体管的电压放大相比,pnp+npn电压射随电路具有更高的增益和更宽的工作频率范围,适用于更多的应用场景。
3. pnp+npn电压射随电路的应用pnp+npn电压射随电路广泛应用于各种电子设备中,如音频放大器、功率放大器、信号处理器等。
它具有高增益、低噪声、低失真等特点,能够有效地满足各种电子设备对信号放大和处理的需求。
总结通过对pnp+npn电压射随电路的原理、特点和应用的深入探讨,我们可以更好地理解这种电路结构在电子领域中的重要作用。
它不仅可以实现高质量的电压射随放大,还可以为各种电子设备提供稳定、高效的信号处理能力,为电子技术的发展和应用提供了重要支撑。
个人观点和理解作为一种常见的电子电路结构,pnp+npn电压射随电路在现代电子技术中扮演着至关重要的角色。
通过对其原理和特点的深入理解,我们可以更好地设计和应用这种电路结构,为电子设备的性能提升和创新提供更多可能性。
我相信,在未来的科技发展中,pnp+npn电压射随电路将继续发挥重要作用,为电子技术的进步做出更大的贡献。
射级跟随电路实验报告
实验目的:
1.通过实验了解射级跟随电路的基本原理和特点。
2.通过实验学会设计和制作射级跟随电路。
实验仪器:
1.示波器
2.函数信号发生器
3.电路板和元件
实验原理:
射级跟随电路是其中一种线性放大电路,主要用于实现电压跟随功能。
其基本构成是由输入级和输出级两个级构成,且两个级
之间相互耦合。
其优点是输入输出之间具有很高的隔离度,稳定性高,通用性强,常用于各种高灵敏度的信号放大和跟随。
实验过程:
1.根据实验原理所述,准备好所需的实验仪器和元件,将电路板连线按照图示电路进行连接。
2.使用函数信号发生器输入所需的信号波形,输出信号波形通过示波器实时观察和分析。
3.根据观察和分析结果,进行必要的电路调整和优化,以确保电路的稳定性和输出的精准性。
4.进行参数测试和记录,对实验过程中出现的问题进行及时分析和解决。
实验结果:
经过实验,我们成功地设计出了一款基于射级跟随电路原理的
电路板,并在不同频率下进行测试和记录。
测试结果表明,对于
不同级数和元件选型,射级跟随电路的跟随效果和输出精准性有
较大的区别。
同时,通过多次实验和调整,我们也意识到电路板
的布局和元件间的距离会对电路的稳定性和输出精准性产生影响。
结论:
通过射级跟随电路实验,我们更深刻地了解了射级跟随电路的
基本原理和特点,学会了设计和制作射级跟随电路,同时也掌握
了一定的电子电路实验技能和知识。
我们相信通过持续不断的实
践和学习,将能够更上一层楼,在电子电路与工程领域中取得更
大的突破与创新。
射极跟随器稳压三极管射极跟随器稳压三极管是一种常用的电子元件,用于稳定电压输出。
它由三个主要部分组成:射极跟随器、稳压电路和三极管。
本文将详细介绍射极跟随器稳压三极管的原理和应用。
我们来了解一下射极跟随器的作用。
射极跟随器是一种放大电路,它的输入信号与输出信号相同,但输出信号的电流能力更强。
这意味着射极跟随器可以提供更大的电流输出,同时保持输入信号的准确性。
这对于需要稳定电压输出的电路非常重要。
稳压电路是射极跟随器稳压三极管的核心部分。
它通过对输入电压进行调节,使输出电压保持在一个稳定的水平。
稳压电路通常由电阻、电容和稳压二极管等元件组成。
其中,稳压二极管起到了关键的作用,它能够根据输入电压的变化自动调节电流,从而实现稳定的输出电压。
三极管是射极跟随器稳压三极管的另一个重要组成部分。
它是一种半导体器件,具有放大和开关功能。
在射极跟随器稳压电路中,三极管起到了放大输入信号的作用。
通过调节三极管的工作点,可以实现对输出电压的精确控制。
射极跟随器稳压三极管广泛应用于各种电子设备中。
例如,它常用于电源电路中,用于提供稳定的电压输出。
此外,它还可以用于放大电路、音频放大器和通信设备等领域。
射极跟随器稳压三极管的优点是输出电压稳定,能够适应不同的负载变化,并且具有较低的噪声和失真。
总结一下,射极跟随器稳压三极管是一种常用的电子元件,用于稳定电压输出。
它由射极跟随器、稳压电路和三极管组成。
射极跟随器通过放大输入信号并提供更大的电流输出,稳压电路通过调节输入电压实现稳定的输出电压,而三极管起到放大输入信号的作用。
射极跟随器稳压三极管在电子设备中有广泛的应用,特点是输出电压稳定、适应负载变化、噪声和失真较低。
通过深入理解其原理和应用,我们可以更好地应用射极跟随器稳压三极管来满足各种电路的需求。
射极跟随器射极跟随器(又称射极输出器,简称射随器或跟随器)是一种共集接法的电路见下图,它从基极输入信号,从射极输出信号。
它具有高输入阻抗、低输出阻抗、输入信号与输出信号相位相同的特点一、射随器的主要指标及其计算一、输入阻抗从上图(b)电路中,从1、1`端往右边看的输入阻抗为:Ri=Ui/Ib=rbe+(1+β)ReL 式中:ReL=Re//RL,rbe是晶体管的输入电阻,对低频小功率管其值为:rbe=300+(1+β)(26毫伏)/(Ie毫伏)在上图(b)电路中,若从b、b’端往右看的输入阻抗为Ri=Ui/Ii=Rb//Rio.由上式可见,射随器的输入阻抗要比一般共射极电路的输入阻抗rbe高(1+β)倍。
2、输出阻抗将Es=0,从上图(C)的e、e'往式看的输出阻抗为:Ro=Uo/Ui=(rbe+Rsb)/(1+β),式中Rs=Rs//Rb,若从输出端0、0’往左看的输出阻抗为Ro=Ro//Reo3、电压放大倍数根据上图(b)等效电路求得:Kv=Uo/Ui=(1+β)Rel/[Rbe+(1+β)Rel],式中:Rel=Re//RL,当(1+β)Rel>>rbe时,Kv=1,通常Kv<1.4、电流放大倍数根据上图(b)等效电路求得:KI=Io/Ii=(1+β)RsbRe/(Rsb+Ri)(Re+RL)式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo 通常,射随器具有电流和功率放大作用。
二、射随器的实用电路下图是高频放大器使用的一种电路,由同轴电缆把信号输出,电缆的特性阻抗一般为50欧或70欧,所以要通过跟随器BG2实现阻抗变换。
图2是一种自举式的跟随器,它的特点是:1、自举由于R3的下端电位随上端电位升曾而升高,故称为自兴举,自举作用使R3两端的交流压降为零。
所以对交流来说,R3相当于开路,从而避免了偏置电路降低了输入阻抗的缺陷。
2、输入阻抗高为了尽量地提高晶体管有效的输入阻抗,采用BG1和BG2组成复合管电路,这时β=β1β2,使总的输入阻抗大大提高。
实验五 射极跟随器班级 学号 姓名 成绩一、实验目的1、掌握射极跟随器的线路组成;2、掌握共集放大器(射极跟随器)射极跟随器的静态工作点的测量方法;3、掌握共集放大器(射极跟随器)射极跟随器的特性和测试方法;4、学会放大电路的各项参数的测试方法。
5、观察射极跟随器输入与输出电压波形之间的相位差。
二、实验仪器和设备应用模拟电路实验箱 1个 +12V 直流电源 1个 示波器 1台 信号发生器 1台 数字万用表 1个 电阻 1K Ω 1个三、实验原理射极跟随器(共集放大电路)如图1所示,它具有输入电阻高,输出电阻低,电压放大倍数接近1的特点,输出电压能够在较大的范围内跟随输入电压作线形变化,故又称电压跟随器,可用于放大电路的输入级、输出级和缓冲级使用。
由理论分析可得出:1、输入电阻: b L e be i R R R r r //]//)1([β++=2、输出电阻: e b s be o R R R r r ///1)//(++=β 图1 3、电压放大倍数: '')1()1(Lbe Lu R r R A ββ+++= 式中:e L L R R R //'=四、实验内容在模拟电路实验箱上建立如图2所示的射击跟随器实验电路,信号发生器、数字万用表和示波器按图设置。
图21、静态工作点测量:接通+12V 直流电源,不输入交流信号,用直流电压表测量晶体管各电极对地电位,将测得数据记入表1。
2、测量电压放大倍数Au1)由函数信号发生器中f =1KHz 的信号作为输入信号源us ; 2)接入负载RL =1K Ω;3)在A 点加由函数信号发生器产生的正弦信号us ,调节输入信号幅度,用万用表交流电压档(2V`)测量B 点,使B 点输入电压ui 为1V ;4)在输出不失真情况下用万用表交流电压档(2V`)测ui 、uo ,并用示波器观察输出电压波形,将测得数据记入表2。
表23、测量输入电阻Ri由理论得:则有:测量出us 和ui 填入表3中表34、测量输出电阻R0RL 时,输出端可等效成如图3:此时,可测出U ,当接负载RL =1K 后,则可等效成图4。
射极跟随器稳压原理(二)射极跟随器稳压原理什么是射极跟随器稳压?射极跟随器稳压是一种常见的电路,用于稳定电压输出。
它通过负反馈原理,能够自动调节其输出电压,使其保持在一个稳定的值。
射极跟随器的基本原理射极跟随器由一个晶体管和几个电阻构成。
晶体管被配置为共射极放大器,其中负载电阻通过收集极连接到交流负载。
反馈电路通过连接到基极提供负反馈,使输入信号的变化导致输出电压的变化。
射极跟随器的工作过程1.输入信号通过输入电阻进入射极跟随器。
2.晶体管的基极电压随输入信号的变化而变化,控制晶体管的导通程度。
3.当输入信号增大时,晶体管的导通程度增大,输出电压也随之增大。
4.反之,当输入信号减小时,晶体管的导通程度减小,输出电压也随之减小。
5.反馈电路将部分输出信号作为反馈信号输入到基极,通过比较反馈信号和输入信号的差异,产生错误信号。
6.错误信号被放大并作用于晶体管的基极,使其自动调整导通程度,使输出电压保持稳定。
7.这种反馈作用会不断调整晶体管的导通程度,直到输出电压达到设定值,从而实现稳压。
射极跟随器稳压的优势1.稳定性高:射极跟随器能够通过反馈机制实现自动调节输出电压,稳定性较高。
2.输入输出高阻抗:射极跟随器的输入和输出都具有较高的阻抗,可以适应不同的负载要求。
3.线性较好:射极跟随器能够提供较好的线性放大特性,适用于需要高质量信号放大的场合。
射极跟随器稳压的应用1.电源稳压:将射极跟随器应用于电源稳压电路中,可以使电源输出的电压保持在一定范围内,提供稳定的电力供应。
2.信号放大:射极跟随器能够提供线性的信号放大功能,适用于需要放大信号并保持其质量的场合,如音频放大器。
总结射极跟随器稳压是一种通过负反馈原理实现稳定电压输出的电路。
它通过自动调节晶体管的导通程度,使输出电压保持在一个稳定的值。
射极跟随器具有稳定性高、输入输出高阻抗和线性较好的优势,广泛应用于电源稳压和信号放大等领域。
射极跟随器实验报告实验二射极跟随器一、实验目的1、掌握射极跟随器的特性及测试方法2、进一步学习放大器各项参数测试方法二、实验原理射极跟随器的原理图如图5,1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
,1 射极跟随器图5射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻R i图5,1电路R,r,(1,β)REibe如考虑偏置电阻RB和负载RL的影响,则R,RB?[r,(1,β)(RE?RL)] ibe由上式可知射极跟随器的输入电阻Ri比共射极单管放大器的输入电i,阻RRB?rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图5,2所示。
图5,2 射极跟随器实验电路即只要测得A、B两点的对地电位即可计算出Ri。
2、输出电阻R O图5,1电路如考虑信号源内阻RS,则由上式可知射极跟随器的输出电阻R0比共射极单管放大器的输出电?阻RORC 低得多。
三极管的β愈高,输出电阻愈小。
输出电阻R法亦同单管放大器,即先测出空载输出电压,再测接入UO的测试方O负载RL后的输出电压U,根据 L即可求出 RO3、电压放大倍数图5,1电路,RR(1,)(//)ELA,,1Vr,RR,(1,)(//)beEL上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基流大(1,β)倍,所以它具有一定的电流和功率放大作用。
4、电压跟随范围电压跟随范围是指射极跟随器输出电压uO跟随输入电压ui作线性变化的区域。
当ui超过一定范围时,uO便不能跟随ui作线性变化,即uO波形产生了失真。
为了使输出电压uO正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取uO的峰峰值,即电压跟随范围;或用交流毫伏表读取u,则电压跟随范围 O的有效值U,2U0P,P O三、实验设备与器件1、,12V直流电源2、函数信号发生器3、双踪示波器4、交流毫伏表5、直流电压表6、频率计7、3DG12×1 (β,50,100)或9013 电阻器、电容器若干。
射极(源)跟随器
射极跟随器又叫射极输出器,是一种典型的负反馈放大器。
从晶体管的连接方法而言,它实际上是共集电极放大器。
一、射极跟随器的电压“跟随”特性
射极限随器的电压放大倍数接近于1,没有电压放大能力。
但射极跟随器以很小的输人电流却可以得到很大的输出电流放大倍数KI=Io/Ii=(1+β)RsbRe/(Rsb+Ri)(Re+RL) 式中:Rsb=Rs//Rb,Ri=rbc+(1+β)Relo,大哟=(ie=(1+β)ib)。
因此具有电流放大及功率放大作用。
射极限随器实质上是一个电压串联负反馈放大器。
二、射极跟随器的优点
射极跟随器虽然没有电压放大能力,但由于电路深度负反馈的作用,具有工作稳定、频响宽、输入电阻大和输出电阻小等突出优点。
射极限随器的输入电阻比一般共发射极电路的输入电阻大很多。
根据理论分析,它的输入电阻rsr≈βRe。
如果晶休管的β=100,Re=1千欧,则输入电阻入,rsr≈l00千欧。
输入电阻大,消耗信号源的电流就小。
在多级放大器中,射极限随器对信号源或前级只是很轻的负载。
同时,射极限随器的输出电阻是很小的,根据理论分析,rsr≈rbe/β(式中的rbe.是晶休管的输入电阻)。
一般射极限随器的输出电阻在几十到几百欧之内,比共发射极电路小得多。
输出电阻小,带负栽的能力就强,可以带阻抗比较小的负载。
利用射极限随器输入电阻大、输出电阻小的特点,还可以进行阻抗匹配。
多级放大器中有时在两级之间加入一级射极限随器,使它的高输入阻抗与前级的高输出阻抗匹配;低输出阻抗与后级的低输入阻抗相匹配,起到缓冲作用,减少了前后级之间的影响。
由于射极跟随器的负反馈作用,输出电压随频串的变化也减小到最小程度,相对改善了放大器的频串响应。
三射极跟随器的原理
射极跟随器的原理图如图1所示。
它是一个电压串联负反馈放大电路,它具有输入电阻高,输出电阻低,电压放大倍数接近于1,输出电压能够在较大范围内跟随输入电压作线性变化以及输入、输出信号同相等特点。
射极跟随器的输出取自发射极,故称其为射极输出器。
1、输入电阻Ri
图1电路Ri=rbe+(1+β)RE
如考虑偏置电阻RB和负载RL的影响,则
Ri=RB∥[rbe+(1+β)(RE∥RL)]
由上式可知射极跟随器的输入电阻Ri比共射极单管放大器的输入电阻Ri=RB∥rbe要高得多,但由于偏置电阻RB的分流作用,输入电阻难以进一步提高。
输入电阻的测试方法同单管放大器,实验线路如图2所示。
即只要测得A、B两点的对地电位即可计算出Ri。
2、输出电阻RO
图1电路
三极管的β愈高,输出电阻愈小
如考虑信号源内阻RS,则
由上式可知射极跟随器的输出电阻R0比共射极单管放大器的输出电阻RO≈RC低得多。
三极管的β愈高,输出电阻愈小。
输出电阻RO的测试方法亦同单管放大器,即先测出空载输出电压UO,再测接入负载RL后的输出电压UL,根据
3、电压放大倍数
图1电路
上式说明射极跟随器的电压放大倍数小于近于1,且为正值。
这是深度电压负反馈的结果。
但它的射极电流仍比基流大(1+β)倍,所以它具有一定的电流和功率放大作用。
4、电压跟随范围
电压跟随范围是指射极跟随器输出电压uO跟随输入电压ui作线性变化的区域。
当ui超过一定范围时,uO便不能跟随ui作线性变化,即uO波形产生了失真。
为了使输出电压uO正、负半周对称,并充分利用电压跟随范围,静态工作点应选在交流负载线中点,测量时可直接用示波器读取uO的峰峰值,即电压跟随范围;或用交流毫伏表读取uO的有效值,则电压跟随范围
射极跟随器往往实现阻抗转换用,不做电压放大,但提高电流,降低输出阻抗,共射极既有电压,也有电流放大。
共射极放大器:输出接到C极
共集电极放大器:就是射极跟随器,输出接E极,C极接VCC.
共射极放大电路是共射极电路;射极跟随器是共集电极电路。
射极跟随器往往实现阻抗转换用,不做电压放大
电压跟随器起缓冲、隔离、提高带载能力的作用。
在这里,电压跟随器的作用正好达到应用,把电路置于前级和功放之间,可以切断呀扬声器的反电动势对前级的干扰作用,使音质的清晰度得到大幅度提高
在电路中,电压跟随器一般做缓冲级及隔离级。
因为,电压放大器的输出阻抗一般比较高,通常在几千欧到几十千欧,如果后级的输入阻抗比较小,那么信号就会有相当的部分损耗在前级的输出电阻中。
在这个时候,就需要电压跟随器来从中进行缓冲。
起到承上启下的作用。
应用电压跟随器的另外一个好处就是,提高了输入阻抗,这样,输入电容的容量可以大幅度减小,为应用高品质的电容提供了前提保证。
隔离器输出电压近似输入电压幅度,并对前级电路呈高阻状态,对后级电路呈低阻状态,因而对前后级电路起到“隔离”作用。
来。