内蒙古工业大学 工程光学 习题课
- 格式:ppt
- 大小:547.00 KB
- 文档页数:25
光学习题课2004.5.10壹. 内容提要一.光的干涉1.相干条件:与波的相干条件相同(略).2.光程=nl,光程差δ=n2l2-n1l1;理想透镜不产生附加光程差;半波损失:光从疏媒质向密媒质入射时,在反射光中产生半波损失;折射光不产生半波损失;半波损失实质是位相突变π.3.明纹、暗纹的条件:明纹δ=±2kλ/2,k=0,1,2,…;暗纹δ=±(2k-1)λ/2,k=0,1,2,….4.分波阵面法(以杨氏双缝干涉为代表):光程差δ=nxd/D明纹坐标x=±2k(D/d)λ/(2n)暗纹坐标x=±(2k-1)(D/d)λ/(2n)条纹宽度∆x=(D/d)(λ/n)5.分振幅法(薄膜干涉,以n1<n2>n3为例) (1)光程差:反射光δr=2n2e cos r+λ/2=2e(n22-n12sin2i)1/2+λ/2透射光δt=2n2e cos r=2e(n22-n32sin2r’)1/2 (2)等厚干涉(光垂直入射,观察反射光):相邻条纹(或一个整条纹)所对应薄膜厚度差∆e=λ/(2n)劈尖干涉条纹宽度∆l=λ/(2nθ)牛顿环的条纹半径明纹r=[(k-1/2)Rλ/n]1/2(k=1,2,3,…)暗纹r=(kRλ/n)1/2(k=0,1,2,3,…)(3)等倾干涉(略).(4)迈克耳逊干涉仪:M1与M'2平行为等倾条纹,此时如动镜移动λ/2,则中心涨出或陷入一个条纹;M1与M'2不严格平行为等厚条纹,此时如动镜移动λ/2,则条纹平行移动一个条纹的距离.二.光的衍射1.惠更斯—费涅耳原理(1)子波,(2)子波干涉.2.单缝衍射半波带法中央明纹:坐标θ=0,x=0;宽度∆θ 0≈2λ/a,∆x≈2λf/a其他条纹:暗纹角坐标θ满足a sinθ=±kλ明纹角坐标θ近似满足a sinθ≈±(2k+1)λ条纹宽度∆θ≈λ/a∆x≈λf/a3.光栅(多光束干涉受单缝衍射调制)明纹明亮、细锐光栅方程式(a+b)sinθ=±kλ缺级衍射角θ同时满足(a+b)sinθ=±kλa sinθ=±k'λ时,出现缺级,所缺级次为k=k' (a+b)/a.4.园孔衍射爱里斑角半径θ=0.61λ/a=1.22λ/d光学仪器的最小分辩角δθ=0.61λ/a=1.22λ/d5.x射线的衍射布喇格公式2d sinθ=kλ三.光的偏振1.自然光、偏振光、部分偏振光;偏振片,偏振化方向,起偏、检偏.2.马吕期定律I=I0cos2α.3.反射光与折射光的偏振一般情况:反射光为垂直入射面振动大于平行入射面振动部分偏振光,折射光为垂直入射面振动小于平行入射面振动部分偏振光.布儒斯特定律:当入射角满足tg i0=n2/n1,即反射光与折射光相互垂直时,反射光为垂直入射面振动的完全偏振光,折射光仍为部分偏振光.4、双折射:寻常光线(o 光)满足普通折射定律,为垂直自己主平面的偏振光;非常光线(e 光)不满足普通的折射定律,为平行自己主平面的偏振光. 双折射晶体的光轴,主截面、主平面.5、旋光现象:偏振面旋转的角度 旋光溶液中 ∆θ=αCl 旋光晶体中 ∆θ=αl (α为旋光系数,C 为浓度).贰. 练习二十二至练习二十八答案及简短解答练习二十二 光的相干性双缝干涉 光程一.选择题C D D B A 二.填空题 1. 2πd sin θ /λ. 2. 2π(n -1)e/λ; 4×104. 3. D λ/(nd ). 三.计算题1.明纹坐标 x k =kD λ/a同级明纹中心之间的距离 ∆x k = kD ∆λ/a 第一级彩色明纹宽度 ∆x 1= D ∆λ/a=0.72mm 第五级彩色明纹宽度 ∆x 5= 5D ∆λ/a=3.6mm2.(1) 明纹坐标 x k =kD λ/a ∆x=12k k x x -=(k 2-k 1)D λ/a=20D λ/a =0,11m (2) 零级明纹即光程差为零的明纹,玻璃片覆盖上一条缝后,有δ= r 2-[r 1+ (n -1)e ]=0r 2-r 1=(n -1)e不覆盖玻璃片时 r 2-r 1= k λ 有 (n -1)e = k λ故玻璃片覆盖一缝后,零级明纹移至原来明纹的级次为 k= (n -1)e/λ=6.96~7练习二十三 薄膜干涉 劈尖一.选择题 A B C D B 二.填空题 1. 1.40. 2. λ/(2L ). 3. 5λ/(2n θ).三.计算题1.因相干加强,n 1<n 2>n 3,光垂直入射,有δ=2ne+λ/2=k λ λ=4ne/(2k -1)k=1 λ=30000 Å 红外光 k=2 λ=10000 Å 红外光 k=3 λ=6000Å 可见光 k=4 λ=4286Å 可见光 k=5 λ=3333Å 紫外光故在可见光范围内,最大限度增强的反射光波长为 λ=6000Å λ=4286Å.2.相邻条纹膜厚差为 ∆e=λ/(2n ) 相邻明纹间距 l=∆e/θ=λ/(2n θ) 折射率变化时,相邻明纹间距的变化为 ∆l= l 1-l 2= [λ/(2θ)](1/n 1-1/n 2)故 θ =[λ/(2∆l )](1/n 1-1/n 2)=1.7×10-4rad练习二十四 牛顿环 迈克耳逊干涉仪 衍射现象一.选择题 B C C D A 二.填空题 1. 5391. 2. 0.5046.3. 2(n -1)h . 三.计算题1. 设反射光牛顿环暗环半径r ,不含e 0对应空气膜厚r 2/(2R ),故r 处空气膜总厚为e=r 2/(2R )+e 0光垂直照射,相干减弱,有δ=2e+λ/2=r2/R+2e0+λ/2=(k+1/2)λ得牛顿环的各暗环半径r=[(kλ-2e0)R]1/2 (k≥2e0/λ的整数)四.证明题1.反射光牛顿环暗环半径r处空气膜厚为e=e1-e2=r2/(2R1)-r2/(2R2)光垂直照射,相干减弱,有δ=2e+λ/2= r2/R1-r2/R2+λ/2=(k+1/2)λ得牛顿环的各暗环半径r=[kλ/(1/R1-1/R2)]1/2=[kλR1R2/(R2-R1)]1/2(k为大于等于零的整数)练习二十五单缝圆孔光学仪器的分辨率一.选择题 B D D C A二.填空题1. 子波;子波干涉.2.1×10-6.3. 4;第一;暗.三.计算题1. 单缝衍射暗纹角坐标θ满足a sinθk=kλ(k=±1, ±2, ±3,…)线坐标x k=f tgθk≈f sinθk=fkλ/a第二级与第三级暗纹间距∆x= x3- x2= fλ/a得透镜焦距f=a∆x/λ=400mm四.问答题1.单缝衍射暗纹角坐标θ满足a sinθ=kλ(k=±1,±2,±3,…). a很大时,较小的θ对应很大的k值.这说明大量条纹挤在中央明纹附近,根本分辨不清.更大级次条纹的光强太弱,与黑暗连成一片.这样就观察不到衍射条纹.练习二十六光栅X射线的衍射一.选择题A D C D B二.填空题1. 916.2. 1.3. 0,±1,±3,±5….三.计算题1. d=1×10-3/500=2×10-6m=2×104 Å由光栅方程式d sinθ=kλ知θ=arcsin(kλ/d)k=2 λ1=5890 Åθ1=36.086°k=2 λ2=5896 Åθ2=36.129°故两谱线分开的角度∆θ=θ2-θ1=0.043°2.(1) 单缝衍射中央明纹半角宽度θ1满足a sinθ 1=λ中央明纹宽度∆x=2f tgθ1≈2fλ/a=0.06m (2)d=1×10-2/200=5×10-5m宽度∆x内主极大衍射角θ应满足θ<θ1, 即sinθ<sinθ1=λ/a由光栅方程式d sinθ=kλ得sinθ=kλ/d<λ/ak<d/a=2.5取k=2,所以在单缝衍射中央明纹宽度内, 有k=0,±1,±2等5条光栅衍射主极大.练习二十七光的偏振一.选择题A C B D C二.填空题1. 遵守普通的折射;不遵守普通的折射.2.见图.3. ∆ϕ=α l.三.计算题1. 设入射光中线偏振光光矢量方向与P1的偏振化方向的夹角为θ,透过P1的光强为I1=(1/2)( I0/2)+( I0/2)cos2θ =(I0/2)(1/2+cos2θ) 透过P2的光强为I2=I1cos230°=(3I0/8)(1/2+cos2θ)因I2/I0=9/19,有(3/8)(1/2+cos2θ)=9/161/2+cos2θ=3/2 cos2θ=1所以θ=0即入射光中线偏振光光矢量方向与偏振片P1的偏振化方向平行.四.问答题1.可用布儒斯特定律测不透明介质的折射率.其原理如下:将不透明介质的表面加工成一光学平面,将一束自然光自空气入射到此表面上.用一偏振片检测反射光是否为线偏振光.不断改变入射角,直至反射光为线偏振光,测出此时的入射角i0.再依布儒斯特定律tg i0=n2/n1,得出n=n2=n1tg i0=tg i0此n即为不透明介质的折射率.练习二十八光学习题课一.选择题A C B D B二.填空题1. 900.2. 5.3. 60°;9I 0/32.三.计算题1.(1) 单缝衍射明纹角坐标θ满足a sinθk=(2k+1)λ/2(k=±1, ±2, ±3,…) 线坐标x k=f tgθk≈f sinθk=f(2k+1)λ/(2a)两光第一级明纹间距∆x=x2-x1=3f(λ2-λ1)/(2a)=2.7×10-3m (2) 光栅方程式d sinθ=kλx k=f tgθk≈f sinθk=fkλ/d两光第一级明纹间距∆x=x2-x1=f(λ2-λ1)/d=1.8×10-2m2.时刻t第二偏振片偏振化方向和第一偏振片偏振化方向间夹角为θ=ωt,光先后通过三个偏振片后的光强为I1= I0/2I2= I1cos2θ= (I0/2) cos2ωtI=I3=I2cos2(π/2-θ)=(I0/2)cos2ωt sin2θ=(I0/2)cos2ωt sin2ωt=(I0/2)[(sin2ωt)/2]2= I0(1-cos 4ω t )/16叁. 课堂例题一.选择题1.如图3.1所示,折射率为n2、厚度为e的透明介质薄膜的上方和下方的透明介质的折射率分别为n1和n3,已知n1 <n2 >n3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①②示意)的光程差是(A) 2n2e.(B) 2n2e-λ/(2 n2 ).(C) 2n2e-λ.(D) 2n2e-λ/2.2. 如图3.2所示,s1、s2是两个相干光源,它们到P点的距离分别为r1和r2,路径s1P垂直穿过一块厚度为t1,折射率为n1的介质板,路径s2P垂直穿过厚度为t2,折射率为n2的另一介质板,其余部分可看作真空,这两条路径的光程3图3.1 ss图3.2差等于(A) (r 2 + n 2 t 2)-(r 1 + n 1 t 1).(B) [r 2 + ( n 2-1) t 2]-[r 1 + (n 1-1)t 1]. (C) (r 2 -n 2 t 2)-(r 1 -n 1 t 1). (D) n 2 t 2-n 1 t 1.3. 如图3.3所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n 1<n 2>n 3,λ1 为入射光在折射率为n 1 的媒质中的波长,则两束反射光在相遇点的位相差为(A) 2 π n 2 e / (n 1 λ1 ).(B) 4 π n 1 e / (n 2 λ1 ) +π.(C) 4 π n 2 e / (n 1 λ1 ) +π.(D) 4π n 2 e / (n 1 λ1 ). 4. 在如图3.4所示的单缝夫琅和费衍射实验装置中,s 为单缝,L 为透镜,C 为放在L 的焦面处的屏幕,当把单缝s 沿垂直于透镜光轴的方向稍微向上平移时,屏幕上的衍射图样(A) 向上平移.(B) 向下平移. (C) 不动.(D) 条纹间距变大.5. 在光栅光谱中,假如所有偶数级次的主极大都恰好在每缝衍射的暗纹方向上,因而实际上不出现,那么此光栅每个透光缝宽度a 和相邻两缝间不透光部分宽度b 的关系为(A) a = b . (B) a = 2b . (C) a = 3b .(D) b = 2a . 二.填空题1. 光的干涉和衍射现象反映了光的 性质, 光的偏振现象说明光波是 波.2. 牛顿环装置中透镜与平板玻璃之间充以某种液体时,观察到第10级暗环的直径由1.42cm 变成1.27cm,由此得该液体的折射率n = .3. 用白光(4000Å~7600Å)垂直照射每毫米200条刻痕的光栅,光栅后放一焦距为200cm 的凸透镜,则第一级光谱的宽度为 .三.计算题1. 波长为500nm 的单色光垂直照射到由两块光学平玻璃构成的空气劈尖上,在观察反射光的干涉现象中,距劈尖棱边 l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈尖的劈尖角θ .(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A 处是明条纹,3图3.3图3.4还是暗条纹?2. 设光栅平面和透镜都与屏幕平行,在平面透射光栅上每厘米有5000条刻线,用它来观察波长为λ=589 nm 的钠黄光的光谱线.(1) 当光线垂直入射到光栅上时,能看到的光谱线的最高级数k m 是多少?(2) 当光线以30︒的入射角(入射线与光栅平面法线的夹角)斜入射到光栅上时,能看到的光谱线的最高级数k m 是多少?肆. 光学测试题一.选择题1. 有三种装置(1) 完全相同的两盏钠光灯,发出相同波长的光,照射到屏上;(2) 同一盏钠光灯,用黑纸盖住其中部将钠光灯分成上下两部分同时照射到屏上; (3) 用一盏钠光灯照亮一狭缝,此亮缝再照亮与它平行间距很小的两条狭缝,此二亮缝的光照射到屏上.以上三种装置,能在屏上形成稳定干涉花样的是 (A) 装置(2).(B) 装置(3). (C) 装置(1)(3).(D) 装置(2)(3).2. 波长为λ的单色光垂直入射到厚度为d 的平行膜上,如图4.1,若反射光消失,则当n 1<n 2<n 3时,应满足条件(1); 当n 1<n 2>n 3时应满足条件(2). 条件(1),条件(2)分别是(A) (1)2nd = k λ, (2) 2nd = k λ.(B) (1)2nd = k λ + λ/2, (2) 2nd = k λ+λ/2. (C) (1)2nd = k λ-λ/2, (2) 2nd = k λ.(D) (1)2nd = k λ, (2) 2nd = k λ-λ/2.3. 在一块平玻璃片B 上,端正地放一个顶角接近于π,但小于π的圆锥形平凸透镜A ,在A 、B 间形成空气薄层,如图4.2所示,当用单色光垂直照射平凸透镜时,从玻璃片的下面可观察到干涉条纹,其特点是(A) 中心暗的同心圆环状条纹,中心密,四周疏. (B) 中心明的同心圆环状条纹,中心疏,四周密. (C) 中心暗的同心圆环状条纹,环间距相等. (D) 中心明的同心圆环状条纹,环间距相等.4. 单色光λ垂直入射到单狭缝上,对应于某一衍射角θ , 此单狭缝两边缘衍射光通过透镜到屏上会聚点A 的光程差为δ = 2λ , 则(A) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A 点为明点. (B) 透过此单狭缝的波阵面所分成的半波带数目为二个,屏上A 点为暗点.(C) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A 点为明点.3图4.1图4.2(D) 透过此单狭缝的波阵面所分成的半波带数目为四个,屏上A点为暗点.5. 每毫米刻痕200条的透射光栅,对波长范围为5000Å~6000Å的复合光进行光谱分析, 设光垂直入射.则最多能见到的完整光谱的级次与不重叠光谱的级次分别为(A) 8, 6.(B) 10, 6.(C) 8, 5.(D) 10, 5.6. 一束由自然光和线偏光组成的复合光通过一偏振片,当偏振片转动时,最强的透射光是最弱的透射光光强的16倍,则在入射光中,自然光的强度I1和偏振光的强度I2之比I1:I2为(A) 2:15.(B) 15:2.(C) 1:15.(D) 15:1.7. 在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是(A) 使屏靠近双缝.(B) 把两个缝的宽度稍微调窄.(C) 使两缝的间距变小.(D) 改用波长较小的单色光源.8. 由两块玻璃片(n1 = 1.75)所形成的空气劈尖,其一端厚度为零,另一端厚度为0.002cm,现用波长为7000 Å的单色平行光,从入射角为30︒角的方向射在劈尖的表面,则形成的干涉条纹数为(A) 27.(B) 56.(C) 40.(D) 100.9. 在迈克尔逊干涉仪的一条光路中放入一个折射率为n,厚度为d的透明片后,这条光路的光程增加了(A) 2(n-1)d.(B) 2nd.(C) (n-1)d.(D) nd.10. 一直径为2mm的He-Ne激光束从地球上发出投射于月球表面,己知月球和地面的距离为376×103km, He-Ne激光的波长为6328Å,则月球得到的光斑直径为(A) 0.29×103m.(B) 290×103 m.(C) 2.9×103 m.(D) 29×103 m.二.填空题1. 每厘米6000条刻痕的透射光栅,使垂直入射的单色光的第一级谱线偏转20︒角,这单色光的波长是 ,第二级谱线的偏转角是 .2. 一束白光垂直照射厚度为0.4μm 的玻璃片,玻璃的折射率为1.50,在反射光中看见光的波长是 ,在透射光中看到的光的波长是 .3. 一束平行光,在真空中波长为589nm,垂直入射到方解石晶体上,晶体的光轴和表面平行,如图4.3所示.已知方解石晶体对此单色光的折射率为n o =1.658, n e =1.486.则此光在该晶体中分成的寻常光的波长λo = , 非寻常光的波长λe = .4. 一束单色光垂直入射在光栅上,衍射光谱中共出现5条明纹.若已知此光栅每缝宽度与不透光部分宽度相等,那麽在中央明纹一侧的两条明纹分别是第 级和第 级谱线.5. 己知天空中两颗星相对于一望远镜的角距离为6.71×10-7rad,它们发出的光波波长按5500 Å计算,要分辨出这两颗星,望远镜的口镜至少要为 .6. 光强均为I 0 的两束相干光相遇而发生干涉时, 在相遇区域内有可能出现的最大光强是 .7. 如图4.4所示,波长为λ的平行单色光垂直照射到两个劈尖上,两劈尖角分别为 θ1和θ2 ,折射率分别为n 1和n 2 ,若二者形成干涉条纹的间距相等,则θ1 , θ2 , n 1和n 2之间的关系是 .8. 如图4.5所示,在劳埃镜干涉装置中,若光源s 离屏的距离为D , s 离平面镜的垂直距离为a (a 很小).则平面镜与屏交界处A 的干涉条纹应为 条纹;设入射光波长为λ,则相邻条纹中心间的距离为 .9.2. 某块火石玻璃的折射率是1.65, 现将这块玻璃浸没在水中( n = 1.33 ), 欲使从这块火石玻璃表面反射到水中的光是完全偏振的, 则光由水射向玻璃的入射角应为 .10. 用平行的白光垂直入射在平面透射光栅上时,波长为λ1 = 440nm 的第3级光谱线,将与波长为λ2 = nm 的第2级光谱线重叠. 三.计算题1. 双缝干涉实验装置如图4.6所示,双缝与屏之间的距离D =120cm,两缝之间的距离d =0.50mm,用波长λ=5000 Å的单色光垂直照射双缝.(1) 求原点O (零级明条纹所在处)上方的第五级明条纹的坐标.(2) 如果用厚度e =1.0×10-2mm,折射率n =1.58的透明薄膜覆盖在图中的s 1缝后面,求上述第五级明条纹的坐标x ' .2. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜,入射光垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=6000Å的光干涉相消,对λ2=7000Å的光波干涉相长,且在6000Å~图4.5图4.4光图4.37000Å之间没有别的波长的光波最大限度相消或相长的情况,求所镀介质膜的厚度.3. 波长λ=6000Å的单色光垂直入射到一光栅上,测得第二级主极大的衍射角为30︒,且第三级是缺级.(1)光栅常数(a + b)等于多少?(2)透光缝可能的最小宽度a等于多少?(3) 在选定了上述(a+b)和a之后, 求在衍射角-π/2 <ϕ<π/2 范围内可能观察到的全部主极大的级次.4. 两块偏振片叠在一起,其偏振化方向成30︒角, 由强度相同的自然光和线偏振光混合而成的光束垂直入射在偏振片上,已知两种成分的入射光透射后强度相等.(1)若不计偏振片对透射分量的反射和吸收, 求入射光中线偏振光光矢量振动方向与第一个偏振片偏振化方向之间的夹角.(2)仍如上一问,求透射光与入射光的强度之比.(3) 若每个偏振片对透射光的吸收率为5% , 再求透射光与入射光的强度之比.伍. 光学测试题解答一.选择题 B C D D C A C A A B二.填空题1. 570nm, 43.16°.2. 0.48μm; 0.6μm, 0.4μm.3. 355nm, 396nm.4. 1, 3.5. 1.0m.6. 4I0.7. n1θ1= n2θ2.8. 暗, ∆x=Dλ/(2a) .9. 2. 51.13°.10. 660.三.计算题1. (1)光程差δ=r2-r1=xd/D=kλx k=kλD/d因k=5有x5=6mm(2)光程差δ=r2-(r1-e+ne)=r2-r1-(n-1)e=x'd/D-(n-1)e=kλ有x'=[kλ+(n-1)e]D/d因k=5,有x'5=19.9mm2. 因n1<n2<n3所以光程差δ=2n2eλ1相消干涉,有δ=2n2e=(2k1+1)λ1/2 λ2相长干涉,有δ=2n2e=2k2λ2/2因λ2>λ1,且中间无其他相消干涉与相长干涉,有k1=k2=k,故(2k+1)λ1/2=2kλ2/2k=λ1/[2(λ2-λ1)]=3得e=kλ2/(2n2)=7.78⨯10-4mm3. (1) (a+b)sinϕ=kλa+b= kλ/sinϕ=2.4⨯10-4cm(2) (a+b)sinθ=kλ,a sinθ=k'λ(a+b)/a=k/k'a=(a+b)k'/k这里k=3,当k'=1时a=(a+b)/3=0.8⨯10-4cm 当k'=2时a=2(a+b)/3=1.6⨯10-4cm 最小宽度a=0.8⨯10-4cm(3) 因θ<π/2,有kλ=(a+b)sinθ<(a+b)k< (a+b)/ λ=4 k max=3而第三级缺级,故实际呈现k=0,±1,±2级明纹,共五条明纹.4. 设入射前自然光与偏振光的光强均为I0,透射后自然光与偏振光光强分别为I1,I2.有(1)自然光I1=(I0/2)cos230°偏振光I2=I0cos2αcos230°且I1=I2得cosα=22所以入射光中线偏振光光矢量振动方向与第一个偏振片偏振化方向之间的夹角α=45°(2)透射光与入射光的强度之比(I1+ I2)/(2 I0)=(1/2)( cos230°/2+cos245°cos230°)= cos230°/2=3/8;(3)I'1=[I0(1-5%)/2](1-5%)cos230°I'2=I0(1-5%)cos2α(1-5%)cos230°故考虑吸收后透射光与入射光的强度之比(I'1+ I'2)/(2 I0)=I'/I0=(1/2)(1-5%)2cos230°=0.3381111陆. 光学习题课课堂例题解答一.选择题 D B C C A 二.填空题1. 波动,横. 2. 1.25.3. 14.7cm(或14.4cm). 三.计算题1.因是空气薄膜,有n 1>n 2<n 3,且n 2=1,得δ=2e +λ/2, 暗纹应 δ=2e +λ/2=(2k +1)λ/2,所以2e=k λ e=k λ/2因第一条暗纹对应k =0,故第4条暗纹对应k =3,所以e =3λ/2(1) 空气劈尖角 θ=e/l =3λ/(2l )=4.8⨯10-5rad(2) 因 δ/λ'=(2e +λ'/2)/λ'=3λ/λ'+1/2=3故A 处为第三级明纹,棱边依然为暗纹. (3) 从棱边到A 处有三条明纹,三条暗纹,共三条完整条纹.2. (1) (a+b ) sin θ=k max λ<(a+b )k max <(a+b )/λ=3.39所以最高级数 k max =3(2) (a+b ) (sin30°+sin θ ')=k 'max λ k'max <(a+b ) (sin30°+1)/λ=5.09 所以 k 'max =5。
1λ十二 十三 十五第十二章 习题及答案1。
双缝间距为1mm ,离观察屏1m ,用钠灯做光源,它发出两种波长的单色光 =589.0nm 和2λ=589.6nm ,问两种单色光的第10级这条纹之间的间距是多少?解:由杨氏双缝干涉公式,亮条纹时:d Dm λα=(m=0, ±1, ±2···)m=10时,nm x 89.511000105891061=⨯⨯⨯=-,nmx 896.511000106.5891062=⨯⨯⨯=- m x x x μ612=-=∆2。
在杨氏实验中,两小孔距离为1mm ,观察屏离小孔的距离为50cm ,当用一片折射率1.58的透明薄片帖住其中一个小孔时发现屏上的条纹系统移动了0.5cm ,试决定试件厚度。
21r r l n =+∆⋅22212⎪⎭⎫⎝⎛∆-+=x d D r 22222⎪⎭⎫⎝⎛∆++=x d D r x d x d x d r r r r ∆⋅=⎪⎭⎫ ⎝⎛∆--⎪⎭⎫ ⎝⎛∆+=+-222))((221212mm r r d x r r 2211210500512-=⨯≈+⋅∆=-∴ ,mm l mm l 2210724.110)158.1(--⨯=∆∴=∆- 3.一个长30mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系。
继后抽去气室中的空气,注入某种气体,发现条纹系移动了25个条纹,已知照明光波波长λ=656.28nm,空气折射率为000276.10=n 。
试求注入气室内气体的折射率。
0008229.10005469.0000276.1301028.6562525)(600=+=⨯⨯=-=-∆-n n n n n l λ4。
垂直入射的平面波通过折射率为n 的玻璃板,透射光经透镜会聚到焦点上。
玻璃板的厚度沿着C 点且垂直于图面的直线发生光波波长量级的突变d,问d 为多少时焦点光强是玻璃板无突变时光强的一半。
工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第一章 几何光学基本定律1. 已知真空中的光速c =3810⨯m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s, 当光在冕牌玻璃中,n=1.51时,v=1.99 m/s, 当光在火石玻璃中,n =1.65时,v=1.82 m/s , 当光在加拿大树胶中,n=1.526时,v=1.97 m/s ,当光在金刚石中,n=2.417时,v=1.24 m/s 。
2. 一物体经针孔相机在 屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm 。
3. 一厚度为200mm 的平行平板玻璃(设n =1.5),下面放一直径为1mm 的金属片。
若在玻璃板上盖一圆形的纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片的最小直径应为多少?2211sin sin I n I n =66666.01sin 22==n I745356.066666.01cos 22=-=I88.178745356.066666.0*200*2002===tgI xmm x L 77.35812=+=4.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有: n 0sinI 1=n 2sinI 2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n 0 .5. 一束平行细光束入射到一半径r=30mm 、折射率n=1.5的玻璃球上,求其会聚点的位置。
第一章习题1、已知真空中的光速c=3×108 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:,所以x=300mm即屏到针孔的初始距离为300mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
如果在凸面镀反射膜,其会聚点应在何处?如果在凹面镀反射膜,则反射光束在玻璃中的会聚点又在何处?反射光束经前表面折射后,会聚点又在何处?说明各会聚点的虚实。
解:该题可以应用单个折射面的高斯公式来解决,设凸面为第一面,凹面为第二面。
(1)首先考虑光束射入玻璃球第一面时的状态,使用高斯公式:会聚点位于第二面后15mm处。
(2)将第一面镀膜,就相当于凸面镜像位于第一面的右侧,只是延长线的交点,因此是虚像。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
工程光学习题解答第十四章 光的偏振和晶体光学1. 一束自然光以 30 度角入射到玻璃 -空气界面, 玻璃的折射率 n 1.54 ,试计算 ( 1)反射光的偏振度;( 2)玻璃 -空气界面的布儒斯特角; ( 3)以布儒斯特角入射时透射光的偏振度。
解:光由玻璃到空气,n 1 1.54,n 2 1,130o , 2 sin 1n 1sin 1 50.354n 2① r ssin 12tan120.06305sin0.3528, r p12tan12I maxI min22Pr sr p93.80 0I maxI min22r sr p② B1n 2tan 1133 otann 11.54③ 1B时, 290B57 0 , r p 0, r ssin 12 0.4067sin 12T s 1 r s 2 0.8364, T p 1P 1 0.8364 9 0 010.8364注:若n 2 cos 2 , T st s 2 ,T pt p2n 1 cos 1ImaxT p I 0, IminT s I 0故Pt p 2t s 2或 T scos 2(12)t p 2 t s 2T p2. 自然光以布儒斯特角入射到由10 片玻璃片叠成的玻片堆上,试计算透射光的偏振度。
10 片玻璃透射率 T s 1 r s20 0.028解:每片玻璃两次反射,故20.836420而 T p 1,令I min ,则p1 IIm ax1Im axm axII m in m in1 0.02689 0.94761 0.026893. 选用折射率为 2.38 的硫化锌和折射率为 1.38 的氟化镁作镀膜材料,制作用于氟氖激光(632.8nm )的偏振分光镜。
试问(1)分光镜的折射率应为多少?(2)膜层的厚度应为多少?解:( 1)n3sin 45 n2 sin 2n1 n3tg 2 (起偏要求)n2n3 452n2 sin 1 n3n3 2 2n2tg 22 n22 1 tg 2n1 n1 1 n1 n2 n22 n2n2 1 n1 2 2 n2 2 n1 2 1.6883n2(2)满足干涉加强 2 2n2 h2 cos 22 ,2 sin 1 n3 30.1065n2 sin 45则 h2 2 76.84 nmcos2n2 2而1 90 2 59.8934 , h12 228.54 nm 2n1 cos 14. 线偏振光垂直入射到一块光轴平行于界面的方解石晶体上,若光矢量的方向与警惕主截面成( 1)30 度( 2)45 度( 3)60 度的夹角,求o光和e光从晶体透射出来后的强度比?解:垂直入射 1 2 3, S 波与 p 波分阶r s 2 r p 2n1 cos 1 n2 cos 2 n1 n2r sn2 cos n1 n2n1 cos 1 2n2 cos 1 n1 cos 2 n2 n1r pn1 cos n2 n1n2 cos 1 2o 光此时对应 s 波r0 1 n0 ,T0 1 r02 4n0 22 21 n0 1 n02e 光此时对应 p 波r en e 1 , T e1 224n en e1 r e21 n e2T 0 sin 224I 0E s T 0 tg 2n 0 1 n e I eE p 2T e cos 2 T en e1 n 0取 n 0 1.6584 , n e 1.4864则Itg 20.9526I e( 1)30 ,I 01 0.9526 0.3175I e3( 2)45 ,I 00.9526I e( 3)60 ,I 03 0.95262.8578I e5. 方解石晶片的厚度 d 0.013mm ,晶片的光轴与表面成60 度角, 当波长632.8nm的氦氖激光垂直入射晶片时(见图14-64),求( 1)晶片内 o 、 e 光线的夹角;( 2) o 光和 e 光的振动方向; ( 3) o 、 e 光通过晶片后的相位差。
工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。
2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。
解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。
若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。
解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。
第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1。
333)、冕牌玻璃(n=1。
51)、火石玻璃(n=1.65)、加拿大树胶(n=1。
526)、金刚石(n=2.417)等介质中的光速。
解:则当光在水中,n=1。
333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1。
526时,v=1.97 m/s,当光在金刚石中,n=2。
417时,v=1.24 m/s.2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离.解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。
3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片.若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。
而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。
4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角).解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1。
工程光学基础教程_习题参考答案工程光学基础教程_习题参考答案第一章光学基本知识与技术1.1 什么是光学?光学在人类生活中有哪些应用?答:光学是研究光的行为和性质的物理学科。
它涉及到光的产生、传播、变换、干涉、衍射、偏振以及光在介质中的行为等问题。
光学在人类生活中有着广泛的应用,如眼镜、镜头、显示器、照明、医疗器械、天文望远镜等。
1.2 光的波动性是如何描述的?答:光的波动性是指光是一种电磁波,具有振幅、频率、波长等特征。
它可以在空间中传播,并且可以表现出干涉、衍射等波动性质。
光的波动性可以通过波长、频率、振幅等参数进行描述。
1.3 什么是光的干涉?举例说明其应用。
答:光的干涉是指两列或两列以上的光波在空间中叠加时,由于光波的叠加产生明暗相间的干涉条纹的现象。
光的干涉在很多领域都有应用,例如光学干涉仪、双缝干涉实验、全息照相、光学通信等。
1.4 什么是光的衍射?举例说明其应用。
答:光的衍射是指光在遇到障碍物或孔径时,会绕过障碍物或孔径边缘,产生明暗相间的衍射图案的现象。
光的衍射在很多领域也有应用,例如光学透镜、衍射光学器件、全息照相、光学存储等。
1.5 什么是光的偏振?举例说明其应用。
答:光的偏振是指光波的电矢量在振动时,只在某个方向上振动,而在其他方向上振动为零的现象。
光的偏振在很多领域也有应用,例如偏振眼镜、偏振片、偏振光学器件等。
第二章光学透镜与成像2.1 什么是透镜?列举几种常见的透镜及其特点。
答:透镜是一种光学器件,它由一块透明材料制成,可以聚焦或发散光线。
常见的透镜包括凸透镜、凹透镜、平凸透镜、平凹透镜等。
2.2 凸透镜的成像原理是什么?如何计算凸透镜的焦距?答:凸透镜的成像原理是光线经过凸透镜后,平行于主轴的光线会聚于一点,这个点称为焦点。
焦距是指从透镜中心到焦点的距离。
凸透镜的焦距可以通过公式 f=1/v+1/u 进行计算,其中f为焦距,u为物距,v为像距。
2.3 凹透镜的成像原理是什么?如何计算凹透镜的焦距?答:凹透镜的成像原理是光线经过凹透镜后,平行于主轴的光线会朝透镜中心方向会聚于一点,这个点称为虚焦点。