高二数学(理)上学期期末试卷及答案
- 格式:docx
- 大小:132.88 KB
- 文档页数:9
2021-2022学年云南省曲靖市宣威市落水镇第一中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 在区间[0,4]上任取一个实数x,则x>1的概率是()A.0.25 B.0.5 C.0.6 D.0.75参考答案:D【考点】几何概型.【分析】根据几何概型计算公式,用符合题意的基本事件对应的区间长度除以所有基本事件对应的区间长度,可得答案.【解答】解:数集(1,4]的长度为3,数集[0,4]的长度为4,∴在区间[0,4]上任取一个实数x,则x>1的概率为: =0.7,故选:D.2. 安排一张有5个独唱节目和3个合唱节目的节目单,要求任何2个合唱节目不相邻而且不排在第一个节目,那么不同的节目单有()A.7200种B.1440种C.1200种D.2880种参考答案:A【考点】D8:排列、组合的实际应用.【分析】根据题意,分2步进行分析:①、将5个独唱节目全排列,排好后,分析可得有5个空位可以安排合唱节目,②、在5个空位中,任选3个,安排3个合唱节目,分别求出每一步的排法数目,由分步计数原理计算可得答案.【解答】解:根据题意,分2步进行分析:①、将5个独唱节目全排列,有A55=120种排法,排好后,除去第一空位,有5个空位可以安排合唱节目,②、在5个空位中,任选3个,安排3个合唱节目,有A53=60种排法,则不同的节目单有120×60=7200种;故选:A.3. 已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=()A.4 B.8 C.2 D.1参考答案:B【考点】利用导数研究曲线上某点切线方程.【分析】求出y=x+lnx的导数,求得切线的斜率,可得切线方程,再由于切线与曲线y=ax2+(a+2)x+1相切,有且只有一切点,进而可联立切线与曲线方程,根据△=0得到a的值.【解答】解:y=x+lnx的导数为y′=1+,曲线y=x+lnx在x=1处的切线斜率为k=2,则曲线y=x+lnx在x=1处的切线方程为y﹣1=2x﹣2,即y=2x﹣1.由于切线与曲线y=ax2+(a+2)x+1相切,y=ax2+(a+2)x+1可联立y=2x﹣1,得ax2+ax+2=0,又a≠0,两线相切有一切点,所以有△=a2﹣8a=0,解得a=8.故选:B.4. 关于x的方程,其解得个数不可能是A.1 B.2 C.3 D.4 参考答案:A5. 若一个等差数列的前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列有( )A.13项B.12项C.11项D.10项参考答案:A略6. 在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面ABCD所成角的余弦值为 ( ).A.B.C.D.参考答案:C7. 已知,,则、的等差中项是()A. B. C.D.参考答案:A8. 正项等比数列{a n}与等差数列{b n}满足且,则,的大小关系为()A. =B.<C.>D.不确定参考答案:B略10、设△ABC的内角A,B,C所对的边分别为a,b,c.若三边的长为连续的三个正整数,且A>B>C,3b=20acos A,则sin A∶sin B∶sin C为( )A.4∶3∶2 B.5∶6∶7 C.5∶4∶3D.6∶5∶4参考答案:D 10. 已知随机变量X服从正态分布且P(X≤4)=0.88,则P(0<X<4)=()A. 0.88B. 0.76C. 0.24D. 0.12参考答案:B【分析】正态曲线关于对称,利用已知条件转化求解概率即可。
黑龙江省大庆高二(上)期末数学试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.32.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣23.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.104.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A .B .C .D .7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是.14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为.15.(5分)执行如图所示的程序框图,输出的S值是.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为.三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.大庆高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分)1.(5分)向量,若,则x的值为()A.﹣3 B.1 C.﹣1 D.3【解答】解:∵向量,,∴=﹣4+4x﹣8=0,解得x=3.故选:D.2.(5分)已知函数f(x)=x+lnx,则f′(1)的值为()A.1 B.2 C.﹣1 D.﹣2【解答】解:∵f(x)=x+lnx,∴f′(x)=1+∴f′(1)=1+=2故选B3.(5分)某学校高一、高二、高三共有学生3500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为()A.8 B.11 C.16 D.10【解答】解:设高一学生有x人,则高三有2x,高二有x+300,∵高一、高二、高三共有学生3500人,∴x+2x+x+300=3500,∴x=800,∵按的抽样比用分层抽样的方法抽取样本,∴应抽取高一学生数为=8故选A.4.(5分)某公司在2014年上半年的收入x(单位:万元)与月支出y(单位:万元)的统计资料如下表所示:月份1月份2月份3月份4月份5月份6月份收入x12.314.515.017.019.820.6支出Y 5.63 5.75 5.82 5.89 6.11 6.18根据统计资料,则()A.月收入的中位数是15,x与y有正线性相关关系B.月收入的中位数是17,x与y有负线性相关关系C.月收入的中位数是16,x与y有正线性相关关系D.月收入的中位数是16,x与y有负线性相关关系【解答】解:月收入的中位数是=16,收入增加,支出增加,故x与y有正线性相关关系,故选:C.5.(5分)齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛,则田忌获胜的概率为()A .B .C .D .【解答】解:设齐王的上,中,下三个等次的马分别为a,b,c,田忌的上,中,下三个等次的马分别为记为A,B,C,从双方的马匹中随机选一匹进行一场比赛的所有的可能为Aa,Ab,Ac,Ba,Bb,Bc,Ca,Cb,Cc,根据题设其中Ab,Ac,Bc是胜局共三种可能,则田忌获胜的概率为=,故选:A6.(5分)点集Ω={(x,y)|0≤x≤e,0≤y≤e},A={(x,y)|y≥e x,(x,y)∈Ω},在点集Ω中任取一个元素a,则a∈A的概率为()A.B.C. D.【解答】解:点集Ω表示的平面区域的面积为:,集合A所表示的平面区域如图所示,其面积为:,结合几何概型计算公式可得所求的概率值为:.故选:B.7.(5分)下列说法错误的是()A.“函数f(x)的奇函数”是“f(0)=0”的充分不必要条件.B.已知A,B,C不共线,若=,则P是△ABC的重心.C.命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”.D.命题“若α=,则cos”的逆否命题是:“若cos,则”.【解答】解:对于A,函数f(x)为奇函数,若f(0)有意义,则f(0)=0,则“函数f(x)为奇函数”是“f(0)=0”的非充分非必要条件,故A错误;对于B,已知A,B,C不共线,若=,可得+==2,(D为AB的中点),即有P在AB的中线上,同理P也在BC的中线上,在CA的中线上,则P是△ABC的重心,故B正确;对于C,命题“∃x0∈R,sinx0≥1”的否定是:“∀x∈R,sinx<1”,由命题的否定形式,可得C 正确;对于D,由逆否命题的形式可得,命题“若α=,则cosα=”的逆否命题为“若cosα≠,则α≠”,故D正确.故选:A.8.(5分)过双曲线的右焦点且垂直于x轴的直线与双曲线交于A,B 两点,D为虚轴上的一个端点,且△ABD为直角三角形,则此双曲线离心率的值为()A.B.C.或D.或【解答】解:设双曲线的右焦点F2(c,0),令x=﹣c,可得y=±,可得A(c,﹣),B(c,),又设D(0,b),△ABD为直角三角形,可得∠DBA=90°,即b=或∠BDA=90°,即=0,解:b=可得a=b,c=,所以e==;由=0,可得:(c,)(c,﹣)=0,可得c2+b2﹣=0,可得e4﹣4e2+2=0,e>1,可得e=,综上,e=或.故选:D.9.(5分)若双曲线x2+my2=m(m∈R)的焦距4,则该双曲线的渐近线方程为()A.B.C. D.【解答】解:根据题意,双曲线x2+my2=m(m∈R)的焦距4,可得=2c=4,解可得m=﹣3,则双曲线的方程为:,其渐近线方程为:y=±x;故选:D.10.(5分)已知正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,则AB1与侧面ACC1A1所成角的正弦值等于()A.B.C.D.【解答】解:取A1C1的中点D1,连接B1D1,AD1,在正三棱柱ABC﹣A1B1C1中,B1D1⊥面ACC1A1,则∠B1AD1是AB1与侧面ACC1A1所成的角,∵正三棱柱ABC﹣A1B1C1的侧棱长与底面边长相等,∴,故选A.11.(5分)设函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,则实数a的取值范围是()A.(1,2]B.[4,+∞)C.(﹣∞,2]D.(0,3]【解答】解:∵f(x)=x2﹣9lnx,∴函数f(x)的定义域是(0,+∞),f′(x)=x﹣,∵x>0,∴由f′(x)=x﹣<0,得0<x<3.∵函数f(x)=x2﹣9lnx在区间[a﹣1,a+1]上单调递减,∴,解得1<a≤2.故选A.12.(5分)设函数f(x)=sin,若存在f(x)的极值点x0满足x02+[f(x0)]2<m2,则m的取值范围是()A.(﹣∞,﹣6)∪(6,+∞)B.(﹣∞,﹣4)∪(4,+∞)C.(﹣∞,﹣2)∪(2,+∞)D.(﹣∞,﹣1)∪(1,+∞)【解答】解:由题意可得,f(x0)=±,即=kπ+,k∈z,即x0=m.再由x02+[f(x0)]2<m2,即x02+3<m2,可得当m2最小时,|x0|最小,而|x0|最小为|m|,∴m2 >m2+3,∴m2>4.求得m>2,或m<﹣2,故选:C.二、填空题(本大题共4个小题,每小题5分,共20分)13.(5分)已知命题“∃x∈R,x2﹣ax+1<0”为假命题,则实数a的取值范围是[﹣2,2] .【解答】解:∵命题“存在实数x,使x2﹣ax+1<0”的否定是任意实数x,使x2﹣ax+1≥0,命题否定是真命题,∴△=(﹣a)2﹣4≤0∴﹣2≤a≤2.实数a的取值范围是:[﹣2,2].故答案为:[﹣2,2].14.(5分)由动点P向圆x2+y2=1引两条切线PA、PB,切点分别为A、B,若∠APB=120°,则动点P的轨迹方程为x2+y2=.【解答】解:连接OP,AB,OA,OB,∵PA,PB是单位圆O的切线,∴PA=PB,OA⊥PA,OB⊥PB,∴∠OPA=∠OPB=∠APB=60°,又OA=OB=1,∴OP=,∴P点轨迹为以O为圆心,以为半径的圆,∴P点轨迹方程为x2+y2=.故答案为:x2+y2=.15.(5分)执行如图所示的程序框图,输出的S值是.【解答】解:模拟程序的运行,可得程序框图的功能是计算并输出S=sin+sin+ (i)的值,由于sin,k∈Z的取值周期为6,且2017=336×6+1,所以S=sin+sin+…sin=336×(sin+sin+…+sin)+sin=.故答案为:.16.(5分)已知函数f(x)=e x﹣e﹣x+1(e为自然对数的底数),若f(2x﹣1)+f(4﹣x2)>2,则实数x的取值范围为(﹣1,3).【解答】解:根据题意,令g(x)=f(x)﹣1=e x﹣e﹣x,有g(﹣x)=f(﹣x)﹣1=e﹣x﹣e x=﹣g(x),则g(x)为奇函数,对于g(x)=e x﹣e﹣x,其导数g′(x)=e x+e﹣x>0,则g(x)为增函数,且g(0)=e0﹣e0=0,f(2x﹣1)+f(4﹣x2)>2⇒f(2x﹣1)﹣1>﹣f(4﹣x2)+1⇒f(2x﹣1)>﹣[f(4﹣x2)﹣1]⇒g(2x﹣1)>g(x2﹣4),又由函数g(x)为增函数,则有2x﹣1>x2﹣4,即x2﹣2x﹣3<0解可得:﹣1<x<3,即实数x的取值范围为(﹣1,3);故答案为:(﹣1,3).三、解答题(本大题共6个小题,17题10分,其余各题各12分,共70分)17.(10分)已知过抛物线y2=8x的焦点,斜率为的直线交抛物线于A(x1,y1),B(x2,y2)(x1<x2)两点.(1)求线段AB的长度;(2)O为坐标原点,C为抛物线上一点,若,求λ的值.【解答】解:(1)直线AB的方程是y=2 (x﹣2),与y2=8x联立,消去y得x2﹣5x+4=0,由根与系数的关系得x1+x2=5.由抛物线定义得|AB|=x1+x2+p=9,(2)由x2﹣5x+4=0,得x1=1,x2=4,从而A(1,﹣2),B(4,4).设=(x3,y3)=(1,﹣2)+λ(4,4)=(4λ+1,4λ﹣2),又y2=8x3,即[2(2λ﹣1)]2=8(4λ+1),即(2λ﹣1)2=4λ+1,解得λ=0或λ=2.18.(12分)已知关于x的二次函数f(x)=ax2﹣4bx+1.(Ⅰ)设集合A={﹣1,1,2}和B={﹣2,﹣1,1},分别从集合A,B中随机取一个数作为a 和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率.(Ⅱ)设点(a,b)是区域内的随机点,求函数f(x)在区间[1,+∞)上是增函数的概率.【解答】解:要使函数y=f(x)在区间[1,+∞)上是增函数,需a>0且,即a>0且2b≤a.(Ⅰ)所有(a,b)的取法总数为3×3=9个.满足条件的(a,b)有(1,﹣2),(1,﹣1),(2,﹣2),(2,﹣1),(2,1)共5个,所以所求概率.(Ⅱ)如图,求得区域的面积为.由,求得.所以区域内满足a>0且2b≤a的面积为.所以所求概率.19.(12分)已知四棱锥P﹣ABCD,底面ABCD是边长为2的菱形,∠ABC=60°,E为AB的中点,PA⊥平面ABCD,且PA=2(1)在棱PD上求一点F,使AF∥平面PEC;(2)求二面角D﹣PE﹣A的余弦值.【解答】解:(1)以BD为x轴,CA为y轴,AC与BD的交点为O,过O作平面ABCD的垂线为z轴,建立空间直角坐标系.A(0,1,0),,C(0,﹣1,0),,P(0,1,2),设,,,则=().设平面PEC的法向量为=(x,y,z),,,则,∴,取y=﹣1,得=(﹣,﹣1,1).∵AF∥平面PEC,∴=﹣3λ+λ+2﹣2λ=0,解得,∴F为PD中点.(2)=(,,0),=(,﹣,0),设平面PEA的法向量=(x,y,z),则,取x=,得平面PEA的法向量=(,﹣3,0),设平面PED的法向量=(x,y,z),则,取x=,得=(),cos<>===﹣,由二面角D﹣PE﹣A为锐二面角,因此,二面角D﹣PE﹣A的余弦值为.20.(12分)已知函数f(x)=e x(ax+b)﹣x2﹣4x,曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4.(Ⅰ)求a,b的值;(Ⅱ)讨论f(x)的单调性,并求f(x)的极大值.【解答】解:(Ⅰ)∵f(x)=e x(ax+b)﹣x2﹣4x,∴f′(x)=e x(ax+a+b)﹣2x﹣4,∵曲线y=f(x)在点(0,f(0))处切线方程为y=4x+4∴f(0)=4,f′(0)=4∴b=4,a+b=8∴a=4,b=4;(Ⅱ)由(Ⅰ)知,f(x)=4e x(x+1)﹣x2﹣4x,f′(x)=4e x(x+2)﹣2x﹣4=4(x+2)(e x﹣),令f′(x)=0,得x=﹣ln2或x=﹣2∴x∈(﹣∞,﹣2)或(﹣ln2,+∞)时,f′(x)>0;x∈(﹣2,﹣ln2)时,f′(x)<0∴f(x)的单调增区间是(﹣∞,﹣2),(﹣ln2,+∞),单调减区间是(﹣2,﹣ln2)当x=﹣2时,函数f(x)取得极大值,极大值为f(﹣2)=4(1﹣e﹣2).21.(12分)已知椭圆的两个焦点分别为,,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.(Ⅰ)求椭圆C的方程;(Ⅱ)过点M(1,0)的直线l与椭圆C相交于A,B两点,设点N(3,2),记直线AN,BN 的斜率分别为k1,k2,求证:k1+k2为定值.【解答】解:(Ⅰ)依题意,,a2﹣b2=2,∵点M(1,0)与椭圆短轴的两个端点的连线相互垂直,∴b=|OM|=1,∴.…(3分)∴椭圆的方程为.…(4分)(II)①当直线l的斜率不存在时,由解得.设,,则为定值.…(5分)②当直线l的斜率存在时,设直线l的方程为:y=k(x﹣1).将y=k(x﹣1)代入整理化简,得(3k2+1)x2﹣6k2x+3k2﹣3=0.…(6分)依题意,直线l与椭圆C必相交于两点,设A(x1,y1),B(x2,y2),则,.…(7分)又y1=k(x1﹣1),y2=k(x2﹣1),所以=====..….…(13分)综上得k1+k2为常数2..….…(14分)22.(12分)设函数(1)当x∈(0,+∞),恒成立,求实数a的取值范围.(2)设g(x)=f(x)﹣x在[1,e2]上有两个极值点x1,x2.(A)求实数a的取值范围;(B)求证:.【解答】解:(1)∵,且x>0,∴.令,则.①当a≤0时,U'(x)>0,U(x)在(1,+∞)上为单调递增函数,∴x>1时,U(x)>U(1)=0,不合题意.②当0<a<2时,时,U'(x)>0,U(x)在上为单调递增函数,∴,U(x)>U(1)=0,不合题意.③当a>2时,,U'(x)<0,U(x)在上为单调递减函数.∴时,U(x)>U(1)=0,不合题意.④当a=2时,x∈(0,1),U'(x)>0,U(x)在(0,1)上为单调递增函数.x∈(1,+∞),U'(x)<0,U(x)在(1,+∞)上为单调递减函数.∴U(x)≤0,符合题意.综上,a=2.(2),x∈[1,e2].g'(x)=lnx﹣ax.令h(x)=g'(x),则由已知h(x)=0在(1,e2)上有两个不等的实根.(A)①当时,h'(x)≥0,h(x)在(1,e2)上为单调递增函数,不合题意.②当a≥1时,h'(x)≤0,h(x)在(1,e2)上为单调递减函数,不合题意.③当时,,h'(x)>0,,h'(x)<0,所以,h(1)<0,,h(e2)<0,解得.(B)证明:由已知lnx1﹣ax1=0,lnx2﹣ax2=0,∴lnx1﹣lnx2=a(x1﹣x2).不妨设x1<x2,则,则=.令,(0<x<1).则,∴G(x)在(0,1)上为单调递增函数,∴即,∴,∴,∴,由(A),∴ae<1,2ae<2,∴.。
河南省许昌市中学2021-2022学年高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若等差数列{a n}和等比数列{b n}满足,则()A. -1B. 1C. -4D. 4参考答案:B【分析】根据等差数列与等比数列的通项公式,求出公差与公比,进而可求出结果.【详解】设等差数列的公差为,等比数列的公比为,因为,所以,解得,因此,所以.故选B2. 已知f(n)=(2n+7)·3n+9,存在自然数m,使得对任意n∈N,都能使m整除f(n),则最大的m的值为( )A、30B、 26C、 36D、 6参考答案:C略3. 用反证证明:“自然数a,b,c中恰有一个偶数”时正确的假设为()A.a,b,c都是偶数B.a,b,c都是奇数C.a,b,c中至少有两个偶数D.a,b,c中都是奇数或至少两个偶数参考答案:D【考点】反证法.【分析】用反证法法证明数学命题时,假设命题的反面成立,写出要证的命题的否定形式,即为所求.【解答】解:∵结论:“自然数a,b,c中恰有一个偶数”可得题设为:a,b,c中恰有一个偶数∴反设的内容是假设a,b,c都是奇数或至少有两个偶数.故选:D.4. 命题p:a≥1;命题q:关于x的实系数方程x2﹣2x+a=0有虚数解,则p是q的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:B【考点】2L:必要条件、充分条件与充要条件的判断.【分析】根据复数的有关性质,利用充分条件和必要条件的定义进行判断.【解答】解:若关于x的实系数方程x2﹣2x+a=0有虚数解,则判别式△<0,即8﹣4a<0,解得a>2,∴p是q的必要不充分条件,故选:B5. 已知函数f(x)=xe x,则f′(2)等于()A.e2 B.2e2 C.3e2 D.2ln2参考答案:C【考点】导数的运算.【分析】先根据两乘积函数的导数运算法则求出f(x)的导数,然后将2代入导函数,即可求出所求.【解答】解:∵f(x)=xe x,∴f′(x)=e x+xe x.∴f′(2)=e2+2e2=3e2.故选C.【点评】本题主要考查了导数的运算,以及函数的求值,解题的关键是两乘积函数的导数运算法则,属于基础题.6. 已知函数,若对任意两个不等的正数,都有成立,则实数的取值范围是(A)(B)(C)(D)参考答案:B即在上单增,即恒成立,也就是恒成立,,故选B7. 要描述一个工厂某种产品的生产步骤, 应用A.程序框图B.工序流程图C.知识结构图D.组织结构图参考答案:B略8. 设,则,,()A.都不大于2 B.都不小于2C.至少有一个不大于2 D.至少有一个大于2参考答案:D因为与都不大于2矛盾,所以A错误.若所以B错误.若则a>2,b>2,c>2,所以C错误. 故答案为:D9. 过长方体一个顶点的三条棱长分别为1,2,3,则长方体的一条对角线长为()A. B. C. D. 6参考答案:B10. 若直线与互相垂直,则a等于()A. 3B. 1C. 0或D. 1或-3参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11. 已知则.参考答案:-1/9略12. (原创)_____________.参考答案:13. 若曲线在点(1,a)处的切线平行于x轴,则a=__________.参考答案:14. 设向量,.其中.则与夹角的最大值为________.参考答案:【分析】由两向量中的已知坐标和未知坐标间的关系,得出两向量的终点的轨迹,运用向量的夹角公式求解.【详解】向量的终点都在以为圆心,1为半径的圆上;向量的终点都在以为圆心,1为半径的圆上;且为圆与圆的距离为1,如图所示,两向量的夹角最大,为.【点睛】本题考查动点的轨迹和空间直角坐标系中向量的夹角,属于中档题.15. 直线y=kx+3与圆(x﹣3)2+(y﹣2)2=4相交于M,N两点,若MN=2,则实数k的值是.参考答案:0或略16. 定义在R上的函数满足:,且对于任意的,都有,则不等式的解集为 __________________参考答案:略17. (原创)已知函数,则.参考答案:1略三、解答题:本大题共5小题,共72分。
2022-2023学年四川省安岳县周礼中学高二上学期期末测数学(理)试题一、单选题1.已知某几何体的三视图如图所示,则该几何体的表面积为( )A .23B .46+C .43+D .23+【答案】B【分析】由三视图判断该几何体是有三条棱两两垂直是三棱锥,结合三视图的数据可得结果.【详解】由三视图可得该几何体是如图所示的三棱锥-P ABC ,其中AB ,BC ,BP 两两垂直, 且1,2AB BC BP ===,则ABC ∆和ABP ∆的面积都是1,PBC ∆的面积为2, 在PAC ∆中,2,5PC AC AP === 则PAC ∆的面积为122362⨯所以该几何体的表面积为46 故选:B.【点睛】三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.2.已知圆221:1C x y +=和222:540C x y x +-+=,则两圆的位置关系是( )A .内切B .相交C .外切D .外离【答案】C【分析】根据题意,由圆的方程求出两个圆的圆心和半径,求出圆心距,由圆与圆的位置关系分析可得答案.【详解】由题意,知圆1C 的圆心1(0,0)C ,半径1r =.圆2C 的方程可化为225924x y ⎛⎫-+= ⎪⎝⎭,则其圆心25,02C ⎛⎫ ⎪⎝⎭,半径32R =.因为两圆的圆心距12531+22C C R r ===+,故两圆外切. 故选:C.3.用斜二测画法画水平放置的ABC 的直观图,得到如图所示的等腰直角三角形A B C '''.已知点O '是斜边B C ''的中点,且1A O,则ABC 的边BC 边上的高为( )A .1B .2C 2D .22【答案】D【分析】在直观图中A C ''∥y '轴,可知原图形中AC ∥y 轴,故AC BC ⊥,12C CA A ,求直观图中A C ''的长即可求解.【详解】∵直观图是等腰直角三角形A B C ''',90,1B A C A O,∴2A C,根据直观图中平行于y 轴的长度变为原来的一半, ∴△ABC 的边BC 上的高222ACA C.故选D.【点睛】本题主要考查了斜二测直观图的画法,属于中档题.4.已知方程221221x y k k +=--表示焦点在x 轴上的椭圆,则实数k 的取值范围是( )A .1,22⎛⎫ ⎪⎝⎭B .()1,+∞C .()1,2D .1,12⎛⎫ ⎪⎝⎭【答案】D【分析】根据已知条件可得出关于实数k 的不等式组,由此可解得实数k 的取值范围.【详解】因为方程221221x y k k +=--表示焦点在x 轴上的椭圆,则221210k k k ->-⎧⎨->⎩,解得112k <<.故选:D.5.如图,某圆锥SO 的轴截面SAC 是等边三角形,点B 是底面圆周上的一点,且60BOC ∠=︒,点M是SA 的中点,则异面直线AB 与CM 所成角的余弦值是( )A .13B .74C .34D .32【答案】C【分析】建立空间直角坐标系,分别得到,AB CM ,然后根据空间向量夹角公式计算即可. 【详解】以过点O 且垂直于平面SAC 的直线为x 轴,直线OC ,OS 分别为y 轴,z 轴, 建立如图所示的空间直角坐标系.不妨设2OC =,则根据题意可得()0,2,0A -,)3,1,0B ,()0,2,0C ,(0,3M -,所以()3,3,0AB =,(0,3CM =-,设异面直线AB 与CM 所成角为θ, 则()3033033cos cos ,43993AB CM θ⨯+⨯-+⨯===+⋅+. 故选:C .6.鳖臑(biē nào )是我国古代对四个面均为直角三角形的三棱锥的称呼.已知三棱锥A -BCD 是一个鳖臑,其中AB ⊥BC ,AB ⊥BD ,BC ⊥CD ,且AB =6,BC =3,DC =2,则三棱锥A -BCD 的外接球的体积是( ) A .493πB .3432πC .49πD .3436π【答案】D【解析】将三棱锥A -BCD 可放在长方体中确定直径AD ,计算即得结果. 【详解】依题意,三棱锥A -BCD 可放在长方体中,如图所示易得三棱锥A-BCD的外接球的直径为AD,则2226327AD=++=,故三棱锥A-BCD的外接球的半径72R=,所以347343326A BCDVππ-⎛⎫==⎪⎝⎭.故选:D.【点睛】求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径;③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.7.如图,已知圆柱底面圆的半径为2π,高为2,AB,CD分别是两底面的直径,AD,BC是母线.若一只小虫从A点出发,从侧面爬行到C点则小虫爬行路线的最短长度是().A.2B.2C.3D.33【答案】B【分析】展开圆柱侧面,根据两点间直线距离最短求得正确结论.【详解】展开圆柱的侧面如图所示,由图可知小虫爬行路线的最短长度是222222 ACππ⎛⎫=⨯+⎪⎝⎭故选:B8.若直线:20l kx y --=与曲线2:1(1)1C y x --=-有两个不同的交点,则实数k 的取值范围是( ) A .4,23⎛⎤ ⎥⎝⎦B .4,43⎛⎫⎪⎝⎭C .442,,233⎡⎫⎛⎤--⎪ ⎢⎥⎣⎭⎝⎦D .4,3⎛⎫+∞ ⎪⎝⎭【答案】A【分析】确定曲线C 是半圆(右半圆),直线l 过定点(0,2)P -,求出直线l 过点(1,0)A 时的斜率,再求得直线l 与半圆相切时的斜率,由图形可得k 的范围.【详解】直线:20l kx y --=恒过定点(0,2)P -,曲线2 :1(1)1C y x --=-表示以点(1,1)C 为圆心,半径为1,且位于直线1x =右侧的半圆(包括点(1,2),(1,0).如图,作出半圆C , 当直线 l 经过点(1,0)A 时, l 与曲线C 有两个不同的交点,此时2k =,直线记为1l ; 当l 与半圆相切时,由2|3|11k k -=+,得43k =,切线记为2l .由图形可知当423k <≤时,l 与曲线C 有两个不同的交点, 故选:A .9.若双曲线()222:104y x C a a -=>的一条渐近线被圆()2224x y -+=所截得的弦长为165,则双曲线C的离心率为( ) A 13B 17C .53D 39【分析】首先确定双曲线渐近线方程,结合圆的方程可确定两渐近线截圆所得弦长相等;利用垂径定理可构造方程求得a 的值,进而根据离心率e 可求得结果. 【详解】由双曲线方程得:渐近线方程为2ay x =±; 由圆的方程知:圆心为()2,0,半径2r =;2a y x =与2ay x =-图象关于x 轴对称,圆的图象关于x 轴对称,∴两条渐近线截圆所得弦长相等,不妨取2ay x =,即20ax y -=,则圆心到直线距离d =∴弦长为165=,解得:32a =,∴双曲线离心率53e =. 故选:C.10.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =( ) A .1 B .2C .4D .8【答案】A 【分析】解方程001544x x +=即得解. 【详解】解:由题得抛物线的准线方程为14x =-,则有014AF x =+,即有001544x x +=,解得01x =.故选:A11.设l 是直线,α,β是两个不同的平面( ) A .若//l α,//l β,则//αβ B .若//l α,l β⊥,则αβ⊥ C .若αβ⊥,l α⊥,则l β⊥ D .若αβ⊥,//l α,则l β⊥【答案】B【分析】结合空间中直线、平面的位置关系可逐一判断选项中空间中直线、平面的位置关系是否正确.【详解】若//l α,//l β,则α,β可能平行也可能相交,故A 错误;//l α,l β⊥,则存在m α⊂,//l m ,则m β⊥,故αβ⊥,故B 正确;若αβ⊥,l α⊥,则//l β或l β⊂,故C 错误;若αβ⊥,//l α,则l 与β相交、平行或l β⊂,故D 错误.12.已知三棱锥S ABC -中,1SA SB SC ===,且SA 、SB 、SC 两两垂直,P 是三棱锥S ABC -外接球面上一动点,则P 到平面ABC 的距离的最大值是 A .33B .3C .233D .433【答案】C【分析】,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,三棱锥S ABC -外接球就是正方体MNQB ADCS -的外接球,由正方体及球的几何性质可得点P 与N 重合时,点P 到平面ABC 的距离最大,求出平面ABC 的法向量,由点到直线的距离公式即可得结果.【详解】三棱锥S ABC -,满足,,SA SB SC 两两垂直,且,,1SA SB SC =,∴如图,,SA SB SC 是棱长为1的正方体MNQB ADCS -上具有公共顶点S 的三条棱,以B 为原点,,,BM BQ BS 分别为x 轴,y 轴,z 轴,建立空间直角坐标系, 则()()()()()0,0,0,1,0,1,0,1,1,0,0,1,1,1,0B A C S N ,()()()1,0,1,0,1,1,1,1,0BA BC BN ===,设平面ABC 的法向量(),,n x y z =,则00n BA x z n BC y z ⎧⋅=+=⎨⋅=+=⎩,取1x =,得1,1,1n,三棱锥S ABC -外接球就是棱长为1的正方体MNQB ADCS -的外接球, P 是三棱锥S ABC -外接球上一动点,∴由正方体与球的几何性质可得,点P 点与N 重合时,点P 到平面ABC 的距离最大,∴点P 到平面ABC 的距离的最大值为110233BN n d n⋅++===.故选C. 【点睛】求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.二、填空题13.若双曲线22221x y a b -=的离心率为2,则此双曲线的渐近线方程___________.【答案】y =【分析】根据离心率得出2c a =,结合222+=a b c 得出,a b 关系,即可求出双曲线的渐近线方程. 【详解】解:由题可知,离心率2ce a==,即2c a =,又22224a b c a +==,即223b a =,则ba=故此双曲线的渐近线方程为y =.故答案为:y =.14.过点,且与椭圆221259y x +=有相同焦点的椭圆的标准方程为_______.【答案】221204y x +=【分析】由题设条件设出椭圆方程22221y x a b+=,再列出关于a 2与b 2的方程组即可作答.【详解】所求椭圆与椭圆221259y x +=的焦点相同,则其焦点在y 轴上,半焦距c 有c 2=25-9=16,设它的标准方程为22221y x a b+= (a >b >0),于是得a 2-b 2=16,又点在所求椭圆上,即22531a b+=,联立两个方程得2253116b b+=+,即222()8480b b +-=,解得b 2=4,则a 2=20, 所以所求椭圆的标准方程为221204y x +=.故答案为:221204y x +=15.一动圆与圆22650x y x +++=外切,同时与圆226910x y x +--=内切,则动圆圆心的轨迹方程为___________. 【答案】2213627x y += 【分析】先根据两圆位置关系得动圆圆心到两已知圆心距离和为定值,再由椭圆的定义求解, 【详解】圆22650x y x +++=的圆心为(3,0)A -,1=2r ,圆226910x y x +--=的圆心为(3,0)B ,210r =, 设动圆的圆心为P ,半径为r ,由题意得||2PA r =+,||10PB r =-,则||+||=12>212PA PB AB a =||,,3c =, 由椭圆定义得P 的轨迹方程为2213627x y +=,故答案为:2213627x y +=16.已知F 是抛物线24C y x =:的焦点,A B ,是C 上的两个点,线段AB 的中点为(22)M ,,则ABF△的面积等于_______. 【答案】 2【详解】设过M 的直线方程为,由∴,,由题意,于是直线方程为,,∴,焦点F (1,0)到直线的距离∴ABF △的面积是2三、解答题17.如图,在四棱锥P ABCD -中,底面ABCD 是矩形,M 是PA 的中点,PD ⊥平面ABCD ,且4PD CD ==,2AD =.(1)求AP 与平面CMB 所成角的正弦; (2)求M 点到平面PBC 的距离.【答案】(1)45(2)2【分析】(1)建立空间直角坐标系,求出平面CMB 的法向量,进而求出AP 与平面CMB 所成角的正弦;(2)先求出平面PBC 的法向量,再利用点到平面距离的向量求法即可求解. 【详解】(1)解:由题意,底面ABCD 是矩形,PD ⊥平面ABCD 可得:DA 、DC 、DP 两两垂直所以以D 为原点,建立如图所示的空间直角坐标系4PD CD ==,2AD =,M 是PA 的中点()2,0,0A ∴,()0,0,4P ,()1,0,2M ,()0,4,0C ,()2,4,0B()2,0,4AP =-,()1,4,2MB =-,()2,0,0BC =-设平面CMB 的法向量()111,,n x y z = 则111142020MB n x y z BC n x ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令11y =,即()0,1,2n =设AP 与平面CMB 所成角为θ,则4sin 540165AP n AP nθ⋅===++⋅⋅(2)解:由(1)知,()0,0,4P ,()1,0,2M ,()0,4,0C()0,4,4PC ∴=-,()1,4,2MC =--设平面PBC 的法向量为()222,,m x y z =,则22244020PC m y z BC m x ⎧⋅=-=⎪⎨⋅=-=⎪⎩, 令21y =,即()0,1,1m =设M 点到面PBC 的距离为d ,则222MC m d m⋅=== 18.如图,ABC 的外接圆O 的直径2,AB CE =垂直于圆O 所在的平面,,2,1BD CE CE BC BD ===∥.(1)求证:平面AEC ⊥平面BCED ;(2)若13DM DE =,求平面ACM 与平面ADM 夹角的余弦值.【答案】(1)证明见解析; 6【分析】(1)先证明出BC ⊥平面ACE ,利用面面垂直的判定定理可以证明;(2)以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线CE 为z 轴建立空间直角坐标系,用向量法求解. 【详解】(1)ABC 的外接圆O 的直径AB AC BC ∴⊥.又因为EC ⊥平面ABC ,BC ⊂平面ABC ,所以EC BC ⊥. 又,AC EC C AC ⋂=⊂平面ACE ,EC ⊂平面ACE ,BC ∴⊥平面ACE ,又BC ⊂平面,BCDE ∴平面AEC ⊥平面BCED .(2)以C 为原点,直线CA 为x 轴,直线CB 为y 轴,直线CE 为z 轴建立空间直角坐标系,则 )()()()3,0,0,0,1,0,0,1,1,0,0,2AB D E .设()()()1124,,,,1,10,1,10,,3333M x y z DM DE x y z M ⎛⎫=⇒--=-⇒ ⎪⎝⎭设平面CAM 的法向量为()()11124,,,3,0,0,0,,33m x y z CA CM ⎛⎫=== ⎪⎝⎭则11130024033x m CA y z m CM ⎧⎧=⋅=⎪⎪⇒⎨⎨+=⋅=⎪⎪⎩⎩,不妨令11z =,则()0,2,1m =-. 设平面AMD 的法向量为()222,,n x y z =,同理可求()23,3,3n =. 由图可知,平面ACM 与平面ADM 夹角不是钝角. 因为0636cos 100411299m n m n m n⋅-+⋅===++⨯++,所以平面ACM 与平面ADM 夹角的余弦值为610. 19.如图,四棱锥P -ABCD 中,底面ABCD 为正方形,△P AB 为等边三角形,平面P AB ⊥底面ABCD ,E 为AD 的中点.(1)求证:CE ⊥PD ;(2)在线段BD (不包括端点)上是否存在点F ,使直线AP 与平面PEF 5在,确定点F 的位置;若不存在,请说明理由. 【答案】(1)证明见解析(2)存在,点F 为靠近点B 的三等分点,即13BF BD =;【分析】(1)取AB 的中点O ,连结PO ,取CD 的中点G ,连结OG ,利用面面垂直的性质定理证明OB ,OP ,OG 两两垂直,然后建立合适的空间直角坐标系,求出所需点的坐标和两条直线的方向向量的坐标,由向量垂直的坐标表示进行分析证明即可;(2)设(01)BF BD λλ=<<,则(2,2,0)BF λλ=-,即可得到EF 的坐标,表示出平面PEF 的法向量,利用空间向量方程得到方程,解得即可; 【详解】(1)证明:取AB 的中点O ,连结PO , 因为PA PB =,所以PO AB ⊥,又因为平面PAB ⊥平面ABCD ,平面PAB ⋂平面ABCD AB =,PO ⊂平面PAB ,所以PO ⊥底面ABCD ,取CD 的中点G ,连结OG ,则OB ,OP ,OG 两两垂直,分别以OB ,OG ,OP 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系如图所示, 设2AB =,则(1,2,0),(1,1,0),(1,2,0)C P E D --,所以(2,1,0),(1,2,CE PD =--=-, 则220CE PD ⋅=-=,故CE PD ⊥, 所以CE PD ⊥;(2)解:由(1)可知,(1,0,0),(1,0,0),(1,1,0),(1,2,0)A B P E D ---,所以(1,1,3),PE AP =--=,(2,2,0),(2,1,0)BD BE =-=-, 设(01)BF BD λλ=<<,则(2,2,0)BF λλ=-, 所以(22,21,0)EF BF BE λλ=-=-+-, 设平面PEF 的法向量为(,,)n x y z =, 则00n PE n EF ⎧⋅=⎨⋅=⎩,即0(22)(21)0x y x y λλ⎧-+=⎪⎨-++-=⎪⎩,令1y =,则21,22x z λλ-==-故21223(22)n λλλ⎛-=⎪--⎝⎭,所以cos ,2AP n AP n AP nλ⋅===⎛,整理可得29610λλ-+=,解得13λ=,所以在BD 上存在点F ,使得直线AP 与平面PEF 所成角的正弦值为55,此时点F 为靠近点B 的三等分点,即13BF BD =.20.已知圆C :228120x y y +-+=,直线l :20ax y a ++=. (1)当a 为何值时,直线l 与圆C 相切;(2)当直线l 与圆C 相交于A ,B 两点,且|AB |=2l 的方程.【答案】(1)34a =-;(2)20x y -+=或7140x y -+=.【分析】(1)由题设可得圆心为()0,4C ,半径2r =,根据直线与圆的相切关系,结合点线距离公式列方程求参数a 的值即可.(2)根据圆中弦长、半径与弦心距的几何关系列方程求参数a ,即可得直线方程. 【详解】(1)由圆C :228120x y y +-+=,可得()2244x y +-=, 其圆心为()0,4C ,半径2r =,若直线l 与圆C 相切,则圆心C 到直线l 距离24221ad r a +==+,即43a =-,可得:34a =-.(2)由(1)知:圆心到直线的距离2421a d a+=+因为2222AB d r ⎛⎫+= ⎪⎝⎭,即222222d +=⎝⎭,解得:2d = 所以24221a d a+=+2870a a ++=,解得:1a =-或7a =-,则直线l 为20x y -+=或7140x y -+=.21.已知抛物线()2:20C y px p =>,拋物线C 上横坐标为1的点到焦点F 的距离为3.(1)求抛物线C 的方程及其准线方程;(2)过()1,0-的直线l 交抛物线C 于不同的两点A ,B ,交直线4x =-于点E ,直线BF 交直线=1x -于点D ,是否存在这样的直线l ,使得//DE AF ?若不存在,请说明理由;若存在,求出直线l 的方程.【答案】(1)抛物线C 的方程为28y x =,准线方程为2x =-;(2)存在直线1)y x +或1)y x =+. 【分析】(1)根据抛物线的定义即可求得抛物线的标准方程以及准线飞航程.(2)设出直线l 的方程(1)y k x =+(0)k ≠,联立直线的方程和抛物线的方程,消去y 后根据判别式大于零求得k 的取值范围,写出韦达定理.结合//DE AF 得到直线DE 与直线AF 的斜率相等,由此列方程,解方程求得k 的值,也即求得直线l 的方程. 【详解】(1)因为横坐标为1的点到焦点的距离为3,所以132p+=,解得4p =, 所以28y x =, 即准线方程为2x =-.(2)显然直线l 的斜率存在,设直线l 的方程为(1)y k x =+(0)k ≠,1122(,),(,)A x y B x y .联立得28(1)y xy k x ⎧=⎨=+⎩,消去y 得2222(28)0k x k x k +-+=.由224(28)40k k ∆=-->,解得k <所以k <0k ≠.由韦达定理得212282k x x k-+=,121=x x . 直线BF 的方程为22(2)2y y x x =--,又1D x =-,所以2232D y y x -=-,所以223(1,)2yD x ---, 因为//DE AF ,所以直线DE 与直线AF 的斜率相等 又(4,3)E k --,所以221133232y k x y x -+-=--.整理得121222yy k x x =+--,即1212(1)(1)22k x k x k x x ++=+--,化简得121211122x x x x ++=+--,121212122()412()4x x x x x x x x -+-=-++,即12+7x x =.所以2282=7k k -,整理得289k =,解得k =. 经检验,k =符合题意. 所以存在这样的直线l ,直线l的方程为1)y x +或1)y x =+.22.已知椭圆:2222:1(0)x y E a b a b+=>>的一个顶点为(0,1)A,焦距为(1)求椭圆E 的方程;(2)过点(2,1)P -作斜率为k 的直线与椭圆E 交于不同的两点B ,C ,直线AB ,AC 分别与x 轴交于点M ,N ,当||2MN =时,求k 的值. 【答案】(1)2214x y +=(2)4k =-【分析】(1)依题意可得22212b c c a b =⎧⎪=⎨⎪=-⎩,即可求出a ,从而求出椭圆方程;(2)首先表示出直线方程,设()11,B x y 、()22,C x y ,联立直线与椭圆方程,消元列出韦达定理,由直线AB 、AC 的方程,表示出M x 、N x ,根据N M MN x x =-得到方程,解得即可; 【详解】(1)解:依题意可得1b =,2c =222c a b =-, 所以2a =,所以椭圆方程为2214x y +=;(2)解:依题意过点()2,1P -的直线为()12y k x -=+,设()11,B x y 、()22,C x y ,不妨令1222x x -≤<≤,由()221214y k x x y ⎧-=+⎪⎨+=⎪⎩,消去y 整理得()()22221416816160k x k k x k k +++++=, 所以()()()222216841416160k k k k k ∆=+-++>,解得0k <,所以212216814k kx x k ++=-+,2122161614k k x x k +⋅=+,直线AB 的方程为1111y y x x --=,令0y =,解得111M x x y =-,直线AC 的方程为2211y y x x --=,令0y =,解得221N xx y =-,所以212111N M x xMN x x y y =-=--- ()()2121121121x x k x k x =--++-++⎡⎤⎡⎤⎣⎦⎣⎦()()212122x x k x k x =+-++()()()()2121212222x x x x k x x +-+=++()()12212222x x k x x -==++,所以()()122122x x k x x -=++, ()212124k x x x x +++⎡⎤⎣⎦22221616168241414k k k k k k k ⎡⎤⎛⎫+++-+⎢⎥ ⎪++⎝⎭⎣⎦()()22221616216841414kk k k k k k⎡⎤=+-+++⎣⎦+ 整理得4k =,解得4k =-。
江苏省徐州市新沂第九中学高二数学理上学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束.除第五局甲队获胜的概率是外,其余每局比赛甲队获胜的概率都是.假设各局比赛结果相互独立,则甲队以3︰2获得比赛胜利的概率为()A.B.C.D.参考答案:B2. 图2是判断闰年的流程图,以下年份是闰年的为()A. 1995年B.2000年C.2100年D.2005年参考答案:B略3. 已知直线⊥平面,直线平面,则下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则参考答案:D4. 有关命题的说法错误的是 ( )A.命题“若, 则”的逆否命题为:“若, 则”.B.“”是“”的充分不必要条件.C.若为假命题,则、均为假命题.D.对于命题:使得. 则:均有.参考答案:C5. 在首项为21,公比为的等比数列中,最接近1的项是().A.第三项 B.第四项 C.第五项 D.第六项参考答案:C6. 已知命题p:?x∈R,2x﹣3≤0.若(¬p)∧q是假命题,则命题q可以是()A.椭圆3x2+4y2=2的焦点在x轴上B.圆x2+y2﹣2x﹣4y﹣1=0与x轴相交C.若集合A∪B=A,则B?AD.已知点A(1,2)和点B(3,0),则直线x+2y﹣3=0与线段AB无交点参考答案:D【考点】复合命题的真假.【分析】求出p是假命题,根据(¬p)∧q是假命题,得到q是假命题,判断出A、B、C 是真命题,D是假命题,得到答案即可.【解答】解:命题p:?x∈R,2x﹣3≤0,易判断命题p是假命题,若(¬p)∧q是假命题,则q为假命题,选项A、B、C均正确,对于D,直线x+2y﹣3=0与线段AB有交点,故选:D.【点评】本题考查了复合命题的判断,考查椭圆的定义,集合的定义,是一道基础题.7. 甲船在A处观察到乙船在它的北偏东的方向,两船相距海里,乙船正在向北行驶,若甲船的速度是乙船的倍,则甲船应取北偏东方向前进,才能尽快追上乙船,此时()A. B. C. D.参考答案:A8. 设f(x)是展开式的中间项,若在区间上恒成立,则实数m的取值范围是()A.[0,+∞) B. C. D.[5,+∞)参考答案:D9. 如图,阴影部分的面积是()A.B.C.D.参考答案:C略10. 已知()A. B. C. D.参考答案:C二、填空题:本大题共7小题,每小题4分,共28分11. 已知a2+b2+c2=1, x2+y2+z2=9, 则ax+by+cz的最大值为参考答案:312. 如果的展开式中各项系数之和为128,则展开式中的系数是______ . 参考答案:-189令,得展开式中各项系数之和为.由,得,所以展开式的通项为.由,得,展开式中系数是.13. 在区间上随机取一个数,的值介于0至之间的概率为________.参考答案:14. 设抛物线,过焦点的直线交抛物线于两点,线段的中点的横坐标为,则=_____________.参考答案:15. 下面给出了解决问题的算法:S1 输入x S2 若则执行S3,否则执行S4 S3 使y=2x-3 S4 使S5 输出y 当输入的值为时,输入值与输出值相等。
2021-2022年高二数学上学期期末试卷理(含解析)一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)2.(5分)若,则下列结论不正确的是()A.a2<b2B.|a|﹣|b|=|a﹣b| C. D.ab<b23.(5分)一个几何体的三视图如图所示,已知这个几何体的体积为,则h=()A.B.C.D.4.(5分)设{an }是由正数组成的等比数列,Sn为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.156.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为11.(5分)已知f(x)=则不等式x+(x+2)•f(x+2)≤5的解集是.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为.13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.广东省揭阳一中xx高二上学期期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)已知全集U=R,集合A={x|3≤x<7},B={x|x2﹣7x+10<0},则∁R(A∩B)=()A.(﹣∞,3)∪(5,+∞)B.(﹣∞,3)∪∪∪(5,+∞)考点:交、并、补集的混合运算.分析:先计算集合B,再计算A∩B,最后计算C R(A∩B).解答:解:∵B={x|2<x<5},∴A∩B={x|3≤x<5},∴C R(A∩B)=(﹣∞,3)∪所以四棱锥的体积为:,所以h=.故选B.点评:本题是基础题,考查三视图与直观图的关系,考查几何体的体积的计算,考查计算能力.4.(5分)设{a n}是由正数组成的等比数列,S n为其前n项和.已知a2a4=1,S3=7,则S5=()A.B.C.D.考点:等比数列的前n项和.专题:等差数列与等比数列.分析:由题意可得a3=1,再由S3=++1=7可得q=,进而可得a1的值,由求和公式可得.解答:解:设由正数组成的等比数列{a n}的公比为q,则q>0,由题意可得a32=a2a4=1,解得a3=1,∴S3=a1+a2+a3=++1=7,解得q=,或q=(舍去),∴a1==4,∴S5==故选:C点评:本题考查等比数列的求和公式,求出数列的公比是解决问题的关键,属基础题.5.(5分)已知如程序框图,则输出的i是()A.9 B.11 C.13 D.15考点:循环结构.专题:计算题.分析:写出前5次循环的结果,直到第五次满足判断框中的条件,执行输出.解答:解:经过第一次循环得到S=1×3=3,i=5经过第二次循环得到S=3×5=15,i=7经过第三次循环得到S=15×7=105,i=9经过第四次循环得到S=105×9=945,i=11经过第五次循环得到S=945×11=10395,i=13此时,满足判断框中的条件输出i故选C点评:解决程序框图中的循环结构的问题,一般先按照框图的流程写出前几次循环的结果,找规律.6.(5分)已知θ是三角形的一个内角,且sinθ+cosθ=,则x2sinθ﹣y2cosθ=1表示()A.焦点在x轴上的椭圆B.焦点在x轴上的双曲线C.焦点在y轴上的椭圆D.焦点在y轴上的双曲线考点:椭圆的标准方程.专题:计算题;三角函数的求值;圆锥曲线的定义、性质与方程.分析:运用平方法,可得sinθcosθ<0,再将方程化为标准方程,运用作差法,即可判断分母的大小,进而确定焦点的位置.解答:解:θ是三角形的一个内角,且sinθ+cosθ=,则平方可得,1+2sinθcosθ=,则sinθcosθ=﹣<0,即sinθ>0,cosθ<0,x2sinθ﹣y2cosθ=1即为=1,由于﹣=<0,则<,则方程表示焦点在y轴上的椭圆.故选C.点评:本题考查椭圆的方程和性质,注意转化为标准方程,考查三角函数的化简和求值,属于中档题和易错题.7.(5分)方程|x|(x﹣1)﹣k=0有三个不相等的实根,则k的取值范围是()A.B.C.D.考点:函数的零点与方程根的关系.专题:数形结合法.分析:将方程转化为函数y=k与y=|x|(x﹣1),将方程要的问题转化为函数图象交点问题.解答:解:如图,作出函数y=|x|•(x﹣1)的图象,由图象知当k∈时,函数y=k与y=|x|(x﹣1)有3个不同的交点,即方程有3个实根.故选A.点评:本题研究方程根的个数问题,此类问题首选的方法是图象法即构造函数利用函数图象解题,其次是直接求出所有的根.8.(5分)对于任意实数x,符号表示x的整数部分,即是不超过x的最大整数,例如=2;=2;=﹣3,这个函数叫做“取整函数”,它在数学本身和生产实践中有广泛的应用.那么+++…+的值为()A.21 B.76 C.264 D.642考点:对数的运算性质.专题:压轴题;新定义.分析:利用“取整函数”和对数的性质,先把对数都取整后可知++++…+=1×2+2×4+3×8+4×16+5×32+6,再进行相加运算.解答:解:∵=0,到两个数都是1,到四个数都是2,到八个数都是3,到十六个数都是4,到三十二个数都是5,=6,∴++++…+=0+1×2+2×4+3×8+4×16+5×32+6=264故选C.点评:正确理解“取整函数”的概念,把对数正确取整是解题的关键.二、填空题(每小题5分,共30分)9.(5分)在△ABC中∠A=60°,b=1,S△ABC=,则=2.考点:正弦定理;余弦定理.专题:解三角形.分析:由题意和三角形的面积公式求出c,再由余弦定理求出a,代入式子求值即可.解答:解:由题意得,∠A=60°,b=1,S△ABC=,所以,则,解得c=4,由余弦定理得,a2=b2+c2﹣2bccosA=1+16﹣2×=13,则a=,所以==2,故答案为:2.点评:本题考查正弦定理,余弦定理,以及三角形的面积公式,熟练掌握公式和定理是解题的关键.10.(5分)为了调查某班学生做数学题的基本能力,随机抽查了部分学生某次做一份满分为100分的数学试题,他们所得分数的分组区间为.考点:其他不等式的解法.专题:计算题;压轴题;分类讨论.分析:先根据分段函数的定义域,选择解析式,代入“不等式x+(x+2)•f(x+2)≤5”求解即可.解答:解:①当x+2≥0,即x≥﹣2时.x+(x+2)f(x+2)≤5转化为:2x+2≤5解得:x≤.∴﹣2≤x≤.②当x+2<0即x<﹣2时,x+(x+2)f(x+2)≤5转化为:x+(x+2)•(﹣1)≤5∴﹣2≤5,∴x<﹣2.综上x≤.故答案为:(﹣∞,]点评:本题主要考查不等式的解法,用函数来构造不等式,进而再解不等式,这是很常见的形式,不仅考查了不等式的解法,还考查了函数的相关性质和图象,综合性较强,转化要灵活,要求较高.12.(5分)设等差数列{a n}的前n项和为S n,若S4≥10,S5≤15,则a4的最大值为4.考点:等差数列的前n项和;等差数列.专题:压轴题.分析:利用等差数列的前n项和公式变形为不等式,再利用消元思想确定d或a1的范围,a4用d或a1表示,再用不等式的性质求得其范围.解答:解:∵等差数列{a n}的前n项和为S n,且S4≥10,S5≤15,∴,即∴∴,5+3d≤6+2d,d≤1∴a4≤3+d≤3+1=4故a4的最大值为4,故答案为:4.点评:此题重点考查等差数列的通项公式,前n项和公式,以及不等式的变形求范围;13.(5分)设点O为坐标原点,A(2,1),且点F(x,y)坐标满足,则||•cos∠AOP 的最大值为.考点:简单线性规划.专题:不等式的解法及应用.分析:先画出满足的可行域,再根据平面向量的运算性质,对||•cos∠AOP 进行化简,结合可行域,即可得到最终的结果.解答:解:满足的可行域如图所示,又∵||•cos∠AOP=,∵=(2,1),=(x,y),∴||•cos∠AOP=.由图可知,平面区域内x值最大的点为(5,2)||•cos∠AOP的最大值为:故答案为:.点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.14.(5分)已知抛物线的顶点在原点,焦点在x轴的正半轴上,F为焦点,A,B,C为抛物线上的三点,且满足,,则抛物线的方程为y2=4x.考点:抛物线的标准方程.专题:计算题.分析:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)则可知x1+x2+x3=0,进而表示出A,B,C三点的横坐标,根据抛物线定义可分别表示出|FA|,|FB|和|FC|,进而根据,求得p,则抛物线方程可得.解答:解:设向量的坐标分别为(x1,y1)(x2,y2)(x3,y3)由得x1+x2+x3=0∵X A=x1+,同理X B=x2+,X C=x3+∴|FA|=x1++=x1+p,同理有|FB|=x2++=x2+p,|FC|=x3++=x3+p,又,∴x1+x2+x3+3p=6,∴p=2,∴抛物线方程为y2=4x.故答案为:y2=4x.点评:本题主要考查了抛物线的标准方程和抛物线定义的运用.涉及了向量的运算,考查了学生综合运用所学知识解决问题的能力.三、解答题:本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤.15.(12分)设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(1)若a=1,且p∧q为真,求实数x的取值范围;(2)若¬p是¬q的充分不必要条件,求实数a的取值范围.考点:复合命题的真假;必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:(1)现将a=1代入命题p,然后解出p和q,又p∧q为真,所以p真且q真,求解实数a的取值范围;(2)先由¬p是¬q的充分不必要条件得到q是p的充分不必要条件,然后化简命题,求解实数a的范围.解答:解:(1)当a=1时,p:{x|1<x<3},q:{x|2<x≤3},又p∧q为真,所以p真且q真,由得2<x<3,所以实数x的取值范围为(2,3)(2)因为¬p是¬q的充分不必要条件,所以q是p的充分不必要条件,又p:{x|a<x<3a}(a>0),q:{x|2<x≤3},所以解得1<a≤2,所以实数a的取值范围是(1,2]点评:充要条件要抓住“大能推小,小不能推大”规律去推导.16.(12分)已知,函数f(x)=.(1)求函数f(x)的最小正周期;(2)已知,且α∈(0,π),求α的值.考点:三角函数中的恒等变换应用;平面向量数量积的运算.专题:三角函数的求值;三角函数的图像与性质;平面向量及应用.分析:(1)首先根据已知条件,利用向量的坐标运算,分别求出向量的数量积和向量的模,进一步把函数的关系式通过三角恒等变换,把函数关系式变形成正弦型函数,进一步求出函数的最小正周期.(2)利用(1)的函数关系式,根据定义域的取值范围.进一步求出角的大小.解答:解:(1)已知:则:f(x)====所以:函数的最小正周期为:…(2分)…(4分)(2)由于f(x)=所以解得:所以:…(6分)因为:α∈(0,π),所以:则:解得:点评:本题考查的知识要点:三角函数关系式的恒等变换,向量的坐标运算,正弦型函数的性质的应用,利用三角函数的定义域求角的大小.属于基础题型.17.(14分)如图,在长方体ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,点E在棱AB上移动.(1)证明:D1E⊥A1D;(2)当E为AB的中点时,求点E到面ACD1的距离;(3)AE等于何值时,二面角D1﹣EC﹣D的大小为.考点:点、线、面间的距离计算;与二面角有关的立体几何综合题.分析:解法(一):(1)通过观察,根据三垂线定理易得:不管点E在AB的任何位置,D1E⊥A1D总是成立的.(2)在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题可采用“等积法”:即利用三棱锥的换底法,通过体积计算得到点到平面的距离.本法具有设高不作高的特殊功效,减少了推理,但计算相对较为复杂.根据=既可以求得点E到面ACD1的距离.(3)二面角的度量关键在于找出它的平面角,构造平面角常用的方法就是三垂线法.过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,则∠DHD1为二面角D1﹣EC﹣D的平面角.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0).这种解法的好处就是:(1)解题过程中较少用到空间几何中判定线线、面面、线面相对位置的有关定理,因为这些可以用向量方法来解决.(2)即使立体感稍差一些的学生也可以顺利解出,因为只需画个草图以建立坐标系和观察有关点的位置即可.(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,可求得.,因为二面角D1﹣EC﹣D的大小为,所以根据余弦定理可得AE=时,二面角D1﹣EC﹣D的大小为.解答:解法(一):(1)证明:∵AE⊥平面AA1DD1,A1D⊥AD1,∴A1D⊥D1E(2)设点E到面ACD1的距离为h,在△ACD1中,AC=CD1=,AD1=,故,而.∴,∴,∴.(3)过D作DH⊥CE于H,连D1H、DE,则D1H⊥CE,∴∠DHD1为二面角D1﹣EC﹣D的平面角.设AE=x,则BE=2﹣x在Rt△D1DH中,∵,∴DH=1.∵在Rt△ADE中,DE=,∴在Rt△DHE中,EH=x,在Rt△DHC中CH=,在Rt△CBE中CE=.∴.∴时,二面角D1﹣EC﹣D的大小为.解法(二):以D为坐标原点,直线DA,DC,DD1分别为x,y,z轴,建立空间直角坐标系,设AE=x,则A1(1,0,1),D1(0,0,1),E(1,x,0),A(1,0,0)C(0,2,0)(1)因为=(1,0,1)•(1,x,﹣1)=0,所以.(2)因为E为AB的中点,则E(1,1,0),从而,,设平面ACD1的法向量为,则也即,得,从而,所以点E到平面AD1C的距离为.(3)设平面D1EC的法向量,∴,由令b=1,∴c=2,a=2﹣x,∴.依题意.∴(不合,舍去),.∴AE=时,二面角D1﹣EC﹣D的大小为.点评:本小题主要考查棱柱,二面角、点到平面的距离和线面关系等基本知识,同时考查空间想象能力和推理、运算能力.18.(14分)如图,某小区有一边长为2(单位:百米)的正方形地块OABC,其中OAE是一个游泳池,计划在地块OABC内修一条与池边AE相切的直路l(宽度不计),切点为M,并把该地块分为两部分.现以点O为坐标原点,以线段OC所在直线为x轴,建立平面直角坐标系,若池边AE满足函数y=﹣x2+2(0≤x≤)的图象,且点M到边OA距离为.(1)当t=时,求直路l所在的直线方程;(2)当t为何值时,地块OABC在直路l不含泳池那侧的面积取到最大,最大值是多少?考点:基本不等式;利用导数研究曲线上某点切线方程.专题:不等式的解法及应用;直线与圆.分析:(Ⅰ)求当t=时,直路l所在的直线方程,即求抛物线y=﹣x2+2(0≤x≤)在x=时的切线方程,利用求函数的导函数得到切线的斜率,运用点斜式写切线方程;(Ⅱ)求出x=t时的抛物线y=﹣x2+2(0≤x≤)的切线方程,进一步求出切线截正方形在直线右上方的长度,利用三角形面积公式写出面积,得到的面积是关于t的函数,利用导数分析面积函数在(0<t<)上的极大值,也就是最大值.解答:解:(I)∵y=﹣x2+2,∴y′=﹣2x,∴过点M(t,﹣t2+2)的切线的斜率为﹣2t,所以,过点M的切线方程为y﹣(﹣t2+2)=﹣2t(x﹣t),即y=﹣2tx+t2+2,当t=时,切线l的方程为y=﹣x+,即当t=时,直路l所在的直线方程为12x+9y﹣22=0;(Ⅱ)由(I)知,切线l的方程为y=﹣2tx+t2+2,令y=2,得x=,故切线l与线段AB交点为F(),令y=0,得x=,故切线l与线段OC交点为().地块OABC在切线l右上部分为三角形FBG,如图,则地块OABC在直路l不含泳池那侧的面积为S=(2﹣)×2=4﹣t﹣=4﹣(t+)≤2.当且仅当t=1时,取等号.∴当t=100米时,地块OABC在直路l不含游泳池那侧的面积最大,最大值为xx0平方米.点评:本题考查了函数模型的选择与应用,考查了利用导数研究函数的单调性,考查了利用导数求函数的最值,在实际问题中,函数在定义域内仅含一个极值,该极值往往就是最值.属中档题型.19.(14分)已知如图,椭圆方程为(4>b>0).P为椭圆上的动点,F1、F2为椭圆的两焦点,当点P不在x轴上时,过F1作∠F1PF2的外角平分线的垂线F1M,垂足为M,当点P在x轴上时,定义M与P重合.(1)求M点的轨迹T的方程;(2)已知O(0,0)、E(2,1),试探究是否存在这样的点Q:Q是轨迹T内部的整点(平面内横、纵坐标均为整数的点称为整点),且△OEQ的面积S△OEQ=2?若存在,求出点Q的坐标,若不存在,说明理由.考点:圆与圆锥曲线的综合.专题:计算题;数形结合.分析:(1)延长F1M与F2P的延长线相交于点N,连接OM,利用条件求出M是线段NF1的中点,转化出|OM|=4即可求出M点的轨迹T的方程;(2)可以先观察出轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,再利用同底等高的两个三角形的面积相等,,,知道符合条件的点均在过A、B作直线OE的两条平行线l1、l2上,再利用点Q是轨迹T内部的整点即可求出点Q的坐标.解答:解:(1)当点P不在x轴上时,延长F1M与F2P的延长线相交于点N,连接OM,∵∠NPM=∠MPF1,∠NMP=∠PMF1∴△PNM≌△PF1M∴M是线段NF1的中点,|PN|=|PF1||(2分)∴|OM|=|F2N|=(|F2P|+|PN|)=(|F2P|+|PF1|)∵点P在椭圆上∴|PF2|+|PF1|=8∴|OM|=4,(4分)当点P在x轴上时,M与P重合∴M点的轨迹T的方程为:x2+y2=42.(6分)(2)连接OE,易知轨迹T上有两个点A(﹣4,0),B(4,0)满足S△OEA=S△OEB=2,分别过A、B作直线OE的两条平行线l1、l2.∵同底等高的两个三角形的面积相等∴符合条件的点均在直线l1、l2上.(7分)∵∴直线l1、l2的方程分别为:、(8分)设点Q(x,y)(x,y∈Z)∵Q在轨迹T内,∴x2+y2<16(9分)分别解与得与(11分)∵x,y∈Z∴x为偶数,在上x=﹣2,,0,2对应的y=1,2,3在上x=﹣2,0,2,对应的y=﹣3,﹣2,﹣1(13分)∴满足条件的点Q存在,共有6个,它们的坐标分别为:(﹣2,1),(0,2),(2,3),(﹣2,﹣3),(0,﹣2),(2,﹣1).(14分)点评:本题涉及到轨迹方程的求法.在求动点的轨迹方程时,一般多是利用题中条件得出关于动点坐标的等式,整理可得动点的轨迹方程.20.(14分)对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=(b,c∈N)有且只有两个不动点0,2,且f(﹣2),(1)求函数f(x)的解析式;(2)已知各项不为零的数列{a n}满足4S n•f()=1,求数列通项a n;(3)如果数列{a n}满足a1=4,a n+1=f(a n),求证:当n≥2时,恒有a n<3成立.考点:反证法与放缩法;数列的函数特性;数列递推式.专题:综合题;等差数列与等比数列.分析:(1)由=x,化简为(1﹣b)x2+cx+a=0,利用韦达定理可求得,代入f(x)=(b,c∈N),依题意可求得c=2,b=2,从而可得函数f(x)的解析式;(2)由4S n﹣=1,整理得2S n=a n﹣(*),于是有2S n﹣1=a n﹣1﹣(**),二式相减得(a n+a n﹣1)(a n﹣a n﹣1+1)=0,讨论后即可求得数列通项a n;(3)由a n+1=f(a n)得,a n+1=,取倒数得=﹣2+≤⇒a n+1<0或a n+1≥2,分别讨论即可.解答:解:(1)依题意有=x,化简为(1﹣b)x2+cx+a=0,由韦达定理得:,解得,代入表达式f(x)=,由f(﹣2)=<﹣,得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,故f(x)=,(x≠1).(2)由题设得4S n•=1,整理得:2S n=a n﹣,(*)且a n≠1,以n﹣1代n得2S n﹣1=a n﹣1﹣,(**)由(*)与(**)两式相减得:2a n=(a n﹣a n﹣1)﹣(﹣),即(a n+a n﹣1)(a n﹣a n﹣1+1)=0,∴a n=﹣a n﹣1或a n﹣a n﹣1=﹣1,以n=1代入(*)得:2a1=a1﹣,解得a1=0(舍去)或a1=﹣1,由a1=﹣1,若a n=﹣a n﹣1得a2=1,这与a n≠1矛盾,∴a n﹣a n﹣1=﹣1,即{a n}是以﹣1为首项,﹣1为公差的等差数列.(3)由a n+1=f(a n)得,a n+1=,=﹣2+≤,∴a n+1<0或a n+1≥2.若a n+1<0,则a n+1<0<3成立;若a n+1≥2,此时n≥2,从而a n+1﹣a n=≤0,即数列{a n}在n≥2时单调递减,由a2=2知,a n≤a2=2<3,在n≥2上成立.综上所述,当n≥2时,恒有a n<3成立.点评:本题考查数列的函数特性,着重考查等差数列的判定,考查推理证明能力,考查转化思想与分类讨论思想的综合应用,属于难题. 36365 8E0D 踍37704 9348 鍈4 27966 6D3E 派z ^Ko32962 80C2 胂T32069 7D45 絅26795 68AB 梫。
2015~2016学年度第一学期期末考试试卷 高二(理) 数学 座位号第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1、向量(1,2,2),(2,4,4)a b =-=--,则a b 与 ( ) A 、相交 B 、垂直 C 、平行 D 、以上都不对2、如果双曲线的半实轴长为2,焦距为6,那么该双曲线的离心率是 ( )A 、32B 、62C 、32D 、23、已知命题:,sin 1,p x R x ∀∈≤则p ⌝是 ( ) A 、,sin 1x R x ∃∈≥ B 、,sin 1x R x ∀∈≥ C 、,sin 1x R x ∃∈> D 、,sin 1x R x ∀∈>4、若向量)0,2,1(=a ,)1,0,2(-=b ,则( )A 0120,cos >=<b aB b a ⊥C b a //D ||||b a =5、若原命题“0,0,0a b ab >>>若则”,则其逆命题、否命题、逆否命题中( ) A 、都真 B 、都假 C 、否命题真 D 、逆否命题真6、 “2320x x -+≠”是“1x ≠” 的( )条件 ( ) A 、充分不必要 B 、必要不充分 C 、充要 D 、既不充分也不必要 7、若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A 、-9<m <25B 、8<m <25C 、16<m <25D 、m >88、已知△ABC 的周长为20,且顶点B (0,-4),C (0,4),则顶点A 的轨迹方程是( )A .1203622=+y x (x ≠0)B .1362022=+y x (x ≠0)C .120622=+y x (x ≠0)D .162022=+y x (x ≠0)9、一位运动员投掷铅球的成绩是14m ,当铅球运行的水平距离是6m 时,达到最大高度4m .若铅球运行的路线是抛物线,则铅球出手时距地面的高度是( ) A . 1.75m B . 1.85mC . 2.15mD . 2.25m 10、设a R ∈,则1a >是11a< 的( ) A .充分但不必要条件 B .必要但不充分条件C .充要条件D .既不充分也不必要条件 11.抛物线281x y -=的准线方程是 ( ) A . 321=x B . 2=y C . 321=y D . 2-=y12. 若A )1,2,1(-,B )3,2,4(,C )4,1,6(-,则△ABC 的形状是( ) A .不等边锐角三角形 B .直角三角形C .钝角三角形D .等边三角形第II 卷(非选择题共90分)二、填空题(本大题共4小题,每小题5分,共20分)13、经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 。
高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。
高二(上)数学期末试卷(理科)一.选择题(共10小题)n25.设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,求得m的.C D.C D.7.设a>b>0,则的最小值是()2,都有9.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()10.如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是().C D.二.填空题(共5小题)11.设a+b=2,b>0,则当a=_________时,取得最小值.12.设等差数列{a n}的前n项和为S n,若a6=s3=12,则a n=_________.13.在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为_________.14.设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是_________.15.设a,b为正实数,现有下列命题:①若a2﹣b2=1,则a﹣b<1;②若,则a﹣b<1;③若,则|a﹣b|<1;④若|a3﹣b3|=1,则|a﹣b|<1.其中的真命题有_________.(写出所有真命题的编号)三.解答题(共6小题)16.已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.17.已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且﹣2S2,S3,4S4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明.18.已知数列{a n}的前n项和为S n,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列的前n项和最大?19.直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.21.已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.高二(上)数学期末试卷(理科)参考答案与试题解析一.选择题(共10小题)n8+,当且仅当成立;,当且仅当,∴25.(2013•北京)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x0﹣2y0=2,.C D.x x x 解:先根据约束条件xy=y=<﹣C D.7.(2010•四川)设a>b>0,则的最小值是()变形为=当且仅当2,都有,使得9.(2013•浙江)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()=),x+,”10.(2013•浙江)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是().C D.,解此方程组可求得+y;,即==12由①②得:,解得,,设双曲线,2c=2=2二.填空题(共5小题)11.(2013•天津)设a+b=2,b>0,则当a=﹣2时,取得最小值.,从而,=﹣,=取得最小值时,取得最小值时,13.(2013•山东)在平面直角坐标系xOy中,M为不等式组所表示的区域上一动点,则直线|OM|的最小值为.=的最小值等于故答案为:14.(2011•浙江)设x,y为实数,若4x2+y2+xy=1,则2x+y的最大值是.故答案为15.(2012•四川)设a,b为正实数,现有下列命题:①若a2﹣b2=1,则a﹣b<1;②若,则a﹣b<1;③若,则|a﹣b|<1;④若|a3﹣b3|=1,则|a﹣b|<1.其中的真命题有①④.(写出所有真命题的编号)b=三.解答题(共6小题)16.(2010•辽宁)已知a,b,c均为正数,证明:≥6,并确定a,b,c为何值时,等号成立.与①②(时,①式和②式等号成立.当且仅当时,原式等号成立.均为正数,由基本不等式得时,原式等号成立.17.(2013•天津)已知首项为的等比数列{a n}的前n项和为S n(n∈N*),且﹣2S2,S3,4S4成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)证明.,代入,=;==,=,,且综上,有18.(2012•四川)已知数列{a n}的前n项和为S n,常数λ>0,且λa1a n=S1+S n对一切正整数n都成立.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设a1>0,λ=100,当n为何值时,数列的前n项和最大?时,令,结合数列的单调性可求和的最大项,则,=时,时,令)可知时,19.(2013•北京)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.y=的坐标为()与椭圆的交点,从而解得y=代入椭圆方程得±).与椭圆(20.(2011•重庆)如图,椭圆的中心为原点O,离心率e=,一条准线的方程为x=2.(Ⅰ)求该椭圆的标准方程.(Ⅱ)设动点P满足,其中M,N是椭圆上的点.直线OM与ON的斜率之积为﹣.问:是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值.若存在,求F1,F2的坐标;若不存在,说明理由.=,=2c==∴椭圆的方程为:,得(﹣在椭圆设该椭圆的左,右焦点为,则这两个焦点坐标是(﹣,,21.(2012•上海)已知数列{a n}、{b n}、{c n}满足.(1)设c n=3n+6,{a n}是公差为3的等差数列.当b1=1时,求b2、b3的值;(2)设,.求正整数k,使得对一切n∈N*,均有b n≥b k;(3)设,.当b1=1时,求数列{b n}的通项公式.)∵=+=+.+﹣+。
2021-2022学年陕西省渭南市白水县高二上学期期末数学(理)试题一、单选题1.在等比数列{}n a 中,66a =,99a =,则3a 等于( ) A .2 B .4 C .169D .32【答案】B【分析】由等比数列的性质进行求解即可.【详解】由等比数列的性质,2639a a a =⋅,∴3369a =,∴34a =. 故选:B.2.若,,a b c R ∈且a b >,则下列不等式中一定成立的是( ) A .ac bc > B .2()0a b c ->C .11a b<D .22a b -<-【答案】D【分析】根据不等式的性质即可判断. 【详解】对于A ,若0c ≤,则不等式不成立; 对于B ,若0c ,则不等式不成立; 对于C ,若,a b 均为负值,则不等式不成立;对于D ,不等号的两边同乘负值,不等号的方向改变,故正确; 故选:D【点睛】本题主要考查不等式的性质,需熟练掌握性质,属于基础题.3.设双曲线2222:1(0,0)x y C a b a b-=>>的实轴长与焦距分别为2,4,则双曲线C 的渐近线方程为( )A .y =B .13y x =±C .y =D .3y x =±【答案】C【分析】由已知可求出,,a b c ,即可得出渐近线方程.【详解】因为22,24a c ==,所以1,2,a c b ===C 的渐近线方程为y =. 故选:C.4.已知命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,则⌝p 是 A .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0B .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≤0C .∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0D .∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0 【答案】C【详解】全称命题的的否定是存在性命题,因为,命题p :∀x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)≥0,所以,⌝p 是∃x 1,x 2∈R,(f(x 2)-f(x 1))(x 2-x 1)<0,故选C. 【解析】全称命题与存在性命题.点评:简单题,全称命题的的否定是存在性命题.5.设0a >,m =n ). A .m n < B .m n =C .m n >D .m ,n 的大小不定【答案】A【分析】利用作差法即可比较大小.【详解】由已知m =225m a =++n 225n a =++又因为0,0m n >>,且220n m ->,所以n m >. 故选:A6.已知点,,,O A B C 为空间不共面的四点,且向量a OA OB OC =++,向量b OA OB OC =+-,则与,a b 不能构成空间基底的向量是( ) A .OA B .OB C .OC D .OA 或OB【答案】C【分析】利用空间向量的基底的意义即可得出. 【详解】111()()()222OC a b OA OB OC OA OB OC =-=++-+-,∴OC 与a 、b 不能构成空间基底;故选:C .7.在ABC 中,若()()3a b c b c a bc +++-=,且sin 2sin cos A B C =,则ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形【答案】B【分析】将()()3a b c b c a bc +++-=化简并结合余弦定理可得A 的值,再对sin 2sin cos A B C =结合正余弦定理化简可得边长关系,进行判定三角形形状.【详解】由()()3a b c b c a bc +++-=,得22()3b c a bc +-=,整理得222b c a bc +-=,则2221cos 22b c a A bc +-==, 因为()0,πA ∈,所以π3A =, 又由sin 2sin cos A B C =,得22222a b c a b ab+-=⋅化简得b c =,所以ABC 为等边三角形, 故选:B8.若x ,y 满足约束条件1121x y x y x y +≥⎧⎪-≥-⎨⎪-≤⎩,则2z x y =+的最大值是( ).A .2B .3C .8D .12【答案】C【分析】画出可行域及目标函数,利用几何意义求出最值.【详解】画出可行域,如图所示,当2z x y =+经过点A 时,取得最大值,联立121x y x y -=-⎧⎨-=⎩,解得:23x y =⎧⎨=⎩,故()2,3A ,此时2268z x y =+=+=, 故2z x y =+的最大值为8. 故选:C9.在正四面体-P ABC 中,棱长为1,且D 为棱AB 的中点,则PD PC ⋅的值为( ).A .14-B .18-C .12-D .12【答案】D【分析】在正四面体-P ABC 中,由中点性质可得()12PD PA PB =+,则PD PC ⋅可代换为()12P PA B C P ⋅+,由向量的数量积公式即可求解. 【详解】如图,因为D 为棱AB 的中点,所以()12PD PA PB =+, ()()1122PD PC P P C P A PB PA P C PC B ⋅=⋅⋅⋅+=+, 由正四面体得性质,PA 与PC 的夹角为60°,同理PB 与PC 的夹角为60°,1PA PB PC ===,111cos602PA PC P PB C ⋅⋅==⨯⨯︒=, 故21211122PC PD ⎛⎫⋅=⨯+= ⎪⎝⎭,故选:D.10.命题p :若1y x <<,01a <<,则11x y a a<,命题q :若1y x <<,a<0,则a a x y <.在命题①p 且q ②p 或q ③非p ④非q 中,真命题是( ) A .①③ B .①④C .②③D .②④【答案】C【分析】先判断命题,p q 的真假,再根据或、且、非命题的真值表判断真假求解即可. 【详解】命题p 中,01a <<,则指数函数1y x a =单调递增,111x yy x a a <<⇒>,所以p 为假命题,命题q 中,a<0则幂函数y a x =在(0,)+∞上单调递减,由1y x <<,知a a x y <, 所以q 为真命题,所以①p 且q 为假命题 ,②p 或q 为真命题,③非p 为真命题,④非q 为假命题. 故选:C11.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,P 是C 上的点,212PF F F ⊥,1260F PF ∠=︒,则C 的离心率为( ).A .33B .13C .12D .36【答案】A【分析】()20F c ,,把x c =代入椭圆方程解得y ,可得p y ﹐在12Rt PF F △中,由1260PF F ∠=︒建立等式进而得出结论. 【详解】如图所示,由()20F c ,,212PF F F ⊥,把x c =代入椭圆方程可得 22221c y a b += ,解得 2b y a=±, 取 2P b y a=在12Rt PF F △中,22b PF a =,由1260F PF ∠=︒,∴212b PF a=,由椭圆定义可得22212232b b b PF PF a a a a +=+==,得2223a b =, ∴222212c a b b =-=,则有22223a c =,2213c a =则C 的离心率3c e a ==. 故选:A.12.对于正项数列{}n a ,定义12323nn a a a na G n++++=为数列{}n a 的“匀称值”.已知数列{}n a 的“匀称值”为2n G n =+,则该数列中的9a 等于( ) A .83B .125C .2110D .199【答案】D【分析】由已知得12323(2)n a a a na n n +++⋯+=+,由此推导出21n n a n+=,从而能求出9a . 【详解】解:12323nn a a a na G n+++⋯+=,数列{}n a 的“匀称值”为2n G n =+,12323(2)n a a a na n n ∴+++⋯+=+,①2n ∴时,123123(1)(1)(1)n a a a n a n n -+++⋯+-=-+,②①-②,得21n na n =+,21n n a n+∴=,2n , 当1n =时,113a G ==满足上式,21n n a n+∴=, ∴9199a =. 故选:D二、填空题13.已知向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,若()a b c +⊥,则x =____________. 【答案】4-【分析】首先求出a b +的坐标,再根据向量垂直得到()0a b c +⋅=,即可得到方程,解得即可; 【详解】解:因为向量()2,1,3a =-,()4,2,b x =-,()1,,2c x =-,所以向量()2,1,3a b x +=-+,因为()a b c +⊥,所以()0a b c +⋅=,即()()211230x x -⨯+⨯-++=,解得4x =- 故答案为:4-14.已知不等式210ax bx --≥的解集是11|23⎧⎫-≤≤-⎨⎬⎩⎭x x ,则不等式20x bx a --< 的解集是________.【答案】{|23}x x <<【分析】根据给定的解集求出a ,b 的值,再代入解不等式即可作答.【详解】依题意,12-,13-是方程210ax bx --=的两个根,且a<0,于是得11()()23111()()23b aa ⎧-+-=⎪⎪⎨⎪-⨯-=-⎪⎩,解得:6,5ab =-=,因此,不等式20x bx a --<为:2560x x -+<,解得23x <<, 所以不等式20x bx a --< 的解集是{|23}x x <<. 故答案为:{|23}x x <<15.若a ,b ,c 均为实数,试从①2b ac =;②b ③a bb c=中选出“a ,b ,c 成等比数列”的必要条件的序号______. 【答案】①③【分析】依次判断“a ,b ,c 成等比数列”是否能推出序号中的条件即可.【详解】设1p 为“2b ac =”,2p 为“b ,3p 为“a bb c=”, q 为“a ,b ,c 成等比数列”,由于a ,b ,c 成等比数列,故0a ≠,0b ≠,0c ≠, 若i q p ⇒(1i =,2,3),则i p 是q 的必要条件,对于①,由等比中项的定义,“a ,b ,c 成等比数列”⇒“2b ac =”, ∴“2b ac =”是“a ,b ,c 成等比数列”的必要条件,故①正确; 对于②,令1a =,2b =-,4c =,则a ,b ,c 成等比数列,此时“a ,b ,c 成等比数列”“b ,∴“b 不是“a ,b ,c 成等比数列”的必要条件,故②错误; 对于③,由等比数列的定义,“a ,b ,c 成等比数列”⇒b c a b =⇔a b b c=, ∴“a ,b ,c 成等比数列”⇒“a bb c=”, ∴“a bb c=”是“a ,b ,c 成等比数列”的必要条件,故③正确. 综上所述,“a ,b ,c 成等比数列”的必要条件的序号为:①③. 故答案为:①③.16.已知抛物线()2:20C x py p =>的焦点为F ,抛物线C 的准线与y 轴交于点A ,点)0My 在抛物线C 上,074y MF =,则MAF △的面积为______.【分析】由抛物线的性质以及07||4y MF =,可得p 的值,进而解出三角形MFA △的面积. 【详解】解:由抛物线的定义及其性质可知,007||24y p MF y =+=,023py ∴=,∴2223p p =⨯, 32p ∴=,即23x y =, 3(0,)4A ∴-,M 1),3(0,)4F ,∴1322MFAS=⨯,三、解答题 17.求解下列问题: (1)解不等式3521x x->+; (2)已知1a >,0b >,2a b +=,求141a b+-的最小值. 【答案】(1)()(),17,∞∞--⋃+ (2)9【分析】(1)根据分式不等式的求法求得正确答案. (2)利用基本不等式求得正确答案. 【详解】(1)不等式3521x x->+可化简为701x x ->+, 即()()710x x -+>,解得1x <-或7x >. 故原不等式的解集为()(),17,∞∞--⋃+.(2)∵2a b +=,∴()11a b -+=,且10a ->,0b >,∴()()4114141559111a b a b a b a b a b -⎛⎫+=-++=++≥+=⎡⎤ ⎪⎣⎦---⎝⎭, 当且仅当()411a ba b-=-,即43a =,23b =时等号成立.故141a b+-的最小值为9.18.在ABC sin sin 2C c A =.(1)求角A 的大小;(2)若a =b =ABC 的面积. 【答案】(1)π6A =【分析】(1)根据题意,结合正弦定理和二倍角的正弦公式即可求解;(2)结合(1)的结论,利用余弦定理求出5c =或1c =,然后利用三角形面积公式即可求解.【详解】(1sin sin 2C c A =,sin 2sin sin cos A C C A A =,因为,(0,π)A C ∈,所以sin 0A ≠,sin 0C ≠,则有cos A = 又0πA <<,所以π6A =.(2)因为a =b =,由(1)知:π6A =, 在ABC 中,由余弦定理可得:2222cos a b c bc A =+-,即(2222c =+-⨯, 化简得2650c c -+=,解得5c =或1c =(经检验符合题意),当1c =时,111sin 1222ABC S bc A ==⨯⨯=△当5c =时,111sin 5222ABC S bc A ==⨯⨯=△19.已知数列{}n a 满足11a =,1431n n a a n +=+-,n n b a n =+. (1)证明:数列{}n b 为等比数列; (2)求数列{}n a 的前n 项和. 【答案】(1)见证明;(2)()221141322n n n --- 【分析】(1)利用等比数列的定义可以证明;(2)由(1)可求n b 的通项公式,结合n n b a n =+可得n a ,结合通项公式公式特点选择分组求和法进行求和.【详解】证明:(1)∵n n b a n =+,∴111n n b a n ++=++. 又∵1431n n a a n +=+-,∴()1143111n n n n n n a n n b a n b a n a n+++-++++==++()44n n a n a n +==+. 又∵111112b a =+=+=,∴数列{}n b 是首项为2,公比为4的等比数列.解:(2)由(1)求解知,124n n b -=⨯,∴124n n n a b n n -=-=⨯-,∴()()211221412(1444)(123)142n n n n n n S a a a n --+=++⋯+=++++-++++=--()221141322n n n =---. 【点睛】本题主要考查等比数列的证明和数列求和,一般地,数列求和时要根据数列通项公式的特征来选择合适的方法,侧重考查数学运算的核心素养.20.已知过抛物线()2:20C y px p =>的焦点,C 于()11,A x y ,()()2212,B x y x x <两点,16AB =.(1)求抛物线C 的方程;(2)O 为坐标原点,D 为C 上一点,若OD OA OB λ=+,求λ的值. 【答案】(1)212y x =;(2)0λ=或53λ=.【分析】(1)设直线AB 的方程2p y x⎫=-⎪⎭,与抛物线联立,由于直线AB 过焦点,故121622A p px x B =++=+,代入即得解;(2)设()33,D x y ,由OD OA OB λ=+,可得)331931x y λλ=+⎧⎪⎨=-⎪⎩,代入抛物线方程即得解【详解】(1)直线AB 的方程可表示为2p y x ⎫=-⎪⎭,与抛物线方程22y px =联立可得方程组222y pxp y x ⎧=⎪⎨⎫=-⎪⎪⎭⎩, 消去y 得22122030x px p -+=,解得16px =,232p x =.由于直线AB 过焦点,故121622A p p x x B =++=+, 得31626p p p ++=,解得6p , 所以抛物线C 的方程为212y x =.(2)由(1)知()1,23A -,()9,63B .设()33,D x y ,由OD OA OB λ=+,得()()()33,1,239,63x y λ=-+,所以()33192331x y λλ=+⎧⎪⎨=-⎪⎩. 因为点D 在C 上,所以()()212311291λλ-=+,化简得2350λλ-=,解得0λ=或53λ=. 21.在如图所示的几何体中,四边形ABCD 为矩形,AF ⊥平面ABCD ,EF AB ∥,2AD =,21AB AF EF ===,点P 为DF 的中点,请用空间向量知识解答下列问题:(1)求证:BF ∥平面APC ;(2)求直线DE 与平面APC 所成角的正弦值.【答案】(1)证明见解析(2)102163【分析】(1)证明BF ⊥平面APC 的法向量m 即可求解;(2)根据线面角的正弦公式带入即可求解.【详解】(1)证明:易知AB ,AD ,AF 两两相互垂直,∴以A 为坐标原点,AB ,AD ,AF 所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系,则()0,0,0A ,()1,0,0B ,()1,2,0C ,()0,2,0D ,1,0,12E ⎛⎫ ⎪⎝⎭,()0,0,1F ,10,1,2P ⎛⎫ ⎪⎝⎭, ∴()1,0,1BF =-,10,1,2AP ⎛⎫= ⎪⎝⎭,()1,2,0AC =, 设平面APC 的一个法向量为(),,m x y z =,则00m AP m AC ⎧⋅=⎪⎨⋅=⎪⎩, 即10220y z x y ⎧+=⎪⎨⎪+=⎩,取1y =,解得212x y z =-⎧⎪=⎨⎪=-⎩. 故平面APC 的法向量为()2,1,2m =--,易知0BF m ⋅=,则BF m ⊥,又BF 平面APC ,∴BF ∥平面APC .(2)1,2,12DE ⎛⎫=- ⎪⎝⎭, 设直线DE 与平面APC 所成角为θ, 则51021sin cos ,2194DE mDE m DE m θ-⋅====⋅⋅故直线DE 与平面APC 1021. 22.已知1F ,2F 分别为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,M 为C 上的动点,其中M 到1F的最短距离为1,且当12MF F △的面积最大时,12MF F △恰好为等边三角形.(1)求椭圆C 的标准方程;(2)斜率为k 的动直线l 过点2F ,且与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点P ,那么,2||PF AB 是否为定值?若是,请证明你的结论;若不是,请说明理由. 【答案】(1)22143x y +=;(2)2||PF AB 为定值,证明见解析 【分析】(1)当点M 在椭圆的左顶点时,M 到1F 的距离最短,可得1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,可得2a c =,从而可求出,,a b c ,即可求出椭圆C 的标准方程;(2)易知直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得到关于x 的一元二次方程,结合韦达定理,可求得AB 的中点的坐标,从而可得到线段AB 的垂直平分线的方程,令0y =,可求出点P 的坐标,从而可得到2PF 的表达式,然后根据弦长公式AB =,可求出AB 的表达式,从而可求得2||PF AB 为定值,经验证当0k =时,2||PF AB 为相同的定值. 【详解】(1)由题意,当点M 在椭圆的左顶点时,M 到1F 的距离最短,则1a c -=,当点M 在椭圆的上顶点(或下顶点)时,12MF F △的面积最大,此时12MF F △为等边三角形,则2a c =,联立22212a c a c a b c ⎧-=⎪=⎨⎪=+⎩,解得2,1,a c b ===故椭圆C 的方程为22143x y +=. (2)2||PF AB 为定值. 证明:由题意可知,动直线l 的斜率存在,设其方程为(1)y k x =-,联立22143(1)x y y k x ⎧+=⎪⎨⎪=-⎩,得()()2222348430k x k x k +-+-=. 设()11,A x y ,()22,B x y ,则2122834k x x k +=+,()21224334k x x k -=+, 设AB 的中点为()00,Q x y ,则212024234x x k x k +==+,()0023134k y k x k -=-=+.当0k ≠时,线段AB 的垂直平分线的方程为2223143434k k y x k k k ⎛⎫--=-- ⎪++⎝⎭, 令0y =,得2234k x k =+,即22,034k P k ⎛⎫ ⎪+⎝⎭, 所以()222223113434k k PF k k +=-=++.AB()2212134k k +=+. 所以()()2222231134||412134k PF k AB k k ++==++. 当0k =时,l 的方程为0y =, 此时,24AB a ==,21PF c ==,21||4PF AB =. 综上,2||PF AB 为定值. 【点睛】方法点睛:求定值问题,常见的方法:(1)从特殊入手,求出定值,再证明这个值与变量无关;(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.。
2022年河北省唐山市丰润区第二中学高二数学理上学期期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 如图所示,要测量底部不能到达的某电视塔的高度,在塔的同一侧选择、两观测点,且在、两点测得塔顶的仰角分别为、,在水平面上测得,、两地相距,则电视塔的高度是()A. B. C. D.参考答案:D2. 已知函数f(x)=asinx+bx3+1(a,b∈R),f′(x)为f(x)的导函数,则f+f′=()A.2017 B.2016 C.2 D.0参考答案:C【考点】63:导数的运算.【分析】根据函数的解析式求出函数的导数,结合函数的奇偶性建立方程关系进行求解即可.【解答】解:函数的导数f′(x)=acosx+3bx2,则f′(x)为偶函数,则f′=f′=0,由f(x)=asinx+bx3+1得f=asin2016+b?20163+1,f(﹣2016)=﹣asin2016﹣b?20163+1,则f=2,则f+f′=2+0=2,故选:C3. 设、都是非零向量,则“”是“、共线”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件参考答案:C4. “”是“”的A.充分而不必要条件B. 必要而不充分条件C. 充要条件D. 既不充分也不必要条件参考答案:B5.参考答案:D略6. 甲、乙、丙、丁四位同学各自对A、B两变量的线性相关性做试验,并用回归分析方法分别求得相关系数r与残差平方和m如下表:则哪位同学的试验结果体现A、B两变量有更强的线性相关性() A.甲 B.乙 C.丙 D.丁参考答案:D略7. 甲、乙两支女子曲棍球队在去年的国际联赛中,甲队平均每场进球数为3.2,全年比赛进球个数的标准差为3;乙队平均每场进球数为1.8,全年比赛进球个数的标准差为0.3.下列说法正确的个数为()①甲队技术比乙队好②乙队发挥比甲队稳定③乙队几乎每场都进球④甲队表现时好时坏A、1B、2C、3D、4参考答案:D8. 下列说法正确的是()A.归纳推理,演绎推理都是合情合理B.合情推理得到的结论一定是正确的C.归纳推理得到的结论一定是正确的D.合情推理得到的结论不一定正确参考答案:D【考点】F5:演绎推理的意义.【分析】根据演绎推理和合情推理的定义判断即可.【解答】解:合情推理包含归纳推理和类比推理,所谓归纳推理,就是从个别性知识推出一般性结论的推理.其得出的结论不一定正确,故选:D9. 从装有2支铅笔和2支钢笔的文具袋内任取2支笔,那么互斥而不对立的两个事件是()A.恰有1支钢笔;恰有2支铅笔。
高二上学期数学(理)期末试题考试时间90分,满分100分一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,把答案填在答卷相应空格中)1.“1=a ” 是“直线()02=++y x a a 和直线012=++y x 互相平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.设b a ,为两条直线,βα,为两个平面,下列四个命题中,真命题为( ) A .若b a ,与α所成角相等,则b a // B .若βαβα//,//,//b a ,则b a // C .若b a b a //,,βα⊂⊂,则βα// D .若βαβα⊥⊥⊥,,b a ,则b a ⊥A .22B .16C .14D .125.若直线b x y +=与曲线262x x y --=有公共点,则b 的取值范围是( )A .]231,231[+---B .]2,231[--C .]231,2[+-D .]2,4[-6. 已知三棱柱111C B A ABC -的侧棱与底面边长都相等,1A 在底面ABC 上的射影为BC 的中点,则异面直线AB 与1CC 所成的角的余弦值为( )A .43 B .45 C .47 D .437. 设抛物线x y 42=的焦点为F ,过点⎪⎭⎫ ⎝⎛0,21M 的直线与抛物线相交于A ,B 两点,与抛A .54 B .58C .47 D .28. 已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm )可得 这个几何体的体积为( ) A .331cm B .332cm C .334cm D .338cm10.已知A ,B 是椭圆()012222>>=+b a by a x 长轴的两个顶点,N M ,是椭圆上关于x 轴对二、填空题(本大题共6小题,每小题4分,共24分)11.若命题“R x ∈∃,使得()0112<+-+x a x ”是假命题,则实数a 的取值范围是________.13.已知双曲线()0,012222>>=-b a by a x 的一条渐近线方程是x y 3=,它的一个焦点与抛物线x y 162=的焦点相同,则双曲线的方程为 .14. 椭圆中心为坐标原点,焦点位于x 轴上,B A ,分别为右顶点和上顶点,F 是左焦点;当AB BF ⊥时,此类椭圆称为“黄金椭圆”,其离心率为215-.类比“黄金椭圆”可推算出“黄金双曲线”的离心率为________.15.三棱锥ABC S -中,90=∠=∠SCA SBA , △ABC 是斜边a AB =的等腰直角三角形, 则以下结论中: ① 异面直线SB 与AC 所成的角为90; ② 直线⊥SB 平面ABC ; ③ 面⊥SBC 面SAC ; ④ 点C 到平面S A B 的距离是2a. 其中正确结论的序号是 _______________ .16. 如图,在长方形ABCD 中,3=AB ,1=BC ,E 为线段DC 上一动点,现将AED ∆沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为三、解答题(本大题共4小题,共36分,解答应写出文字说明,证明过程或演算步骤) 17. (本小题满分8分)已知命题:P 函数()12+=x xx f 在区间()12,+a a 上是单调递增函数;命题:Q 不等式()()042222<--+-x a x a 对任意实数x 恒成立.若Q P ∨是真命题,求实数a 的取值范围.18.(本小题满分8分)某营养师要求为某个儿童预订午餐和晚餐.已知一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C.另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物和42个单位的蛋白质和54个单位的维生素C.如果一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?19.(本小题满分8分)在直三棱柱111C B A ABC -中,90=∠ACB ,11===AA BC AC ,E D ,分别为棱AB 、BC 的中点,M 为棱1AA 上的点。
哈工大附中2021~2022学年度第一学期期末考试试题高二理科数学一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知复数,则的虚部为( )A. B. C. D. 【答案】C 【解析】【分析】利用复数的除法运算化简,再由共轭复数的定义即可得,进而可得虚部.【详解】,所以,的虚部为,故选:C.2. 已知直线和直线互相平行,则等于( )A. 2 B. C. D. 0【答案】C 【解析】【分析】根据题意可得,即可求出.【详解】显然时,两直线不平行,不符合,则,解得.经检验满足题意故选:C.3. 设是两条不同的直线,是两个不同的平面,且,则下列命题正确的是( )① 若 ,则 ②若,则 ③若,则 ④若,则13i1iz +=-z 122-1-z z ()()()()13i 1i 13i 24i12i 1i 1i 1i 2z +++-+====-+--+12i z =--z 2-10x ay +-=410ax y ++=a 2-2±1141a a -=≠0a =1141a a -=≠2a =±,m n ,αβ,m n αβ⊂⊂//,//m n βα//αβm β⊥αβ⊥//αβ//,//m n βααβ⊥,m n βα⊥⊥A. ①③B. ①④C. ②③D. ②④【答案】C 【解析】【分析】① 面面平行需要满足面内两条相交直线分别平行另外一个平面;②面内的一条直线垂直另外一个平面,则线面垂直;③面面平行,面内的直线平行另外一个平面; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直.【详解】① 面面平行需要满足面内两条相交直线分别平行另外一个平面, 不在同一平内,有可能平行,所以不正确;②面内的一条直线垂直另外一个平面,则线面垂直,所以命题正确;③面面平行,面内的直线平行另外一个平面,所以命题正确; ④面面垂直面内的直线垂直于两个平面的交线,则线面垂直,没出与交线垂直,所以命题不正确.故选:C.4. 已知双曲线:(的渐近线方程为( )A. B. C. D. 【答案】A【解析】【分析】先根据双曲线的离心率得到,然后由,得,即为所求的渐近线方程,进而可得结果.【详解】∵双曲线的离心率,∴.又由,得,即双曲线()的渐近线方程为,∴双曲线的渐近线方程为.故选:A,m n C 22221x y a b-=0,0a b >>C 2y x =±y =12y x =±y x=±2b a =22220x y a b-=b y x a =±c e a ===2ba=22220x y a b-=b y x a =±22221x y a b-=0,0a b >>b y x a =±2y x =±5. 已知函数,则曲线在点处的切线与坐标轴围成的三角形的面积是( )A.B.C. D. 【答案】B 【解析】【分析】根据导数的几何意义,求出切线方程,求出切线和横截距a 和纵截距b,面积为.【详解】由题意可得,所以,则所求切线方程为.令,得;令,得.故所求三角形的面积为.故选:B6. 若方程表示椭圆,则下面结论正确的是( )A. B. 椭圆的焦距为C. 若椭圆的焦点在轴上,则 D. 若椭圆的焦点在轴上,则【答案】C 【解析】【分析】利用椭圆方程与椭圆位置特征逐项分析、计算即可判断作答.【详解】因方程表示椭圆,则有,,且,即,A 错误;2()e (1)x f x x =++()y f x =(0,(0))f 12231212ab ()()()02e 21xf f x x '=,=++()03f '=32y x =+0x =2y =0y =23x -=1222233⨯⨯=22191x y k k +=--C ()1,9k ∈C C x ()1,5k ∈C x ()5,9k ∈90k ->10k ->91k k -≠-()()1,55,9k ∈焦点在轴上时,,解得,D 错误,C 正确;焦点在轴上时,则,焦点在轴上时,,B错误. 故选:C7. 已知抛物线的焦点为F ,准线为,过点F与抛物线C 交于点M (M 在x 轴的上方),过M 作于点N ,连接交抛物线C于点Q ,则( )A.B.C. 3D. 2【答案】D 【解析】【分析】设出直线,与抛物线联立,可求出点坐标,在利用抛物线的定义可得,再利用抛物线的对称性求出,则可求.【详解】如图:相关交点如图所示,由抛物线,得 ,则,与抛物线联立得,即,解得x 910k k ->->()1,5k ∈x ()291102c k k k =---=-y ()219210c k k k =---=-2:2(0)C y px p =>l l 'MN l ⊥NF ||||=NQ QF MF M 2M pMN NF MF x ∴===+FQ ||||NQ QF 2:2(0)C y px p =>(,0)2pF :)2p MF y x =-22y px =22122030x px p -+=()()6230x p x p --=3,26M A p p x x ==,60MN l MFx ︒⊥∠=, 又则为等边三角形,,由抛物线的对称性可得,故选:D.8. 若点P 是曲线上任意一点,则点P 到直线的最小距离为( )A. 0B.C.D.【答案】D 【解析】【分析】由导数的几何意义求得曲线上与直线平行的切线方程的切线坐标,求出切点到直线的距离即为所求最小距离.【详解】点是曲线上的任意一点,设,令,解得1或(舍去),,∴曲线上与直线平行的切线的切点为,点到直线的最小距离故选:D.二、多选题(本题共4小题,每小题5分,共20分;在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得2分)9. 函数的导函数的图象如图所示,则下列说法正确的( )60NMF ︒=∴∠MN MF=NMF V 22M pMN NF MF x p ∴===+=60OFA NFO ︒=∠=∠ 6Q A p x x ==24,,6233p p p p QF NQ NF QF ∴=+=∴=-=||2||NQ QF ∴=2ln y x x =-1y x =-121y x =- P 2ln y x x =-()1,,2(0)P x y y x x x∴=->'121y x x'=-=x =12x =-1x ∴=1y x =-()1,1P P 1y x =-min d ()y f x =A. 为函数的单调递增区间B. 为函数的单调递减区间C. 函数在处取得极小值D. 函数在处取得极大值【答案】ABC 【解析】【分析】利用导数和函数的单调性之间的关系,以及函数在某点取得极值的条件,即可求解,得到答案.【详解】由题意,函数的导函数的图象可知:当时,,函数单调递减;当时,,函数单调递增;当时,,函数单调递减;当时,,函数单调递增;所以函数f (x )单调递减区间为:,,递增区间为,,且函数在和取得极小值,在取得极大值.故选:ABC.10. 已知曲线:,则( )A. 时,则的焦点是,B. 当时,则的渐近线方程为C. 当表示双曲线时,则的取值范围为D. 存在,使表示圆()1,3-()y f x =()3,5()y f x =()y f x =5x =()y f x =0x =()y f x =1x <-()0f x '<()f x 13x -<<()0f x '>()f x 35x <<()0f x '<()f x 5x >()0f x '>()f x (),1-∞-(3,5)(1,3)-(5,)+∞()f x 1x =-5x =3x =C 22142x y m m+=-+2m =C (1F (20,F 6m =C 2y x =±C m 2m <-m C【答案】ABD 【解析】【分析】AB 选项,代入的值,分别得出是什么类型的曲线,进而作出判断;C 选项,要想使曲线表示双曲线要满足;D 选项,求出曲线表示圆时m 的值.【详解】当时,曲线:,是焦点在y 轴上的椭圆,且,所以交点坐标为,,A 正确;当时,曲线:,是焦点在在y 轴上的双曲线,则的渐近线为,B 正确;当表示双曲线时,要满足:,解得:或,C 错误;当,即时,,表示圆,D 正确故选:ABD11. 已知圆和圆相交于、两点,下列说法正确的为( )A. 两圆有两条公切线 B. 直线的方程为C. 线段的长为D. 圆上点,圆上点,的最大值为【答案】ABD 【解析】【分析】由给定条件判断圆O 与圆M 的位置关系,再逐项分析、推理、计算即可作答.【详解】圆的圆心,半径,圆的圆心,,,于是得圆O 与圆M 相交,圆O 与圆M 有两条公切线,A 正确;由得:,则直线的方程为,B 正确;圆心O 到直线:的距离,则,C 不正确;m C ()()420m m -+<C 2m =C 22124x y +=2422c =-=(1F(20,F6m =C 22182-=y x C2yx =±C ()()420m m-+<4m>2m <-42m m -=+1m =223x y +=22:4O x y +=22:4240M x y x y +-+=+A B AB 24y x =+AB 65O E M F EF 3+22:4O x y +=(0,0)O 12r =22:(2)(1)1M x y ++-=(2,1)M -21r =||OM ==1212||r r OM r r -<<+222244240x y x y x y ⎧+=⎨++-+=⎩4280x y -+=AB 24y x =+AB 240x y -+=d ==||AB ===,当且仅当点E ,O ,M ,F 四点共线时取“=”,如图,因此,当点E ,F 分别是直线OM 与圆O 交点,与圆M 交点时,,D 正确.故选:ABD12. 已知椭圆:上有一点,、分别为左、右焦点,,的面积为,则下列选项正确的是( )A. 若,则;B. 若,则满足题意的点有四个;C. 椭圆内接矩形周长的最大值为20;D. 若为钝角三角形,则;【答案】BCD 【解析】【分析】由题可得,,结合选项利用面积公式可得可判断ABD ,设椭圆内接矩形的一个顶点为,利用辅助角公式可得周长的范围可判断C.【详解】∵椭圆:,∴,∴,设,则,,若,则,所以不存在,故A错误;12||||||||||||||3EF EO OF EO OM MF r OM r ≤+≤++=++=+E 'F 'max ||3EF =C 221169x y +=P 1F 2F 12F PF θ∠=12PF F △S S 9=90θ=︒3S =P C 12PF F △S ⎛∈ ⎝4,3a b ==c =11(,)P x y 1y C (4cos ,3sin )(02πααα<<C 221169x y +=4,3a b ==c =12128,PF PF F F +==11(,)P x y 12112S F F y =⋅⋅13y ≤S 9=13y =>12PF F △若,则,可得,故满足题意的点有四个,故B正确;设椭圆内接矩形的一个顶点为,则椭圆内接矩形周长为其中,由得,∴椭圆内接矩形周长的范围为,即,故C 正确;由上知不可能为钝角,由对称性不妨设是钝角,先考虑临界情况,当为直角时,易得,此时当为钝角三角形时,,所以,故D 正确.故选:BCD三、填空题(本大题共4小题,每小题5分,共20分)13. 椭圆:的离心率为_____﹒【解析】【分析】根据椭圆的几何性质求解即可﹒【详解】∵椭圆为,∴,∴﹒﹒14. 已知两点和则以为直径的圆的标准方程是__________.3S =11y y ==1x =P C (4cos ,3sin )(0)2πααα<<C 4(4cos 3sin )20sin(),αααϕ+=+43sin ,cos 55ϕϕ==02πα<<(,)2παϕϕϕ+∈+C (20sin(),20sin ]22ππϕ+(12,20]θ12PF F ∠12PF F ∠194y =12112S F F y =⋅⋅=12PF F △194y <S ⎛∈ ⎝C 22132y x +=22132y x +=1a c ===c e a ==()4,9A ()6,3B AB【答案】【解析】【分析】根据的中点是圆心,是半径,即可写出圆的标准方程.【详解】因为和,故可得中点为,又,则所求圆的标准方程是:.故答案为:.15. 已知是抛物线上一点,是抛物线的焦点,若点满足,则的取值范围是______.【答案】【解析】【分析】根据抛物线的解析式,得出焦点坐标,且由题意可知,进而根据向量的坐标运算求出,再根据向量的数量积求得,从而可求出的取值范围.【详解】解:由题可知,抛物线的焦点坐标,且,由于是抛物线上一点,则,,,,且,解得:,所以的取值范围是.故答案为:.()()225610x x -+-=AB 2AB ()4,9A ()6,3B AB ()5,6AB ==()()225610x x -+-=()()225610x x -+-=()00,M x y 24y x =F ()1,0P -0MF MP ⋅< 0x )2⎡-⎣()1,0F ()200040y x x =≥()()00001,,1,MF x y MP x y →→=--=---200410MF MP x x →→⋅=+-<0x 24y x =()1,0F()1,0P -()00,M x y 24y x =()200040y xx =≥()()00001,,1,MF x y MP x y →→∴=--=---()()2222000000011141MF MP x x y x y x x →→∴⋅=---+=+-=+-0MF MP →→⋅< 200410x x ∴+-<00x ≥002x ≤<-0x )2⎡-⎣)2⎡-⎣16. 已知函数,若,且恒成立,则实数a 的取值范围为_________.【答案】【解析】【分析】由题意得到,由,得到,所以,构造函数,利用导数求出的最小值即可.【详解】由题可知当时,函数单调递增,,当时,,设,则必有,所以,所以,所以,设,则,则时,,函数单调递减,当时,,函数单调递增,所以,所以的最小值为.所以恒成立,即,所以.故答案为:【点睛】本题主要考查利用导数解决双变量问题,将一个变量由另一个变量表示,构造新的函数即可求解,注意变量的范围,考查学生分析转化能力,属于中档题.四、解答题(本大题共6小题,共70分,解答应写出文字说明,说明过程或演算步骤)17. 在中,角所对的边分别为.(1)求角;(2)若,的面积为,求.1ln ,1(){11,122x x f x x x +≥=+<12x x ≠()()12122,2f x f x x x a +=+-≥12ln 2a ≤-121x x <<12()()2f x f x +=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>()g x 1≥x ()f x min ()(1)1f x f ==1x <()1f x <12x x <121x x <<1212121113()1(ln ln 2222)2f x f x x x x x +=+++=++=1212ln x x =-122212ln x x x x +=-+()12ln (1)g x x x x =-+>22()1x g x x x+'-=-=12x <<()0g x '<()g x 2x >()0g x '>()g x min ()(2)g x g ==12ln2232ln2-+=-12x x +32ln2-122x x a +-≥122a x x ≤+-12ln 2a ≤-12ln 2a ≤-ABC V ,,A B C ,,abc cos sin C c B =C 2b =ABC V c【答案】(1)(2)【解析】【分析】(1),进而得在求解即可得答案;(2)由面积公式得,进而根据题意得,,再根据余弦定理求解即可.【小问1详解】,,因为,,即因为,所以.小问2详解】解:因为的面积为,,所以,即,因为,所以,所以,解得.所以.18. 1.已知圆:,其中.(1)如果圆与圆外切,求的值;(2)如果直线与圆相交所得的弦长为的值.【答案】(1)20 (2)8【解析】【分析】(1)两圆外切,则两圆的圆心距等于两圆半径之和,列出方程,进行求解;(2)先用点到直线距离公式,求出圆的圆心到直线的距离,再用垂径定理列出方程,求出的值.【3C π=c =cos sin sin B C C B =tan C =8ab =2b =4a =cos sin C c B =cos sin sin B C C B =()0,,sin 0B B π∈≠sin C C =tan C =()0,C π∈3C π=ABC V 3C π=1sin 2S ab C ===8ab =2b =4a =2222201cos 2162a b c c C ab +--===c =c =C 22(3)(4)36x y m -+-=-m ∈R C 221x y +=m 30x y +-=C m C 30x y +-=m【小问1详解】圆的圆心为,若圆与圆外切,故两圆的圆心距等于两圆半径之和,【小问2详解】圆的圆心到直线的距离为,由垂径定理得:,解得:19. 书籍是精神世界的入口,阅读让精神世界闪光,阅读逐渐成为许多人的一种生活习惯,每年4月23日为世界读书日.某研究机构为了解某地年轻人的阅读情况,通过随机抽样调查了100位年轻人,对这些人每天的阅读时间(单位:分钟)进行统计,得到样本的频率分布直方图,如图所示.(1)根据频率分布直方图,估计这100位年轻人每天阅读时间的平均数(单位:分钟);(同一组数据用该组数据区间的中点值表示)(2)采用分层抽样的方法从每天阅读时间位于分组,和的年轻人中抽取5人,再从中任选2人进行调查,求其中至少有1人每天阅读时间位于的概率.【答案】(1); (2).【解析】【分析】(1)由频率之和为1求参数a ,再根据直方图求均值.C ()3,4C 221x y +=1=+20m =C 30x y +-=d 222d =-8m =x [)50,60[)60,70[)80,90[)80,9074710(2)由分层抽样的比例可得抽取的5人中,和分别为:1人,2人,2人,再应用列举法求古典概型的概率即可.【小问1详解】根据频率分布直方图得:∴,根据频率分布直方图得:,【小问2详解】由,和的频率之比为:1∶2∶2,故抽取的5人中,和分别为:1人,2人,2人,记的1人为,的2人为,,的2人为,故随机抽取2人共有,,,,,,,,,10种,其中至少有1人每天阅读时间位于的包含7种,故概率.20. 如图,在四棱锥中,底面为菱形,平面,为的中点,为的中点.(1)求证:平面平面;(2)若,求平面与平面夹角的余弦值.【答案】(1)证明见解析[)50,60[)60,70[)80,90()0.0050.0120.045101a +++⨯=0.02a =()550.01650.02750.045850.02950.00510x =⨯+⨯+⨯+⨯+⨯⨯74=[)50,60[)60,70[)80,90[)50,60[)60,70[)80,90[)50,60a [)60,70b c [)80,90A B(),a b (),a c (),a A (),a B (),b c (),b A (),b B (),c A (),c B (),A B [)80,90710P =P ABCD -ABCD PA ⊥,60ABCD ABC ∠= E BC F PC AEF ⊥PAD 2PA AB ==AEF CEF(2)【解析】【分析】(1)通过证明和得平面,再利用面面垂直判定定理求解;(2)建立空间直角坐标系求两个平面的法向量代入二面角公式求解.【小问1详解】因为底面是菱形,,所以△为等边三角形,所以平分,所以,所以,又因为平面,所以,且,所以平面,又平面,所以平面平面;【小问2详解】据题意,建立空间直角坐标系如图所示:因为,所以,设平面一个法向量为,平面一个法向量为,因为,则,即,取,则,,所以,又因为,则,即,取,则,所以,所以AE AD ⊥PA AE ⊥AE ⊥PAD ABCD 60ABC ∠=︒ABC AE BAC ∠()6018060902EAD ︒∠=︒-︒-=︒AE AD ⊥PA ⊥ABCD PA AE ⊥PA AD A ⋂=AE ⊥PAD AE ⊂AEF AEF ⊥PAD 2PA AB ==())())0,0,0,,0,0,2,,A EP C1,12⎫⎪⎪⎭F AEF ()1111,,n x y z = EFC ()2222,,n x y z =)1,,12AE AF ⎫==⎪⎪⎭,01100AE n AF n ⎧⋅=⎪⎨⋅=⎪⎩1111020y z =++=12y =10x =11z =-()10,2,1n =-()10,1,,,12EC EF ⎛⎫== ⎪ ⎪⎝⎭0 2200EC n EF n ⎧⋅=⎪⎨⋅=⎪⎩ 22220102y x y z =⎧⎪⎨++=⎪⎩22x =220,y z ==(2n =u u r121212cos ,n n n n n n ⋅<>===⋅由图形知,二面角为钝角,故二面角夹角的余弦值为21. 已知椭圆的中心是坐标原点,左右焦点分别为,设是椭圆上一点,满足轴,,椭圆(1)求椭圆的标准方程;(2)过椭圆左焦点且不与轴重合的直线与椭圆相交于两点,求内切圆半径的最大值.【答案】(1)(2)【解析】【分析】(1)利用是椭圆上一点,满足轴,.列出方程组,求出,即可得到椭圆方程.(2)由(1)可知,设直线为,,联立直线与椭圆方程,消元列出韦达定理,即可得到,从而得到,再根据,即可得到,再利用基本不等式求出最值即可;【小问1详解】()2222:10x y C a b a b+=>>O 12,F F P C 2PF x ⊥212PF =C C C 1F x l ,A B 2ABF V 2214x y +=12P C 2PF x ⊥21||2PF =a b 28ABF C =V l x my =-()11,A x y ()22,B x y 12y y -2121212ABF S F F y y =⋅-V 2182ABF S R =⨯⨯V R =解:由题意是椭圆上一点,满足轴,所以,解得所以.【小问2详解】解:由(1)可知,,设直线为,消去得,设,,则,所以所以,令内切圆的半径为,则,即,令,则,当且仅当,,即时等号成立,所以当时,取得最大值;22. 已知函数,.(1)当时,求函数在处的切线方程;(2)讨论函数的单调性;(3)当函数有两个极值点,,且.证明:P C 2PF x ⊥21||2PF =222212c a b a c a b⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩21a b c ⎧=⎪=⎨⎪=⎩2214x y +=()1F 222112248ABF C AB AF BF AF BF AF BF a =++=+++==V l x my =-2214x my x y ⎧=-⎪⎨+=⎪⎩x ()22410m y +--=()11,A x y ()22,B x y 12y y +=12214y y m -=+12y y -===2121212ABFS F F y y =⋅-=V R 2182ABF S R =⨯⨯V R =t =12R ==≤=3t t =t =m =m =R 12()21ln 2f x x ax x =-+-a R ∈1a =()f x 1x =()f x ()f x 1x 2x 12x x <()()124213ln 2f x f x -≤+【答案】(1) (2)答案见解析 (3)证明见解析【解析】【分析】(1)根据导数的几何意义进行求解即可;(2)根据一元二次方程根判别式,结合导数的性质进行分类讨论求解即可;(3)根据极值定义,给合(2)的结论,构造新函数,再利用导数的性质, 新函数的单调性进行证明即可.【小问1详解】当时,.∴.,..∴在处的切线方程.小问2详解】的定义域.;①当时,即,,此时在单调递减;②当时,即或,(i )当时,∴在,单调递减,在单调递增.(ii )当时,的的【2230x y +-=1a =()21ln 2f x x x x =-+-()11f x x x'=-+-()'11f =-()111221f =-+=()()11122302y x x y -=--⇒+-=()f x 1x =2230x y +-=()f x ()0,∞+()211x ax f x x a x x-+'=-+-=-240a -≤22a -≤≤()0f x '≤()f x ()0,∞+240a ->2a >2a <-2a >()f x ⎛ ⎝⎫+∞⎪⎪⎭()f x 2a <-∴单调递减;综上所述,当时,在单调递减;当时,在,单调递减,在单调递增.【小问3详解】由(2)知,当时,有两个极值点,,且满足:,由题意知,.∴令.则.在单调递增,在单调递减.∴.即.在()f x ()0,∞+2a ≤()f x ()0,∞+2a >()fx ⎛ ⎝⎫+∞⎪⎪⎭()fx 2a >()f x 1x 2x 12121x x ax x +=⎧⎨⋅=⎩1201x x <<<()()221211122211424ln 2ln 22f x f x x ax x x ax x ⎛⎫⎛⎫-=-+---+- ⎪ ⎪⎝⎭⎝⎭22111222244ln 22ln x ax x x ax x =-+-+-+()()221112122122244ln 22ln x x x x x x x x x x =-++-+-++2222226ln 2x x x =-++()()2226ln 21g x x x x x=-++>()3462g x x x x'=--+=()g x ()+∞()2max 213ln 2g x g==-++=+()()124213ln 2f x f x -≤+。
2022-2023学年四川省内江市高二上学期期末考试数学(理)试题一、单选题1.某个年级有男生180人,女生160人,用分层抽样的方法从该年级全体学生中抽取一个容量为68的样本,则此样本中女生人数为( ) A .40 B .36 C .34 D .32【答案】D【分析】根据分层抽样的性质计算即可. 【详解】由题意得:样本中女生人数为1606832180160⨯=+.故选:D2.已知向量()3,2,4m =-,()1,3,2n =--,则m n +=( ) A .22 B .8 C .3 D .9【答案】C【分析】由向量的运算结合模长公式计算即可. 【详解】()()()3,2,41,3,22,1,2m n +=-+--=-- ()()2222123m n +=-+-+=故选:C3.如图所示的算法流程图中,第3个输出的数是( )A .2B .32C .1D .52【答案】A【分析】模拟执行程序即得.【详解】模拟执行程序,1,1A N ==,输出1,2N =;满足条件,131+=22A =,输出32,3N =;满足条件,31+=222A =,输出2,4N =;所以第3个输出的数是2. 故选:A.4.一个四棱锥的三视图如图所示,则该几何体的体积为( )A .8B .83C .43D .323【答案】B【分析】把三视图转换为几何体,根据锥体体积公式即可求出几何体的体积. 【详解】根据几何体的三视图可知几何体为四棱锥P ABCD -, 如图所示:PD ⊥平面ABCD ,且底面为正方形,2PD AD == 所以该几何体的体积为:1822233V =⨯⨯⨯=故选:B5.经过两点(4,21)A y +,(2,3)B -的直线的倾斜角为3π4,则y =( ) A .1- B .3-C .0D .2【答案】B【分析】先由直线的倾斜角求得直线的斜率,再运用两点的斜率进行求解.【详解】由于直线AB 的倾斜角为3π4, 则该直线的斜率为3πtan14k ==-, 又因为(4,21)A y +,(2,3)B -, 所以()213142y k ++==--,解得=3y -.故选:B.6.为促进学生对航天科普知识的了解,进一步感受航天精神的深厚内涵,并从中汲取不畏艰难、奋发图强、勇于攀登的精神动力,某校特举办以《发扬航天精神,筑梦星辰大海》为题的航天科普知识讲座.现随机抽取10名学生,让他们在讲座前和讲座后各回答一份航天科普知识问卷,这10名学生在讲座前和讲座后问卷答题的正确率如下图,下列叙述正确的是( )A .讲座前问卷答题的正确率的中位数小于70%B .讲座后问卷答题的正确率的平均数大于85%C .讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D .讲座前问卷答题的正确率的极差小于讲座后正确率的极差 【答案】B【分析】根据题意以及表格,可分别计算中位数、平均数、极差等判断、排除选项是否正确,从而得出答案.【详解】讲座前问卷答题的正确率分别为:60%,60%,65%,65%,70%,75%,80%,85%,90%,95%,中位数为70%75%72.5%70%2+=> ,故A 错误; 讲座后问卷答题的正确率的平均数为0.80.8540.920.951289.5%85%10+⨯+⨯++⨯=> ,故B 正确;由图知讲座前问卷答题的正确率的波动性大于讲座后正确率的波动性,即讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,故C 错误;讲座后问卷答题的正确率的极差为100%-80%=20%,讲座前正确率的极差为95%-60%=35%,20%<35%,故D 错误. 故选:B.7.两条平行直线230x y -+=和340ax y -+=间的距离为d ,则a ,d 分别为( )A .6a =,d =B .6a =-,d =C .6a =-,d =D .6a =,d =【答案】D【分析】根据两直线平行的性质可得参数a ,再利用平行线间距离公式可得d . 【详解】由直线230x y -+=与直线340ax y -+=平行, 得()()2310a ⨯---⨯=,解得6a =,所以两直线分别为230x y -+=和6340x y -+=,即6390x y -+=和6340x y -+=,所以两直线间距离d = 故选:D.8.若连续抛掷两次质地均匀的骰子,得到的点数分别为m ,n ,则满足2225+<m n 的概率是( ) A .12B .1336 C .49D .512【答案】B【分析】利用列举法列出所有可能结果,再根据古典概型的概率公式计算可得.【详解】解:设连续投掷两次骰子,得到的点数依次为m 、n ,两次抛掷得到的结果可以用(,)m n 表示,则结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6), (2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6), (4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6), (6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共有36种.其中满足2225+<m n 有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2),共13种,所以满足2225+<m n 的概率1336P =. 故选:B9.已知三条不同的直线l ,m ,n 和两个不同的平面α,β,则下列四个命题中错误的是( ) A .若m ⊥α,n ⊥α,则m //n B .若α⊥β,l ⊂α,则l ⊥β C .若l ⊥α,m α⊂,则l ⊥m D .若l //α,l ⊥β,则α⊥β【答案】B【分析】根据线面垂直的性质定理可知A 正确;根据面面垂直的性质定理可知B 不正确; 根据线面垂直的定义可知C 正确;根据面面垂直的判定可知D 正确.【详解】对A ,根据线面垂直的性质,垂直于同一平面的两条直线互相平行可知A 正确; 对B ,根据面面垂直的性质定理可知,若α⊥β,l ⊂α,且l 垂直于两平面的交线,则l ⊥β,所以B 错误;对C ,根据线面垂直的定义可知,C 正确;对D ,因为l //α,由线面平行的性质可知在平面α内存在直线//m l ,又l ⊥β,所以m β⊥,而m α⊂,所以α⊥β,D 正确. 故选:B .10.数学家欧拉在1765年提出定理:三角形的外心,重心,垂心依次位于同一直线上,这条直线后人称之为三角形的欧拉线.已知ABC ∆的顶点(0,0),(0,2),( 6.0)A B C -,则其欧拉线的一般式方程为( ) A .31x y += B .31x y -= C .30x y += D .30x y -=【答案】C【分析】根据题意得出ABC 为直角三角形,利用给定题意得出欧拉线,最后点斜式求出方程即可. 【详解】显然ABC 为直角三角形,且BC 为斜边, 所以其欧拉线方程为斜边上的中线, 设BC 的中点为D ,由(0,2),( 6.0)B C -, 所以()3,1D -,由101303AD k -==--- 所以AD 的方程为13y x =-,所以欧拉线的一般式方程为30x y +=. 故选:C.11.已知P 是直线l :x +y -7=0上任意一点,过点P 作两条直线与圆C :()2214x y ++=相切,切点分别为A ,B .则|AB |的最小值为( )A .14B .142C .23D .3【答案】A【分析】根据直线与圆相切的几何性质可知,当||PC 取得最小值时,cos ACP ∠最大,||AB 的值最小,当PC l ⊥时,||PC 取得最小值,进而可求此时||14AB =【详解】圆C 是以(1,0)C -为圆心,2为半径的圆,由题可知,当ACP ∠最小时,||AB 的值最小. ||2cos ||||AC ACP PC PC ∠==,当||PC 取得最小值时,cos ACP ∠最大,ACP ∠最小,点C 到直线l 的距离|8|422d -==,故当||42PC =时,cos ACP ∠最大,且最大值为24,此时||||14sin 2||44AB AB ACP AC ∠===,则||14AB =.故选:A12.如图所示,在长方体1111ABCD A B C D -中,111BB B D =,点E 是棱1CC 上的一个动点,平面1BED 交棱1AA 于点F ,下列命题错误的是( )A .四棱锥11B BED F -的体积恒为定值 B .存在点E ,使得1B D ⊥平面1BD EC .存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值D .对于棱1CC 上任意一点E ,在棱AD 上均有相应的点G ,使得CG ∥平面1EBD 【答案】D【分析】由111111B BED F E BB D F BB D V V V ---=+结合线面平行的定义,即可判断选项A ,由线面垂直的判定定理即可判断选项B ,由面面平行的性质和对称性,即可判断选项C ,由特殊位置即可判断选项D.【详解】对A ,111111B BED F E BB D F BB D V V V ---=+,又11//CC BB ,1CC ⊄平面11BB D ,1BB ⊂平面11BB D ,所以1//CC 平面11BB D ,同理1//AA 平面11BB D ,所以点E ,F 到平面11BB D 的距离为定值,则四棱锥11B BED F -的体积为定值,故选项A 正确;对于B ,因为111BB B D =,可得对角面11BB D D 为正方形,所以11B D BD ⊥,由DC ⊥平面11BCC B ,BE ⊂平面11BCC B ,所以DC BE ⊥,若1BE B C ⊥,则1B CDC C =,1,B C DC ⊂平面1B DC ,所以BE ⊥平面1B DC ,由1B D ⊂平面1B DC ,所以1B D BE ⊥,又11,,BD BE B BD BE ⋂=⊂平面1BD E ,所以1B D ⊥平面1BD E ,故B 正确;对于C ,由面面平行的性质定理可得,四边形1BED F 为平行四边形,由对称性可得,当四边形为菱形时,周长取得最小值,即存在唯一的点E ,使得截面四边形1BED F 的周长取得最小值,故选项C 正确.对于D ,当E 点在C 处时,对于AD 上任意的点G ,直线CG 与平面1EBD 均相交,故选项D 错误. 故选:D二、填空题13.已知x 、y 满足约束条件202020x y x y -≤⎧⎪-≤⎨⎪+-≥⎩则2z x y =+的最大值是________.【答案】6【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.【详解】解:由约束条件作出可行域如图:将目标函数2z x y =+转化为2y x z =-+表示为斜率为2-,纵截距为z 的直线, 当直线2y x z =-+过点B 时,z 取得最大值, 显然点()2,2B ,则max 2226z =⨯+=.故答案为:6.14.直线l 与圆22(1)(1)1x y ++-=相交于,A B 两点,且()0,1A .若AB l 的斜率为_________. 【答案】1±【分析】设直线方程,结合弦长求得圆心到直线的距离,利用点到直线的距离公式列出等式,即可求得答案.【详解】根据题意,直线l 与圆 22(1)(1)1x y ++-= 相交于,A B 两点,且()0,1A , 当直线斜率不存在时,直线0x = 即y 轴,显然与圆相切,不符合题意; 故直线斜率存在,设直线l 的方程为1y kx =+ ,即10kx y -+= , 因为圆22(1)(1)1x y ++-=的圆心为(1,1) ,半径为1r = ,又弦长||AB =所以圆心到直线的距离为d ===,=1k =±, 故答案为:1±.15.已知E 是正方体1111ABCD A B C D -的棱1DD 的中点,过A 、C 、E 三点作平面α与平面1111D C B A 相交,交线为l ,则直线l 与1BC 所成角的余弦值为______. 【答案】12【分析】由面面平行的性质与异面直线所成的角的求法求解即可 【详解】因为过,,A C E 三点的平面α与平面1111D C B A 相交于l , 平面α与平面ABCD 相交于AC ,平面1111D C B A 与平面ABCD 平行, 所以//l AC ,又11//A C AC ,故11//AC l所以直线l 与1BC 所成的角就是直线11A C 与1BC 所成的角, 也即是11AC B ∠(或补角) 又易知11A C B △为等边三角形,所以直线l 与1BC 所成角的余弦值为1cos602︒=, 故答案为:1216.设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(),P x y ,则PAB 面积的最大值是_________. 【答案】52【详解】试题分析:易知A (0,0),B (1,3)两直线互相垂直,故222221510222PA PB PA PB AB S PA PB ++==∴=≤=为所求.【解析】基本不等式.三、解答题17.一汽车销售公司对开业4年来某种型号的汽车“五-”优惠金额与销售量之间的关系进行分析研究并做了记录,得到如下资料. 日期第一年 第二年 第三年 第四年优惠金额x (千元) 10 11 13 12 销售量y (辆) 22243127(1)求出y 关于x 的线性回归方程ˆˆˆyb x a =+; (2)若第5年优惠金额8.5千元,估计第5年的销售量y(辆)的值.参考公式:()()()11211ˆˆˆ,()n ei i i i i i pz nzlii i x x y y x y nxybay bx xx xn x ====---===---∑∑∑∑ 【答案】(1)ˆ38.5y x =-;(2)第5年优惠金额为8.5千元时,销售量估计为17辆【分析】(1)先由题中数据求出x y ,,再根据()()()()1122211,ˆˆˆˆn niii ii i nn iii i x x y y x y nxyb ay bx x x x n x ====---===---∑∑∑∑求出ˆb和ˆa ,即可得出回归方程; (2)将8.5x =代入回归方程,即可求出预测值.【详解】(1)由题中数据可得11.5,26x y ==,442111211,534i i i i i x y x ====∑∑∴()414222141211411.526153534411.554ˆi i i i i x y xybx x ==--⨯⨯====-⨯-∑∑,故26311ˆ.58.5ˆay bx =-=-⨯=-,∴38.5ˆy x =- (2)由(1)得,当8.5x =时,ˆ17y=,∴第5年优惠金额为8.5千元时,销售量估计为17辆. 【点睛】本题主要考查线性回归分析,熟记最小二乘法求ˆb和ˆa 即可,属于常考题型. 18.已知圆C 经过(6,1),(3,2)A B -两点,且圆心C 在直线230x y +-=上. (1)求经过点A ,并且在两坐标轴上的截距相等的直线的方程; (2)求圆C 的标准方程;(3)斜率为34-的直线l 过点B 且与圆C 相交于,E F 两点,求||EF .【答案】(1)60x y -=或+7=0x y -; (2)22(5)(1)5x y -++=; (3)2.【分析】(1)根据给定条件,利用直线方程的截距式,分类求解作答. (2)设出圆心坐标,由已知求出圆心及半径作答. (3)求出直线l 的方程,利用弦长公式计算作答.【详解】(1)经过点A ,在两坐标轴上的截距相等的直线,当直线过原点时,直线的方程为60x y -=, 当直线不过原点时,设直线的方程为=x y a +,将点(6,1)A 代入解得=7a ,即直线的方程为+7=0x y -, 所以所求直线的方程为60x y -=或+7=0x y -.(2)因圆心C 在直线230x y +-=上,则设圆心(32,)C b b -, 又圆C 经过(6,1),(3,2)A B -两点,于是得圆C 的半径||||r AC BC ==,1b =-,圆心(5,1)C -,圆C的半径r = 所以圆C 的标准方程为22(5)(1)5x y -++=.(3)依题意,直线l 的方程为32(3)4y x +=--,即3410x y +-=, 圆心(5,1)C -到直线的距离为|1541|25d --==, 所以22||22542EF r d =-=-=.19.直四棱柱1111ABCD A B C D -,底面ABCD 是平行四边形,60ACB ∠=︒,13,1,27,,AB BC AC E F ===分别是棱1,A C AB 的中点.(1)求证:EF 平面1A AD : (2)求三棱锥1F ACA -的体积.【答案】(1)见解析2【分析】(1)取1A D 的中点M ,连结,ME MA ,证明四边形AFEM 为平行四边形,则AM EF ∥,再根据线面平行的判定定理即可得证;(2)利用余弦定理求出AC ,再利用勾股定理求出1AA ,再根据11F ACA A AFC V V --=结合棱锥的体积公式即可得出答案.【详解】(1)证明:取1A D 的中点M ,连结,ME MA ,在1A DC 中,,M E 分别为11,A D AC 的中点, 所以ME DC ∥且12ME DC =, 底面ABCD 是平行四边形,F 是棱AB 的中点,所以AF DC 且12AF DC =, 所以ME AF ∥且ME AF =,所以四边形AFEM 为平行四边形,所以,EF AM EF ⊄∥平面1,A AD AM⊂平面1A AD ,所以EF 平面1A AD ;(2)在ABC 中,60,3,1ACB AB BC ∠===, 由余弦定理有2222cos AB AC BC AC BC ACB ∠=+-⨯⨯,解得2AC =,则1312sin6022ABC S =⨯⨯⨯=, 因为F 为AB 的中点,所以1324ACF ABC S S ==, 由已知直四棱柱1111ABCD A B C D -,可得1190,2,27A AC AC AC ∠===, 可得128426A A =-=,1111132263342F ACA A AFC AFC V V S AA --==⋅=⨯⨯=. 20.某校从参加高一年级期中考试的学生中抽出40名学生,将其数学成绩(均为整数)分成六段[)40,50,[)50,60,,[]90,100后画出如下部分频率分布直方图.观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)根据频率分布直方图估计这次数学考试成绩的平均分;(3)若将分数从高分到低分排列,取前15%的同学评定为“优秀”档次,用样本估计总体的方法,估计本次期中数学考试“优秀”档次的分数线.【答案】(1)答案见解析(2)71(3)86【分析】(1)根据所有频率和为1求第四小组的频率,计算第四小组的对应的矩形的高,补全频率分布直方图;(2)根据在频率分布直方图中,由每个小矩形底边中点的横坐标与小矩形的面积的乘积之和,求出平均分;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,由此即可估计“优秀”档次的分数线.【详解】(1)由频率分布直方图可知,第1,2,3,5,6小组的频率分别为:0.1,0.15,0.15,0.25,0.05,所以第四小组的频率为:10.10.150.150.250.050.3-----=,∴在频率分布直方图中第四小组对应的矩形的高为0.03,补全频率分布直方图对应图形如图所示:(2)由频率分布直方图可得平均分为:0.1450.15550.15650.3750.25850.059571⨯+⨯+⨯+⨯+⨯+⨯=;(3)由频率分布直方图可知:成绩在区间[]90,100占5%,区间[)80,90占25%,则估计本次期中数学考试“优秀”档次的分数线为:0.158010860.25+⨯=.21.如图,已知正方形ABCD 和矩形ACEF 所在的平面互相垂直,2AB =,1AF =,M 是线段EF 的中点.(1)求证:平面ACEF ⊥平面BDF ;(2)求证:DM ⊥平面BEF ;(3)求二面角A DF B --的大小.【答案】(1)见解析(2)见解析(3)60【分析】(1)建立空间直角坐标系,利用0AM BD =,0AM DF =,可得AM ⊥平面BDF ,进而可得面面垂直.(2)由2AB 1AF =,得3==DF DE DM EF ⊥,连BM ,得DM BM ⊥,由此能证明DM ⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.(1,1,0)DC =--是平面ADF 的一个法向量,cos AM <,1222DC >==⨯即可. 【详解】(1)四边形ACEF 是矩形,FA AC ∴⊥,平面ACEF ABCD ⊥,平面ACEF 平面ABCD AC =,AF ⊂平面ACEFAF ∴⊥平面ABCD .设AC DB O ⋂=,则OM ⊥平面ABCD建立如图的直角坐标系,则各点的坐标分别为:(0O ,0,0),(0A ,1,0),(1B -,0,0),(0C ,1-,0),(1D ,0,0),(0E ,1-,1),(0F ,1,1),(0M ,0,1).(2BD =,0,0),(1DF =-,1,1),(0AM =,1-,1),∴0AM BD =,0110AM DF =-+=, AM BD ∴⊥,AM DF ⊥,BD DF D =,,BD DF ⊂平面BDF ,AM ∴⊥平面BDF ,AM ⊂平面ACEF ,所以平面ACEF ⊥平面BDF(2)由2AB =,1AF =,得3==DF DE ,M 是线段EF 的中点,DM EF ,连接BM ,由于2222,,DM OM OD MB OM OB OB OD =+=+=,得2BM DM ==,又2BD =,222DM BM BD += DM BM ∴⊥,又BM EF M =,,MB EF ⊂平面BEF , DM ∴⊥平面BEF .(3)由(1)得,(0AM =,1-,1)是平面BDF 的一个法向量.又AF ⊥平面ABCD 得AF CD ⊥,又CD DA ⊥ ,故(1,1,0)DC =--是平面ADF 的一个法向量, 故cos AM <,11222DC >==⨯ 二面角A DF B --为锐角,∴二面角A DF B --为60.22.已知圆22:(3)9M x y -+=.设()2,0D ,过点D 作斜率非0的直线1l ,交圆M 于P 、Q 两点.(1)过点D 作与直线1l 垂直的直线2l ,交圆M 于EF 两点,记四边形EPFQ 的面积为S ,求S 的最大值;(2)设()6,0B ,过原点O 的直线OP 与BQ 相交于点N ,试讨论点N 是否在定直线上,若是,求出该直线方程;若不是,说明理由.【答案】(1)17;(2)点N 在定直线6x =-上.【分析】(1)由题意设出直线1l ,2l 方程,利用点到直线的距离公式,弦长公式以及基本不等式即可解决问题;(2)利用圆与直线的方程,写出韦达定理,求出直线OP 与直线BQ 的方程,且交于点N ,联立方程求解点N 即可证明结论.【详解】(1)由圆22:(3)9M x y -+=知,圆心为()3,0M ,半径3r =,因为直线1l 过点()2,0D 且斜率非0,所以设直线1l 方程为:()02y k x -=-,即20kx y k --=,则点M 到直线1l的距离为:1d =所以PQ == 由12l l ⊥,且直线2l 过点D ,所以设直线2l 方程为:()102y x k -=--,即20x ky +-=, 则点M 到直线2l的距离为:2d =所以EF ====故1122S EF PQ =⋅⋅=⋅2=()2217122171k k +=⨯=+,当且仅当2289981k k k +=+⇒=±时取等号,所以四边形EPFQ 的面积S 的最大值为17.(2)点N 在定直线6x =-上.证明:设()()1122,,,P x y Q x y ,直线PQ 过点D ,则设直线PQ 方程为:2x my =+,联立()22239x my x y =+⎧⎪⎨-+=⎪⎩,消去x 整理得: ()221280m y my +--=,12122228,11m y y y y m m -+==++, 所以()1212121244y y m my y y y y y +=-⇒=-+, 由111100OP y y k x x -==-, 所以直线OP 的方程为:11y y x x =, 2222066BQ y y k x x -==--, 所以直线BQ 的方程为:()2266y y x x =--, 因为直线OP 与直线BQ 交于点N , 所以联立()112266y y x x y y x x ⎧=⎪⎪⎨⎪=-⎪-⎩, 所以()12121266N x y x x y y x =-- ()()()12121262226my y my y y my +=+-+-⎡⎤⎣⎦ 12212212161224my y y my y y my y y +=+-+ 12221362my y y y y +=+ ()()122213462y y y y y ⨯-⨯++=+ 12212212112126126622y y y y y y y y y --+--===-++, 所以6N x =-,所以点N 在定直线6x =-上.。
上学期期末考试 高二数学(理科)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1. 对于常数m 、n ,“0mn <”是“方程221mx ny +=的曲线是双曲线”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 2. 命题“所有能被2整除的数都是偶数”的否定..是 A .所有不能被2整除的数都是偶数 B .所有能被2整除的数都不是偶数 C .存在一个不能被2整除的数是偶数 D .存在一个能被2整除的数不是偶数3. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为7,则P 到另一焦点距离为 A .2 B .3 C .5 D .74 . 在一次跳伞训练中,甲、乙两位学员各跳一次,设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A .()()p q ⌝∨⌝ B .()p q ∨⌝ C .()()p q ⌝∧⌝ D .p q ∨5. 若双曲线22221x y a b-=3A .2± B. 12± C. 2 D.22±6. 曲线sin 1sin cos 2x y x x =-+在点(,0)4M π处的切线的斜率为2212 D. 12-7. 已知椭圆)0(1222222>>=+b a b y a x 的焦点与双曲线12222=-bx a y 的焦点恰好是一个正方形的四个顶点,则抛物线2bx ay =的焦点坐标为 A. )0,43(B. )0,123(C. )123,0( D.)43,0( 8.一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为123,,P P P ,① ② ③若屋顶斜面与水平面所成的角都是α,则A. 123P P P ==B. 123P P P =<C. 123P P P <=D. 123P P P <<9. 马云常说“便宜没好货”,他这句话的意思是:“不便宜”是“好货”的A .充分条件B .必要条件C .充分必要条件D .既不充分也不必要条件10. 设0>a ,c bx ax x f ++=2)(,曲线)(x f y =在点P ()(,00x f x )处切线的倾斜角的取值范围是]4,0[π,则P 到曲线)(x f y =对称轴距离的取值范围为A. ]1,0[aB. ]21,0[aC. ]2,0[a bD. ]21,0[a b - 11. 已知点O 在二面角AB αβ--的棱上,点P 在α内,且60POB ∠=︒.若对于β内异于O 的任意一点Q ,都有60POQ ∠≥︒,则二面角AB αβ--的大小是A. 30︒B.45︒C. 60︒D.90︒12. 已知双曲线22221(0,0)x y a b a b-=>>的两个焦点为1F 、2F ,点A 在双曲线第一象限的图象上,若△21F AF 的面积为1,且21tan 21=∠F AF ,2tan 12-=∠F AF ,则双曲线方程为 A . 1312522=-y x B .1351222=-y x C .1512322=-y x D .1125322=-y x 卷Ⅱ二、填空题:本大题共4小题,每小题5分,共20分.13. 正方体1111ABCD A B C D -中,M 是1DD 的中点,O 为底面正方形ABCD 的中心,P 为棱11A B 上任意一点,则直线OP 与直线AM 所成的角为 . 14. 函数2()ln '(1)54f x x f x x =-+-,则(1)f =________.15.已知b a,是夹角为60的两单位向量,向量b c a c⊥⊥,,且||1c =,c b a y c b a x -+-=+-=3,2,则><y x,cos = .16. 过抛物线22(0)x py p =>的焦点F 作倾斜角为45的直线,与抛物线分别交于A 、B 两点(A 在y 轴左侧),则AFFB= . 三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)过点(1,1)-作函数3()f x x x =-的切线,求切线方程.18.(本小题满分12分)已知集合{}|(1)(2)0A x ax ax =-+≤,集合{}|24.B x x =-≤≤ 若x B ∈是x A ∈的充分不必要条件,求实数a 的取值范围.19.(本小题满分12分) 如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC ,90BAD ∠=,PA ⊥底面ABCD ,且2PA AD AB BC ===,,M N 分别为,PC PB 的中点.(Ⅰ)求证:PB DM ⊥;(Ⅱ)求CD 与平面ADMN 所成的角的正弦值.20. (本小题满分12分)已知三棱柱'''C B A ABC -如图所示,四边形''B BCC 为菱形,o BCC 60'=∠,ABC ∆为等边FE C 'B'AA'CB三角形,面⊥ABC 面''B BCC ,F E 、分别为棱'CC AB 、的中点. (Ⅰ)求证://EF 面''BC A ;(Ⅱ)求二面角B AA C --'的大小.21. (本小题满分12分)已知椭圆22122:1(0)x y C a b a b +=>>的离心率为2,且椭圆上点到左焦点距离的最小值为1.(Ⅰ)求1C 的方程;(Ⅱ)设直线l 同时与椭圆1C 和抛物线22:4C y x =相切,求直线l 的方程.22. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>过点,直线(1y k x =-)(0)k ≠与椭圆C 交于不同的两点M N 、,MN 中点为P ,O 为坐标原点,直线OP 斜率为12k-. (Ⅰ)求椭圆C 的方程;(Ⅱ)椭圆C 的右顶点为A ,当AMN ∆k 的值.xyz参考答案一.选择题CDBAC CDABB DB 二.填空题2π1- 5216- 322-三.解答题17.解:设切点为3(,)m m m -,则切线方程为32(31)()y m m m x m -+=--,┅┅┅┅┅┅2分将点(1,1)-带入,解得0m =或32, ┅┅┅┅┅┅┅ 8分 所以切线方程为y x =-或234270x y --= ┅┅┅┅┅┅┅10分 18.解:(1)0a >时,21[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以212,4a a-≥-≤, 104a <≤,检验14a =符合题意;┅┅┅┅┅┅┅4分(2)0a =时,A R =,符合题意;┅┅┅┅┅┅┅8分(3)0a <时,12[,]A a a =-,若x B ∈是x A ∈的充分不必要条件,所以122,4a a-≥≤-,102a -≤<,检验12a =-不符合题意.综上11(,]24a ∈-.┅┅┅┅┅┅┅12分19. 解如图,以A 为坐标原点建立空间直角坐标系A xyz -,设1BC =,则 1(0,0,0),(0,0,2),(2,0,0),(2,1,0),(1,,1),(0,2,0)2A P B C M D .(I ) 因为3(2,0,2)(1,,1)2PB DM ⋅=-⋅-0=,所以.PB DM ⊥(II ) 因为(2,0,2)(0,2,0)PB AD ⋅=-⋅0=,所以PB AD ⊥, 又因为PB DM ⊥,所以PB ⊥平面.ADMN因此,PB DC <>的余角即是CD 与平面ADMN 所成的角. 因为cos ,||||PB DC PB DC PB DC ⋅<>=⋅105=,所以CD 与平面ADMN 所成的角的正弦为510 20. (Ⅰ)证明(方法一)取B A '中点D ,连接DC ED ,,因为D E ,分别为B A AB ',中点,所以'//,'21AA ED AA ED =,┅┅┅┅┅┅┅3分 所以CF ED CF ED //,=,所以四边形EFCD 为平行四边形,所以CD EF //,又因为BC A CD BC A EF ''面,面⊂⊄,所以//EF 面BC A ';┅┅┅┅┅┅┅6分(方法二)取'AA 中点G ,连接FG EG ,, 因为G E ,分别为',AA AB 中点,所以B A EG '//又因为G F ,分别为','AA CC 中点,所以''//C A FG ┅┅┅┅┅┅┅3分且G GF EG EFG GF EFG EG =⊂⊂ ,,面面,'''',''',''''A B A C A BC A B A BC A C A =⊂⊂ 面面所以面//EFG 面''BC A ,又⊂EF 面EFG ,所以//EF 面BC A '┅┅┅┅┅┅6分 (方法三)取BC 中点O ,连接',OC AO ,由题可得BC AO ⊥,又因为面⊥ABC 面''B BCC ,所以⊥AO 面''B BCC ,又因为菱形''B BCC 中oBCC 60'=∠,所以BC O C ⊥'. 可以建立如图所示的空间直角坐标系 ┅┅┅┅┅┅┅7分 不妨设2=BC ,可得)0,0,1(C ,)0,3,0('C)3,0,0(A ,)0,0,1(-B ,)3,3,1('-A ,)0,3,2('-B ,所以)0,23,21(),23,0,21(F E -所以)3,3,0('),0,3,1('),23,23,1(==-=BA BC EF ,┅┅┅┅┅┅┅9分 设面BC A '的一个法向量为),,(c b a n =,则⎩⎨⎧=+=+03303c b b a ,不妨取3=a ,则)1,1,3(),,(-=c b a ,所以0=⋅n,又因为⊄EF 面BC A ',所以//EF 面BC A '.┅┅┅┅┅┅┅12分 (Ⅱ)(方法一)过F 点作'AA 的垂线FM 交'AA 于M ,连接BF BM ,.因为'//','AA CC CC BF ⊥,所以'AA BF ⊥,所以⊥'AA 面MBF , 所以BMF ∠为二面角B AA C --'的平面角. ┅┅┅┅┅┅┅8分因为面⊥ABC 面''B BCC ,所以A 点在面''B BCC 上的射影落在BC 上,所以41cos 'cos 'cos =∠∠=∠ACB BCC ACC , 所以AC MF ACC ==∠415'sin ,不妨设2=BC ,所以215=MF ,同理可得215=BM .┅┅┅┅┅┅┅10分 所以532153415415cos =-+=∠BMF ,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分(方法二)接(Ⅰ)方法三可得)0,3,1('),3,0,1(-=--=AA AB ,设面B AA '的一个法向量为),,(1111z y x n =,则⎩⎨⎧=+-=--03031111y x z x ,不妨取31=x ,则)1,1,3(),,(111-=z y x .┅┅┅┅┅┅┅8分又)0,3,1('),3,0,1(-=-=AA AC ,设面C AA '的一个法向量为),,(2222z y x n =,则⎩⎨⎧=+-=-03032222y x z x ,不妨取32=x ,则)1,1,3(),,(222=z y x .┅┅┅┅┅┅┅10分 所以53||||,cos 212121=⋅⋅>=<n n n n n n ,因为二面角B AA C --'为锐角,所以二面角B AA C --'的大小为53arccos ┅┅┅┅┅┅┅12分21.解:(Ⅰ)设左右焦点分别为)0,(),0,(21c F c F -,椭圆上点P 满足,2||||2,2||||2121c PF PF c a PF PF ≤-≤-=+所以,||1c a PF c a +≤≤-P 在左顶点时||1PF 取到最小值12-=-c a ,又21=a c ,解得1,1,2===b c a ,所以1C 的方程为 1222=+y x .(或者利用设),(y x P 解出x aca PF +=||1得出||1PF 取到最小值12-=-c a ,对于直接说明P 在左顶点时||1PF 取到最小值的,酌情扣分);┅┅┅┅┅┅┅4分(Ⅱ)由题显然直线l 存在斜率,所以设其方程为m kx y +=,┅┅┅┅┅┅┅5分联立其与1222=+y x ,得到 0224)21(222=-+++m kmx x k ,0=∆,化简得01222=--k m ┅┅┅┅┅┅┅8分联立其与22:4C y x =,得到042=+-m y y k ,0=∆,化简得01=-km ,┅┅┅┅┅┅┅10分 解得2,22==m k 或2,22-=-=m k所以直线l 的方程为222+=x y 或222--=x y ┅┅┅┅┅┅┅12分 22. 解:(Ⅰ)由题可得直线过点(1,0),在椭圆内,所以与椭圆一定相交,交点设为),(),,(2211y x N y x M ,则2121x x y y k --=,OP 斜率为2121x x y y ++,所以2122212221-=--x x y y ,┅┅┅┅┅┅┅3分又1221221=+b y a x ,1222222=+b y a x ,所以02222122221=-+-by y a x x ,所以222b a =,又 11222=+ba ,解得2,422==b a ,所以椭圆C 的方程为12422=+y x ;┅┅┅┅┅┅┅6分 (Ⅱ)(1y k x =-)与椭圆C 联立得:0424)21(2222=-+-+k x k x k ,┅┅┅┅┅┅┅8分AMN ∆面积为31021)32(82||||2||||21222121=++=-=-kk k x x k y y , 解得1±=k .┅┅┅┅┅┅┅12分。
高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。
2022-2023学年四川省凉山州宁南中学高二上学期期末考试数学(理)试题一、单选题1.某单位职工老年人有30人,中年人有50人,青年人有20人,为了了解职工的建康状况,用分层抽样的方法从中抽取10人进行体检,则应抽查的老年人的人数为 A .3 B .5 C .2 D .1【答案】A【分析】先由题意确定抽样比,进而可求出结果. 【详解】由题意该单位共有职工305020100++=人, 用分层抽样的方法从中抽取10人进行体检,抽样比为10110010=, 所以应抽查的老年人的人数为130310⨯=. 故选A【点睛】本题主要考查分层抽样,会由题意求抽样比即可,属于基础题型. 2.已知,a b R ,则“220a b +=”是“0ab =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【分析】根据充分条件和必要条件的定义进行判断即可. 【详解】若220a b +=,则0a b ,则0ab =成立. 而当0a =且1b =时,满足0ab =,但220a b +=不成立; ∴“220a b +=”是“0ab =”的充分不必要条件.故选:A .3.下列说法中错误的是( )A .对于命题p :存在0x ∈R ,使得20010x x ++<,则p ⌝:任意R x ∈,均有210x x ++≥B .两个变量线性相关性越强,则相关系数r 就越接近1C .在线性回归方程20.5y x =-中,当变量x 每增加一个单位时,y 平均减少0.5个单位D .某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变 【答案】D【分析】A 选项,存在量词命题的否定是全称量词命题,把存在改为任意,把结论否定; B 选项,相关系数r 就越接近1,则两个变量线性相关性越强; C 选项,根据线性回归方程的解析式中x 的系数得到结论; D 选项,计算出添加新数据4后的方程,作出判断.【详解】存在0x ∈R ,使得20010x x ++<,的否定是:任意R x ∈,均有210x x ++≥,A 正确;两个变量线性相关性越强,则相关系数r 就越接近1,B 正确;在线性回归方程20.5y x =-中x 的系数为0.5-,当变量x 每增加一个单位时,y 平均减少0.5个单位,C 正确;某7个数1234567,,,,,,x x x x x x x 的平均数为4,方差为2,则()72142714i i x =-=⨯=∑,现加入一个新数据4,则平均数不变,仍为4,此时这8个数的方差变为()21444784+-=,故D 错误. 故选:D4.如图的程序框图的算法思路源于欧几里得在公元前300年左右提出的“辗转相除法”.执行该程序框图,若输入1813,333m n ==,则输出m 的值为( )A .4B .37C .148D .333【答案】B【分析】利用辗转相除法求1813和333的最大公约数.【详解】题中程序框图为辗转相除法求1813和333的最大公约数.因为181********=⨯+,333148237=⨯+,1483740=⨯+, 所以1813和333的最大公约数为37. 故选:B.5.圆x 2+y 2-2x -3=0与圆x 2+y 2-4x +2y +3=0的位置关系是( ) A .相离 B .内含 C .相切 D .相交【答案】D【分析】求出圆心和半径,再根据两个圆的圆心距与半径之差和半径和的关系,可得两个圆相交. 【详解】由于圆x 2+y 2﹣2x ﹣3=0的圆心为(1,0),半径等于2,而圆x 2+y 2﹣4x +2y +3=0即(x ﹣2)2+(y +1)2=2,表示以(2,﹣1的圆.22 故两个圆相交, 故选D .【点睛】本题主要考查圆的标准方程,两个圆的位置关系的判定方法,属于中档题. 6.已知抛物线24y x =上一点M 到x 轴的距离是2,则点M 到焦点F 的距离为( )A B .2C .D .3【答案】B【分析】有题意可知()1,2M ±,由焦点(1,0)F 则可求出点M 到焦点F 的距离. 【详解】M 到x 轴的距离是2,可得()1,2M ±,焦点(1,0)F 则点M 到焦点的距离为2. 故选:B.7.已知1F ,2F 为双曲线2214xy -=的两个焦点,点P 在双曲线上且满足1290F PF ∠=︒,那么点P 到x 轴的距离为( )A B C D 【答案】D【解析】设12||,||()PF x PF y x y ==>,由双曲线的性质可得x y -的值,再由1290F PF ∠=︒,根据勾股定理可得22xy +的值,进而求得xy ,最后利用等面积法,即可求解【详解】设12||,||()PF x PF y x y ==>,1F ,2F 为双曲线的两个焦点,设焦距为2c ,c ∴=P 在双曲线上,4x y ∴-=,1290F PF ∠=︒,2220x y ∴+=,2222()4xy x y x y ∴=+--=,2xy ∴=,12F PF ∴的面积为112xy =,利用等面积法,设12F PF △的高为h ,则h 为点P 到x 轴的距离,则12512h c h ⋅⋅==,55h ∴=故选:D【点睛】本题考查双曲线的性质,难度不大.8.椭圆221925x y +=上的点A 到一个焦点F 的距离为2,B 是AF 的中点,则点B 到椭圆中心O 的距离为. A .2 B .4 C .6 D .8【答案】B【分析】由三角形的中位线的性质得12OB AF =',再由椭圆的定义得108AF AF =-=',由此可求得答案.【详解】∵椭圆方程为221925x y +=,∴225a =,得5a =, ∵AFF '中,B 、O 分别为AF 和FF '的中点,∴12OB AF =',∵点A 在椭圆上,得210AF AF a +==', ∴108AF AF =-=', 由此得118422OB AF =⨯'==,故选:B .9.已知直线y=x+m 和圆x2+y2=1交于A 、B 两点,O 为坐标原点,若3AO AB 2⋅=,则实数m=( )A .1±B .C .D .12±【答案】C【分析】联立221y x mx y =+⎧⎨+=⎩,得2x 2+2mx +m 2﹣1=0,由此利用根的判别式、韦达定理、向量的数量积能求出m .【详解】联立221y x mx y =+⎧⎨+=⎩ ,得2x 2+2mx+m 2-1=0, ∵直线y=x+m 和圆x 2+y 2=1交于A 、B 两点,O 为坐标原点,∴△=4m 2+8m 2-8=12m 2-8>0,解得m 或m <设A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-m ,21212m x x -= , y 1y 2=(x 1+m )(x 2+m )=x 1x 2+m (x 1+x 2)+m 2,AO =(-x 1,-y 1),AB =(x 2-x 1,y 2-y 1), ∵21123,2AO AB AO AB x x x ⋅=∴⋅=-+y 12-y 1y 2=1221122m m ----+m 2-m 2=2-m 2=32,解得m= 故选C .【点睛】本题考查根的判别式、韦达定理、向量的数量积的应用,考查了运算能力,是中档题. 10.已知0a >,0b >,直线1l :(1)10a x y -+-=,2l :210x by ++=,且12l l ⊥,则21a b+的最小值为( ) A .2 B .4 C .8 D .9【答案】C【分析】由12l l ⊥,可求得21a b +=,再由()2121424b aa b a b a b a b⎛⎫+=++=++ ⎪⎝⎭,利用基本不等式求出最小值即可.【详解】因为12l l ⊥,所以()11120a b -⨯+⨯=,即21a b +=,因为0a >,0b >,所以()2121422248b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当4b a a b =,即11,24a b ==时等号成立,所以21a b+的最小值为8.故选:C.【点睛】本题考查垂直直线的性质,考查利用基本不等式求最值,考查学生的计算求解能力,属于中档题.11.已知O 为坐标原点,1F ,2F 是双曲线C :22221x y a b -=(0a >,0b >)的左、右焦点,双曲线C 上一点P 满足12PF PF ⊥,且2122PF PF a ⋅=,则双曲线C 的离心率为AB .2CD 【答案】D【详解】设P 为双曲线右支上一点,1PF =m ,2 PF =n ,|F 1F 2|=2c , 由双曲线的定义可得m −n =2a , 点P 满足12PF PF ⊥,可得m 2+n 2=4c 2, 即有(m −n )2+2mn =4c 2, 又mn =2a 2, 可得4a 2+4a 2=4c 2,即有c ,则离心率e 故选D .12.已知圆224410M x y x y +---=:,直线:34110l x y P ++=,为l 上的动点,过点P 作圆M 的切线PA PB ,,切点为A B ,,当四边形PAMB 面积最小时,直线AB 的方程为( ) A .3450x y +-= B .3450x y --= C .3450x y ++= D .3450x y -+=【答案】A【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 46PAM PM AB S PA ⋅==△可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP 为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程.【详解】解:圆的方程可化为()()22229x y -+-=,点M 到直线l 的距离为52d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14462PAM PM AB S PA AM PA ⋅==⨯⨯⨯=△,而 PA =当直线MP l ⊥时,min 5MP =, min 4PA =,此时PM AB ⋅最小.∴()4:223MP y x -=-,即 4233y x =-,由423334110y x x y ⎧=-⎪⎨⎪++=⎩,解得12x y =-⎧⎨=-⎩.所以以MP 为直径的圆的方程为()()()()21220x x y y -+++-=, 即2260x x y -+-=,两圆的方程相减可得:3450x y +-=,即为直线AB 的方程. 故选:A .【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.二、填空题13.某校调查了200名学生每周的自习时间(单位:小时),制成了如图所示的的频率分布直方图,根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数为:_____.【答案】140【分析】求出这200名学生中每周的自习时间不少于22.5小时的频率,即可求得答案. 【详解】由频率分布直方图得:这200名学生中每周的自习时间不少于22.5小时的频率为: (0.020.10) 2.50.71+⨯-=,这200名学生中每周的自习时间不少于22.5小时的人数为:2000.7140⨯=, 故答案为:140.14.从800名同学中,用系统抽样的方法抽取一个20人的样本,将这800名同学按1800进行随机编号,若第一组抽取的号码为3,则第五组抽取的号码为__________. 【答案】163【分析】根据系统抽样的知识求得正确答案. 【详解】组距为8004020=,所以第五组抽取的号码是()35140163+-⨯=. 故答案为:16315.抛物线2:12C y x =-的焦点为F ,P 为抛物线C 上一动点,定点(5,2)A -,则PA PF +的最小值为___________. 【答案】8【分析】根据抛物线的定义,将||PF 转化为P 到准线的距离,再结合图形可求出结果. 【详解】由212y x =-,得(3,0)F -,准线方程为:3x =,过P 作准线3x =的垂线,垂足为M ,则PA PF +||||PA PM =+||3(5)8AM ≥=--=, 当且仅当,,A P M 三点共线时,等号成立. 故答案为:816.数学中有许多美丽的曲线,它蕴藏于特有的抽象概念,公式符号,推理论证,思维方法等之中,揭示了规律性,是一种科学的真实美.如曲线22:C x y x y +=+,(如图所示),给出下列三个结论①曲线C 关于直线y x =对称;②曲线C 2;③曲线C 围成的图形的面积是2π+. 其中,正确结论的序号是_________. 【答案】①③【分析】根据点的对称性可判断①,由曲线方程知曲线关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,由此可作出曲线C 的图象,从而通过运算可判断命题②③的真假.【详解】设点(),A x y 在曲线C 上,则22x y x y +=+,(),A x y 关于直线y x =对称的点(),A y x ',将(),A y x '代入曲线C 中得22y x y x +=+,因此(),A y x '在曲线C 上,故①正确,曲线22:||||C x y x y +=+可知曲线C 关于原点,x ,y 轴对称,当0x ≥,0y ≥时,可得220x y x y +--=,可得22111222x y ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,所以可得曲线为11,22C ⎛⎫ ⎪⎝⎭为圆心,22r为半径的半圆,曲线上任意点到原点的距离的最大值为OC r +=C,故命题②错误;根据对称性可知曲线C 围成的图形的面积为4的正方形的面积,即214π2π2⨯⨯⨯=+⎝⎭,故命题③正确; 故答案为:①③三、解答题17.已知直线:(1)20()l a x y a a R ++--=∈.(1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)当()0,0O 点到直线l 距离最大时,求直线l 的方程. 【答案】(1)0x y -+=或20x y +-=(2)20x y +-=【解析】(1)先求出直线l 在两坐标轴上的截距,根据题意,列出方程,解方程即可;(2)根据直线的点斜式方程可以确定直线恒过的定点,然后根据直线l 与AO 垂直时,()0,0O 点到直线l 距离最大,最后求出a 的值,进而求出直线的方程. 【详解】(1)直线:(1)20l a x y a ++--=,取0x =,2y a =+ 取0y =,21a x a +=+即221a a a ++=+,解得2a =-或0a =, 故直线方程为0x y -+=或20x y +-=(2):(1)20l a x y a ++--=变换得到(1)20a x x y -++-=, 故过定点()1,1A当直线l 与AO 垂直时,距离最大. 1OA k =,故1k =-,解得0a =,故所求直线方程为20x y +-=【点睛】本题考查了直线的截距的定义,考查了直线过定点的判断,考查了已知点到直线的距离的最大值求参数问题,考查了数学运算能力. 18.已知命题[]:0,2p x ∈; 命题:23q m x m <≤+. (1)若p 是q 的充分条件,求m 的取值范围;(2)当1m =时,已知p q ∧是假命题,p q ∨是真命题,求x 的取值范围. 【答案】(1)102m -≤<;(2)[](]0,12,5⋃.【分析】(1)解不等式组0232m m <⎧⎨+≥⎩即得解;(2)由题得p 、q 一真一假,分两种情况讨论得解.【详解】(1)解:由题意知p 是q 的充分条件,即p 集合包含于q 集合,有[](]010,2,2302322m m m m m <⎧⊆+⇒⇒-≤<⎨+≥⎩; (2)解:当1m =时,有(]:1,5q x ∈, 由题意知,p 、q 一真一假,当p 真q 假时,020115x x x x ≤≤⎧⇒≤≤⎨≤>⎩或, 当p 假q 真时,022515x x x x ⎧⇒<≤⎨<≤⎩或, 综上,x 的取值范围为[](]0,12,5⋃19.已知某绿豆新品种发芽的适宜温度在6℃~22℃之间,一农学实验室研究人员为研究温度x (℃)与绿豆新品种发芽数y (颗)之间的关系,每组选取了成熟种子50颗,分别在对应的8℃~14℃的温度环境下进行实验,得到如下散点图:(1)由折线统计图看出,可用线性回归模型拟合y 与x 的关系,请用相关系数加以说明; (2)建立y 关于x 的回归方程,并预测在19℃的温度下,种子发芽的颗数. 参考数据:24y =,()()7170i i i x xy y =--=∑,()721176i i y y=-=∑778.77.参考公式:相关系数()()()()12211niii nniii i x x y y r x x y y ===--=--∑∑∑y bx a =+中斜率和截距的最小二乘估计公式分别为()()()121niii nii x x y y b x x ==--=-∑∑,a y bx =-.【答案】(1)答案见解析; (2)44.【分析】(1)直接套公式求出系数r ,即可判断;(2)套公式求出回归方程,把19x =代入,即可求解.【详解】(1)由题意可知:()1891011121314117x =++++++=. ()()()()()()()()27222222218119111011111112111311141128ii x x =-=-+-+-+-+-+-+-=∑.又()721176i i y y=-=∑,所以相关系数()()()()122110.99717628niii nni i i i x x y y r x xy y===--==≈⨯--∑∑∑.因为相关系数0.998r ≈,所以y 与x 的线性相关性较高,可以利用线性回归模型拟合y 与x 的关系.(2)由(1)知11x =,24y =,()27128i i x x=-=∑,()()7170i i i x x y y =--=∑.所以()()()121702.528niii ni i x x y y b x x==--===-∑∑, 所以24 2.511 3.5a y bx =-=-⨯=-. 所以y 与x 的回归直线为 2.5 3.5y x =-.当19x =时, 2.519 3.544y =⨯-=.即在19℃的温度下,种子发芽的颗数为44.20.圆心在()300x y x -=>上的圆C 与x 轴相切,且被直线0x y -=截得的弦长为 (1)求圆C 的方程;(2)求过点()2,3P --且与该圆相切的直线方程. 【答案】(1)()()22139x y -+-= (2)2x =-和3460x y --=【分析】(1)设圆心()(),30C a a a >,求出圆心到直线的距离d ,由勾股定理计算弦长求得参数,得圆标准方程;(2)分类讨论,斜率不存在的直线直接验证,斜率存在的直线设出直线方程(用点斜式),由圆心到切线距离等于半径求得参数值,得直线方程.【详解】(1)设圆心()(),30C a a a >,则3ra =C 到直线0x y -=的距离为d ==22227r d d =+=+⎝⎭22927a a =+∴21a =∴1a =∴圆C 的方程为()()22139x y -+-=(2)①当切线l 斜率不存在时,l :2x =-满足题意 ②设l :()32y k x +=+,即230kx y k -+-= 圆心到直线l 的距离为3d '=,∴34k =综上得过P 与圆C 相切的直线方程为2x =-和3460x y --=21.已知抛物线C 的顶点是坐标原点O ,而焦点是双曲线2241x y -=的右顶点. (1)求抛物线C 的方程;(2)若直线:2l y x =-与抛物线相交于A 、B 两点,则直线OA 与OB 的斜率之积是否为定值,若是,求出定值;若不是,说明理由. 【答案】(1)22y x = (2)是定值,1-【分析】(1)将双曲线的方程化为标准形式,求得右顶点坐标,根据抛物线的焦点与双曲线的右顶点重合得到抛物线的方程;(2)联立直线与抛物线方程,结合韦达定理求得弦长及两点连线的斜率公式即可求解.【详解】(1)双曲线2241x y -=化为标准形式:22114x y -=,211,42a a ==,右顶点A 1,02⎛⎫ ⎪⎝⎭,设抛物线的方程为22y px =,焦点坐标为,02p F ⎛⎫⎪⎝⎭,由于抛物线的焦点是双曲线的右顶点,所以1p =, 所以抛物线C 的方程22y x =;(2)联立222y xy x ⎧=⎨=-⎩,整理得2240y y --=,设()()1122,,,A x y B x y ,则12124,2,y y y y =-+=, ()()()121212121121224122242442OA OB y y y y y y k k x x y y y y y y -∴⋅=⋅==+++++++==--⨯, 综上,抛物线C 的方程22y x =,OA ,OB 斜率的乘积为-1.22.已知椭圆22221(0)x y a b a b +=>>的左、右两个焦点1F ,2F,离心率e =2.(1)求椭圆的方程;(2)如图,点A 为椭圆上一动点(非长轴端点),2AF 的延长线与椭圆交于B 点,AO 的延长线与椭圆交于C 点,求ABC 面积的最大值.【答案】(1)椭圆的标准方程为2212x y += (2)ABC ∆2【详解】试题分析:(1) 由题意得1b =,再由22222c e a b c a a ===+=1c = ⇒标准方程为2212x y +=;(2)①当AB 的斜率不存在时,不妨取222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭12222ABC S ∆=⨯ ②当AB 的斜率存在时,设AB 的方程为()1y k x =-,联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩ ⇒ ()222222121222422214220,2121k k k x k x k x x x x k k -+-+-=+=⋅=++ ⇒ 2212221k AB k +=+又直线0kx y k --=的距离2211k k d k k -=++⇒点C 到直线AB 的距离为2221k d k =+ ⇒ ()22222211111222222222141421ABCk k S AB d ABC k k k ∆⎛⎫+=⋅=⋅=-∆ ⎪++⎝⎭+面2试题解析:(1) 由题意得22b =,解得1b =, ∵2222c e a b c a ===+,∴2a =1c =, 故椭圆的标准方程为2212x y +=(2)①当直线AB 的斜率不存在时,不妨取 222,1,,1,A B C ⎛⎛⎛- ⎝⎭⎝⎭⎝⎭, 故12222ABC S ∆=⨯②当直线AB 的斜率存在时,设直线AB 的方程为 ()1y k x =-, 联立方程组()22112y k x x y ⎧=-⎪⎨+=⎪⎩,化简得()2222214220k x k x k +-+-=,设()()221122121222422,,,,,2121k k A x y B x y x x x x k k -+=⋅=++AB==点O 到直线0kx y k --=的距离d ==因为O 是线段AC 的中点,所以点C 到直线AB 的距离为2d∴2211122221ABCk S AB d k ∆⎛⎫+=⋅=⋅ ⎪+⎝⎭==综上,ABC ∆【点睛】本题主要考查椭圆的标准方程及其性质、点到直线的距离、弦长公式和三角形面积公式等知识,涉及函数与方程思想、数形结合思想分类与整合、转化与化归等思想,并考查运算求解能力和逻辑推理能力,属于较难题型. 第一小题由题意由方程思想建立方程组求得标准方程为22x y 12+=;(2)利用分类与整合思想分当AB 的斜率不存在与存在两种情况求解,在斜率存在时,由舍而不求法求得2121224k x x ,x x 2k 1+=⋅=⇒+ AB =,再求得点C到直线AB 的距离为2d⇒2ΔABC211k 1S AB 2d ABC 222k 1⎛⎫+=⋅=⋅= ⎪+⎝⎭面。
上学期期末考试高二数学(理科)试卷考试时间:120分钟试题分数:150分卷I一、选择题:本大题共12小题,每题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.对于常数〃?、〃,是“方程如=]的曲线是双曲线,,的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件2.命题“所有能被2整除的数都是偶数”的否定是♦♦A.所有不能被2整除的数都是偶数B.所有能被2整除的数都不是偶数C.存在一个不能被2整除的数是偶数D.存在一个能被2整除的数不是偶数x2 y23.已知椭圆一+ —— = 1上的一点P到椭圆一个焦点的距离为7,则P到另一焦点距离为25 16A. 2B. 3C. 5D. 74.在一次跳伞训练中,甲、乙两位学员各跳一次,设命题〃是“甲降落在指定范围”,g是“乙降落在指定范围”,则命题“至少有一位学员没有降,落在指定范围”可表示为A. (-1/7)v(-ity)B. /?v(-ity)C.(^/?)A(—D. pvq2 25.若双曲线:-二=1的离心率为J5,则其渐近线的斜率为crA. ±2B. ±-C. ±5/2D. ± —2 26 ,曲线),=———一!在点M(三,0)处的切线的斜率为sinx + cosx 2 4A,在 B. 一昱 C. 1 D. -12 2 2 27.已知椭圆£ +奈的焦点与双曲线今旬的焦点恰好是一个正方形的四个顶点,则抛物线少=打2的焦点坐标为A.(4-,0)B. (^- ,0)C. (0,^-)D. (0,^—)8. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜:③四向倾斜.记三种盖法屋顶而积分别为4鸟,A,① ② ③若屋顶斜而与水平而所成的角都是。
,则A. 4=E = AB. 4=4<鸟C.D.9.马云常说“便宜没好货”,他这句话•的意思是:“不便宜”是“好货”的A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件10.设。
>0, /(x) = a/+bx + c,曲线y = /(x)在点P ( %,/(X。
))处切线的倾斜角的取值范围是[0,二],则P到曲线y = /(x)对称轴距离的取值范围为4A. [0,—| a11.已知点。
在二面角a— A8 — 4的棱上,点夕在a内,且/P。
? = 60。
.若对于月内异于。
的任意一点。
,都有NR9QN60。
,则二而角。
一48-/7的大小是A. 30°B. 45°C. 60°D. 90°12.已知双曲线二一二=1(">0,〃>0)的两个焦点为入、F”点A在双曲线第一象限的图象上,若△A^F2的面积为1,且tan/AEE=1, tan/AF?片=-2,则双曲线方程为2 B号—3)'』C.犷一号=1 D. « = 112 3卷II二、填空题:本大题共4小题,每小题5分,共20分.13.正方体A8C£>-A8]GA中,〃是OR的中点,。
为底而正方形A3CD的中心,P为棱4片上任意一点,则直线OP与直线4W所成的角为.14.函数/(幻=11】工一/'(1)/+5工一4,则/(1)=.15.已知7石是夹角为60的两单位向量,向量c±a,c±b ,且Ic 1= 1, x = 2a - b +c,y = -a + 3b - c 9则cos v 京》> =.16.过抛物线/=2〃),(〃>0)的焦点尸作倾斜角为45°的直线,与抛物线分别交于4、8两点(A在y轴左侧),则凹=呵三、解答题:本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)过点(1,一1)作函数/W = x3-x的切线,求切线方程.18.(本小题满分12分)己知集合人={#(奴—1)(依+2)40},集合8 = {戈1-2 4戈<4}.若是xwA的充分不必要条件,求实数。
的取值范围.19.(本小题满分12分)如图,在四棱锥产一A8C。
中,底而为直角梯形,AD//BC ,N8AO = 90 ,以J_ 底而A8CO,且PA = AD = AB = 2BC t M,N 分别为PC,PB 的中点.(I )求证:PBLDM ;(II)求CO与平而AZM/N所成的角的正弦值.20.(本小题满分12分)己知三棱柱ABC—A8C如图所示,四边形BCCB'为菱形,N8CC=6(T, AABC为等边三角形,面A3CJL面BCC8, E、尸分别为棱A氏CC1的中点.(I )求证:石方〃而ABC;(II)求二面角。
一44'-8的大小.21.(本小题满分12分)已知椭圆G :二=1 (" >〃 > °)的离心率为当,且椭圆上点到左焦点距离的最小值为cr b"2V2-1.(I)求G的方程:(H)设直线/同时与椭圆G和抛物线C”y2=4x相切,求直线/的方程.22.(本小题满分12分)2 2已知椭圆C:=十二=1(。
>〃>0)过点(>/11),直线y = A(x—D/W0)与椭圆。
交于不cr lr同的两点M、N, MN中息为P,。
为坐标原点,直线。
尸斜率为一1・2k(I )求椭圆C的方程:(II)椭圆。
的右顶点为A,当AAMV得而积为典时,求女的值.3参考答案一.选择题CDBAC CDABB DB二.填空题--1 —至 3-2722 16三.解答题17.解:设切点为(〃?,〃?’ 一〃?),则切线方程为y-m3 +m = (3m2 -l)(x-m) , --- 2分3将点(1,一1)带入,解得〃? = 0或二,--------------- 8分2所以切线方程为丁 = 一工或23x —4y -27=0 -------- 10分2 1 2 1 18.解时,A = [——若xeB是xeA的充分不必要条件,所以一2之一一,44一,a a aa0<a<-,检验。
=1符合题意:-------------------- 4分4 4(2)〃 = 0时,A = R,符合题意:------------- 8分1 ? 1 2(3)〃<0时,4 = [_,——],若是xeA的充分不必要条件,所以一22—,44一二,a aa a—检验1不符合题意.2 2综上a e . ------------- 12 分2 419.解如图,以A为坐标原点建立空间直角坐标系A —JQN,设3C = 1,A(0,0,。
),P(0,0,2), 8(2,0,0), C(2 J 0), M(1,1,1), 0(0,2,0).2----- 3(I) 因为尸=(2,0,—2)・(1,一二,1)=0,所以P3_LDW. 2(ID 因为方亚=(2,0,-2) (0,2,0)=0,所以08_LAT>,又因为依_LZW,所以尸3_L平而ADMM因此 < 而,加〉的余角即是CQ与平而ADMN所成的角.因为COSV而,灰>=\~PB\ADC\ 5所以CO与平而ADMN所成的角的正弦为—20.(I )证明(方法一)取A3中点。
,连接EROC,因为瓦。
分别为中点,所以EO=_L A A,石。
〃AA', ------------ 3 分2所以ED=CF,ED〃CF ,所以四边形石尸C。
为平行四边形,所以EF〃CD,又因为EE© 面ABC, COujffABC,所以EE〃而ABC;-------------- 6 分(方法二)取AA中点G,连接EG,EG, 因为瓦G分别为A&AA中点,所以EG//AB又因为EG分别为CC,AA中点,所以FG//AC------------- 3 分且EGu 而EFG,GF u 而EFG,EGCGF = G .A Cu 面A 8C, A 8 u 面A' BC\8 = A'所以而EFG〃而A,BC,又EFu而EFG,所以石尸〃而48C ------------- 6分(方法三)取8C中点。
,连接AOOC,由题可得AOL8C,又因为而A3C_L而8CC8, 所以AO,而8CC8,又因为菱形BCC8中N8CC=60",所以CO_L8C.可以建立如图所示的空间直角坐标系■ . MB ■ MB . MB , Mi ■ MB ■ MB ■了不妨设3c=2,可得C(l,0,0), 0(0, 万o)1 /o 1 /o40,0,6),8(-1,0,0), A(T Q,扬,夕(一2,后,0),所以E(——,0,J),F(_,上,0)2 2 2 2所以 E 尸=(1, j - -), BC = (1,、反0), 84 = (0,瓜 73), -9 分2 2设面A8c 的一个法向量为方= m/,c ),则+ 仲二° ,不妨取。
=、行,则V3Z? + V3c = 0(a.b,c) =所以 EF -亓=0 ,又因为石万(z 而ABC,所以石尸〃而ABC.---------- 12分(II )(方法一)过F 点作44'的垂线FM 交44,于M ,连接8M,8凡因为 8尸_1_。
,。
〃44', 所以3尸_LAA ,所以AA_L 而 所以N8Mb 为二而角C-AA-B 的平 面角. -------------- 8分因为而ABC±而BCCB : 所以A 点在而BCCB'上的射影落在8c 上,所以cosZACC = cosZBCC'cosZACB =—, 4所以sinNACC 三四=",不妨设6c = 2,所以加/=』工,同理可得4 AC2---------- 10分所以 CO S ZBMF=^—4—=-155~23 arc cos- ------- 12 分5(方法二)接(I )方法三可得而=(-1,0,-75),无彳=(一1,、反0),设而AA3的一个法向所以二而角C-AA-B 的大小为量为% =(X],y,a ),则, * /q 一°,不妨取Xj=J5,贝lJ (X1,y,Zi )=(6,1,一1) . 〔一再+真兑=0 ^- ----- ——8 分又就=(1,0,-百),/=(一1,6,0),设而A4C 的一个法向量为&=5,乃,芍),则 / 一咚 2=° ,不妨取 X,=有,则(X,,),,,z,) = (6,1,1). ---- 1。
分—— 3所以cos < R,人>=二,=-,因为二面角C-AA-B 为锐角,所以二面角C-AA-BI ZL I - I *1 53的大小为arcco 匚 -----521.解:(【)设左右焦点分别为E (—C ,0),F2(C ,°),椭圆上点尸满足I PF, I +1 PF 2 \= 2a^2c <1 I -1 PF 2 l< 2c,所以 a-c<\PF x \<a + c y P 在左顶点时XC一 + /=1.(或者利用设尸解出|尸片\=a + -x 得出\PF } I 取到最小值2 aa-c = 41-\ ,对于直接说明尸在左顶点时1尸耳I 取到最小值的,酌情扣分);(H )由题显然直线/存在斜率,所以设其方程为),=攵%+〃?, ------------- 5分2联立其与f + V = i,得到 2(1 + 2A:2)x 2 + 4kmx + 2m 2 -2 = 0, A = 0,化简得"一一2公 一 1 = 0 -- 8 分联立其与G :),2=4X ,得到—y 2 - y + m = 0, △ = (),化简得攵〃z —1 = 0, --- 10 分4.解得 k ==氏或 k = 一^•,6=-412 2--- 1 2分1尸片I 取到最小值〃 — c =、历一 1,又£ = a解得。