计算机控制技术发展综述报告
- 格式:doc
- 大小:51.00 KB
- 文档页数:7
计算机控制摘要:伴随着科学技术的迅猛发展,计算机技术发展也极其快速,由最初1946年第一台计算机问世到现如今,经历过近70年变化,且计算机控制技术也获得了合理的高速发展,而且将计算机控制技术合理的应用能够提升各个行业的生产率,促进时代的发展与进步。
关键字:计算机;控制技术;运用1.计算机控制技术的形成及发展计算机控制技术是通过数据计算机对动态性系统开展控制的专业技术,这是伴随着计算机技术发展而产生的。
在计算机的控制系统中,全自动控制里的基本控制机器设备由数据计算机代替,用于调整和控制动态性系统,从而使计算机控制技术完成全局性转型。
数据计算机具有强大的作用,关键具有了收集、传输、存储、解决海量数据能力,使全自动控制开始转型发展趋势,在这个基础上以计算机为基本控制机器设备的一个新环节趁机开启。
在计算机控制系统含有数据收集、数据处理方法、即时控制这三个关键一部分根植于全部控制环节中。
控制系统可实现对被测参数实时监测,解决好其输入到计算机系统的那一部分,同时也要依照早已精心设计的控制规律性精确算出测算控制量,后再传出控制数据信号。
计算机控制技术规定在一定时间内进行信号的功率键入、测算和输出,保证控制的及时性。
除此之外,全部信息处理方式不能反复,严格按照指标值去完成工作任务。
还需要检测好被测参数和机器设备自身存有的出现异常,寻找问题时妥善处理,从源头上确保系统能圆满完成工作中,合乎工作实际的需要。
2.计算机全自动控系统的特征为了能愈来愈平稳、高效率、节能的发展趋势加工行业,计算机关键技术到全自动控制技术已经是时期迫不及待地规定。
计算机技术的应用全自动控制中的运用,主要有以下特性:(1)计算机的强大信息贮存水平。
可以使自动化技术控制完成工作时的灵便实际操作,对不正确便于改动。
(2)计算机强劲的思路运行能力使全自动控制技术具有了管理水平,带来了原来不具备的管理的功能。
(3)计算机测算时的计量检定精准度高、速度更快,节省成本,全自动控制技术降低了经费预算及人力资源项目投资,减少经济效益时限。
自动化控制系统中的计算机控制技术自动化控制系统是现代工业和生产中不可或缺的一部分。
计算机控制技术作为自动化控制系统的核心,起着至关重要的作用。
本文将讨论自动化控制系统中的计算机控制技术的应用及其相关的重要概念和方法。
一、概述自动化控制系统是一种通过计算机技术实现对生产和工艺过程进行监控和管理的系统。
它的核心是计算机控制技术,通过对输入信号进行处理和分析,输出控制信号,实现对被控对象的控制和调节。
二、计算机控制技术的工作原理计算机控制技术主要依靠计算机的处理能力、存储能力和算法来实现对控制系统的控制。
它通过采集被控对象的输入信号,经过模数转换和数据处理,得到输出的控制信号,实现对被控对象的控制。
三、计算机控制技术的应用领域计算机控制技术广泛应用于各个领域,包括工业生产、交通运输、农业、医疗、环保等。
在工业生产中,计算机控制技术可以实现生产过程的自动化和智能化,提高生产效率和质量。
在交通运输中,计算机控制技术可以实现交通信号的智能控制和车辆调度。
在农业中,计算机控制技术可以实现农业机械的自动化操作和监测。
在医疗中,计算机控制技术可以实现医疗设备的智能控制和患者监测。
在环保中,计算机控制技术可以实现对污染源的监控和治理。
四、计算机控制技术的重要概念和方法1. 控制算法:控制算法是计算机控制技术的核心,它通过对输入信号进行分析和处理,得出对被控对象进行控制的策略和方法。
2. 反馈控制:反馈控制是一种通过对输出信号进行采集和分析,再根据与期望值的差异进行调节的控制方法。
反馈控制可以实现对系统稳定性和精度的控制。
3. PID控制:PID控制是一种常用的控制算法,它通过对误差、积分和微分信号的处理,实现对被控对象的控制。
PID控制具有简单、可靠、易调节等优点,在工业控制中得到广泛应用。
4. 模糊控制:模糊控制是一种基于模糊逻辑的控制方法,它通过对输入信号进行模糊化和模糊规则的匹配,实现对系统的控制。
模糊控制适用于那些难以建立准确数学模型的系统。
微型计算机控制技术的发展趋势进入90年代以来,随着计算机的普及以及计算机技术和通讯技术的发展,网络也越来越快地走近我们,计算机网络已成为当今信息时代的支柱。
计算机与通信的结合产生了计算机网络,信息社会对计算机网络的依赖,又使得计算机网络本身运行的可靠性变得至关重要,向网络的管理运行提出了更高的要求。
网络系统的维护与管理日趋繁杂,网络管理人员用人工方法管理网络已无法可靠、迅速地保障网络的正常运行;无法满足当前开放式异种机互联网络环境的需要,人们迫切地需要用计算机来管理网络,提高网络管理水平,使信息安全,快捷地传递。
于是计算机网络管理系统便应运而生了。
一、计算机网络管理系统的基本知识(一)计算机网络管理系统的概念计算机网络管理系统就是管理网络的软件系统。
计算机网络管理就是收集网络中各个组成部分的静态、动态地运行信息,并在这些信息的基础上进行分析和做出相应的处理,以保证网络安全、可靠、高效地运行,从而合理分配网络资源、动态配置网络负载,优化网络性能、减少网络维护费用。
(二)网络管理系统的基本构成概括地说,一个典型的网络管理系统包括四个要素:管理员、管理代理、管理信息数据库、代理服务设备。
1.管理员。
实施网络管理的实体,驻留在管理工作站上。
它是整个网络系统的核心,完成复杂网络管理的各项功能。
网络管理系统要求管理代理定期收集重要的设备信息,收集到的信息将用于确定单个网络设备、部分网络或整个网络运行的状态是否正常。
2.管理代理。
网络管理代理是驻留在网络设备(这里的设备可以是UNIX工作站、网络打印机,也可以是其它的网络设备)中的软件模块,它可以获得本地设备的运转状态、设备特性、系统配置等相关信息。
网络管理代理所起的作用是:充当管理系统与管理代理软件驻留设备之间的中介,通过控制设备的管理信息数据库(MIB)中的信息来管理该设备。
3.管理信息库。
它存储在被管理对象的存储器中,管理库是一个动态刷新的数据库,它包括网络设备的配置信息,数据通信的统计信息,安全性信息和设备特有信息。
计算机控制技术及其应用计算机控制技术及其应用:计算机控制技术,作为现代信息技术的重要组成部分,已经广泛应用于各个领域,深刻影响了人们的生活和工作。
它以计算机为核心,利用电子、通信和控制工程等学科知识,实现对各种设备和过程的自动化控制。
这种技术具有众多优势,如高效、精确、可靠、灵活等特点,具备了强大的应用潜力。
计算机控制技术在工业领域的应用是最为显著的。
传统的生产制造过程中,需要大量的人力参与并进行手动操作,工作效率低下、易出错。
而引入计算机控制技术后,生产设备可以通过计算机指令自动完成各种操作,大大提升了生产效率。
例如,汽车制造业在焊接、喷涂等环节中,广泛采用机器人进行精确和高效的操作。
而在智能制造时代,计算机控制技术更是成为了推动工业4.0发展的重要基础,实现了生产系统的数字化、智能化和灵活化。
除了工业领域,计算机控制技术在交通、能源、医疗、农业等众多领域也有广泛应用。
在交通领域,智能交通系统通过计算机控制技术实现了交通信号的智能化控制、车辆导航等功能,有效提升了交通效率和安全性。
能源领域,计算机控制技术被应用于电力系统的自动化调度和管理,实现对电网的智能监控和优化运行。
在医疗领域,计算机控制技术被应用于医疗设备的自动化操作和精确控制,提升了医疗诊疗的水平。
农业领域,计算机控制技术被应用于智能化的农机械和农业生产系统中,从耕作、种植到收割等环节实现自动化和智能化,提高了农业生产效率和质量。
然而,计算机控制技术的应用也面临一些挑战。
首先是安全性问题,网络攻击、系统漏洞等风险威胁着计算机控制系统的安全运行,因此必须加强系统的安全性设计和防护措施。
其次是人机交互问题,计算机控制系统的用户界面应简洁、直观、易于操作,以提高用户的工作效率和便捷性。
此外,还需要解决多个系统的数据共享和集成,以提高各个行业或领域内的协同效应。
总之,计算机控制技术在各个领域的应用前景广阔。
我们应密切关注相关技术的发展及应用,推动其进一步融入生产、生活和社会的方方面面。
计算机控制技术的发展及趋势张赟枫自动化13040901130425一、计算机控制技术的发展1、第一代工业计算机控制技术第一代工控机技术起源于20世纪80年代初期,盛行于80 年代末和90年代初期,到90年代末期逐渐淡出工控机市场,其标志性产品是STD总线工控机。
STD总线最早是由美国Pro-Log公司和Mostek公司作为工业标准而制定的8位工业I/O总线,随后发展成16位总线,统称为STD80,后被国际标准化组织吸收,成为IEEE961标准。
国际上主要的STD总线工控机制造商有Pro- Log、Winsystems、Ziatech等,而国内企业主要有北京康拓公司和北京工业大学等。
STD总线工控机是机笼式安装结构,具有标准化、开放式、模块化、组合化、尺寸小、成本低、PC兼容等特点,并且设计、开发、调试简单,得到了当时急需用廉价而可靠的计算机来改造和提升传统产业的中小企业的广泛欢迎和采用,国内的总安装容量接近20万套,在中国工控机发展史上留下了辉煌的一页。
2、第二代工业计算机控制技术1981年8月12日IBM公司正式推出了IBM PC机,震动了世界,也获得了极大成功。
随后PC机借助于规模化的硬件资源、丰富的商业化软件资源和普及化的人才资源,于80年代末期开始进军工业控制机市场。
美国著名杂志《CONTROL ENGINERRING》在当时就预测“90年代是工业IPC的时代,全世界近65%的工业计算机将使用IPC,并继续以每年21%的速度增长”。
历史的发展已经证明了这个论断的正确性。
IPC在中国的发展大致可以分为三个阶段:第一阶段是从20世纪80年代末到90年代初,这时市场上主要是国外品牌的昂贵产品。
90年代末期,ISA总线技术逐渐淘汰,PCI总线技术开始在IPC中占主导地位,使IPC工控机得以继续发展。
但由于IPC工控机的结构和金手指连接器的限制,使其难以从根本上解决散热和抗振动等恶劣环境适应性问题,IPC开始逐渐从高可靠性应用的工业过程控制、电力自动化系统以及电信等领域退出,向管理信息化领域转移,取而代之的是以CompactPCI总线工控机为核心的第三代工控机技术。
计算机控制系统的发展趋势1、计算机控制系统计算机控制系统是在自动控制技术和计算机技术发展的基础上产生的。
若将自动控制系统中的控制器的功能用计算机来实现,就组成了典型的计算机控制系统。
【1】计算机控制系统包括硬件组成和软件组成。
在计算机控制系统中,于数字计算机工作特点,为了使计算机接收系统的模拟信号,并能根据要求输出连续的模拟信号,所以,计算机系统中还应该包括A/D转换器和D/A转换器。
【3】2、工作原理计算机控制系统的工作原理可归纳为以下三个过程:【1】(一) 实时数据采集:对被控量的瞬时值进行检测,并输入给计算机。
(二) 实时决策:对采集到的表征被控参数的状态量进行分析,并按已定的控制规律,决定下一步的控制过程。
(三) 实时控制:根据决策,适时地对执行机构发出控制信号,完成控制任务。
3、计算机控制系统的发展状况:【2】在60 年代,控制领域中就引入了计算机。
当时计算机是控制调节器的设定点, 具体的控制则由电子调节器来执行, 这种系统称为计算机监控系统。
在60 年代末期出现了用一台计算机直接控制一个机组或一个车间的控制系统,简称集中控制系统。
这种控制系统即常说的直接数字控制(DDC)系统。
计算机DDC 控制的基本思想是使用一台计算机代替若干个调节控制回路功能。
这个控制系统由于只有一台计算机而且没有分层,所以非常有利于集中控制盒运算的集中处理,并且能得到很好的反映,并且,各个控制规律都可以直接实现。
但是,如果生产过程复杂,则该系统的可靠性就很难保证了。
系统的危险性过于集中, 一旦计算机发生故障, 整个系统就会停顿。
70 年代随着电子技术的飞速发展,随着大规模集成电路的出现和发展, 集散控制系统(DCS)出现,之后在此基础上,随着生产发展的需要而产生了一种更新一代的控制系统,即分布式控制系统。
典型的集散控制系统具有两层网络结构,如图1 所示。
下层负责完成各种现场级的控制任务,上层负责完成各种管理、决策和协调任务。
计算机控制技术发展综述报告1、计算机控制的定义:计算机控制是自动控制理论与计算机技术相结合而产生的一门新兴学科,计算机控制技术是随着计算机技术的发展而发展起来的。
自动控制技术在许多工业领域获得了广泛的应用,但是由于生产工艺日益复杂,控制品质的要求越来越高,简单的控制理论有时无法解决复杂的控制问题。
计算机的应用促进了控制理论的发展,先进的控制理论和计算机技术相结合推动计算机控制技术不断前进。
自从1971年美国Intel公司生产出世界上第一台微处理器Intel 4004以来,微处理器的性能和集成度几乎每两年就提高一倍,而价格却大幅度下降。
在随后30多年的时间里,微型计算机经历了4位机、8位机、16位机、32位机几个大的发展阶段,目前64位机也已经问世。
微型计算机的出现,在科学技术上引起了一场深刻的变革。
随着半导体集成电路技术的发展,微型计算机的运行速度越来越快,可靠性大大提高,体积越来越小,功能越来越齐全,成本却越来越低,使微型计算机的应用越来越广泛。
微型计算机不仅可应用于科学计算、信息处理、办公娱乐、民用产品、家用电器等领域,而且在仪器、仪表及过程控制领域也得到了广泛的应用。
仪器、仪表在测量过程自动化、测量结果的数据处理及系统控制等方面有着重要的应用,在许多高精度、高性能、多功能的测量仪器中都采用了微处理器技术。
过程控制也是微型计算机应用最多的一个方面,控制对象已从单一的工艺流程扩展到整个企业的生产、管理以及现场各种设备的控制中,采用分布式计算机控制,实现了企业的控制和管理一体化,大大提高了企业的自动化程度。
近年来,随着计算机技术、自动控制技术、检测与传感器技术、网络与通信技术、微电子技术、CRT显示技术、现场总线智能仪表、软件技术以及自控理论的高速发展,计算机控制的技术水平大大提高,计算机控制系统的应用突飞猛进。
利用计算机控制技术,人们可以对现场的各种设备进行远程监控,完成常规控制技术无法完成的任务,微型计算机控制已经被广泛地应用于军事、农业、工业、航空航天以及日常生活的各个领域。
可以说,21世纪是计算机和控制技术获得重大发展的时代,大到载人航天飞船的研制成功,小到日用的家用电器,甚至计算机控制的家庭主妇机器人,到处可见计算机控制系统的应用。
计算机控制技术的发展日新月异,作为现代从事工业控制和智能仪表研究、开发及使用的技术人员,必须不断学习,加快知识更新的速度,才能适应社会的需要,才能在工业控制领域里继续邀游。
微型计算机控制技术是一门跨学科以及应用性、技术性、综合性都很强的专业技术课程,要求具备较强的自动控制理论、微型计算机原理、模拟电子技术、数字电子技术等专业基础知识。
通过学习,要求掌握计算机控制系统的控制原理和分析设计方法,具备基本的设计技能,能够设计出简单的计算机控制系统。
2、过程工业的特点过程工业是指如石化、电力、冶金、造纸、化工、医药、食品等工业。
它们的特点是连续性。
根据有关统计,1991年以来我国公布的产品销售额排名的前十名中,约有80%~90%属于连续工业,按利润排名的前20名中,连续工业约占70%,可见连续工业的发展对我国国民经济有着十分重要的意义。
随着科学技术的迅猛发展,连续工业逐步向大型化、连续化,自动化以及集成化方向发展。
为了提高竞争能力,连续工业正在不断地提高自动化水平,以提高产品质量、节省能源、降低成本及产生明显的经济效益。
2.1从控制工程的观点来看,过程工业有如下一些特点:1) 连续工业生产往往伴随有物化反应、生化反应、相变过程等,因此过程机理十分复杂。
被控对象往往是高维、耦合、大时滞、严重不确定性与非线性等,控制起来非常困难。
2) 连续工业经常在高温、高压、易燃、易爆等环境下运行,生产的安全性是至关重要的。
因此对自动控制系统的可靠性提出了非常苛刻的要求。
2.2 过程控制的发展回顾许多国内外的专家、学者认为,过程控制大约经历了以下三个发展阶段(见表1)。
表l :阶段第一阶段(70年代以前)第二阶段(70~80年代) 第三阶段(90年代)控制理论经典控制理论现代控制理论多学科交叉控制工具常规仪表DCS 计算机网络控制要求安全、平稳优质,高产,低耗市场预测,柔性生产,综合管理在70年代以前,由于受到控制理论和控制工具的限制,过程工业的自动化水平相对来讲比较低。
当时的控制理论主要是经典控制理论,所能用的控制工业主要是常规仪表,如气动或者电动仪表。
在控制系统方面,绝大多数是单变量的简单控制系统,对于比较重要的工艺变量则设计串级调节系统或前馈调节系统。
上述的简单控制系统对于大多数简单的对象可基本满足要求。
但是,对于复杂的对象,也就是说对于高维、大时滞、严重非线性、耦合及严重不确定性对象,上述的简单控制系统往往无能为力。
从70年代到80年代,基于现代控制理论的先进过程控制(Advanced Process Control)应运而生。
出现先进过程控制的基础有二;一是市场上先进的控制工具如分散式控制系统(DCS)的出现与完善,二是现代控制理论的不断控展与提高。
如预测控制、自适应控制、非线性控制、鲁棒控制以及智能控制等控制策略与方法都已经成为目前国内外学术界与工程界的热门研究课题。
国内外已有许多先进过程控制成功的工业应用报导。
近些年来,在控制工具方面。
出现了一种新的控制系统,称之为现场总线系统(Field Bussystem)。
现场-总线技术是计算机技术、通信技术、控制技术的综台与集成。
它的特点是全数字化,全分散式、全开放、可互操作和开放式互连网络,它克服了DCS的一些缺点,对自动控制系统的体系结构、设计方法、安装调试方法和产品结构方面产生了深远的影响。
尽管先进过程控制能对重要的工艺变量提高控制质量并产生较明显的经挤效益(如采用卡边控制),但是它们仍然只是相互孤立的控制系统。
许多专家进一步研究发现,将控制、优化、调度、管理等集于一体的新的控制模式并将信号处理技术、数据库技术、通信技术以及计算机网络技术进行有机结台而发展起来的高级自动化其有更重要的意义,因此也就出现了所谓综合自动化系统。
这种全新的综合自动化的系统称为计算机集成系统(Computer Integrated Process System,简称CIPS),可以认为是过程控制发展中的第三阶段。
3、当前过程控制技术的发展趋势【1】过程建模先进过程控制、过程优化、调度与管理等的实施均需要有相应的效学模型作基础。
因此,建立数学模型往往是实施高级过程控制的第一步。
对于过程工业中种类繁多的对象而盲,由于其物化反应、生化反应等非常复杂的变化,要想从机理来建立一个准确的数学模型是非常困难的。
为了得到工程技术人员能够接受的并易于应用的数学模型,往往都不得不进行一些假设使数学模型得以简化,但这些假设又会影响到数学模型准确性。
特别是对于一些高维的复杂对象,若采用严格的机理推导往往会得到由几百个乃至几千个微分方程组成的数学模型,它们的求解将会十分困难。
目前国内外采用的建模方法大致有两类。
一类是机理建模,也就是根据过程本身的内在机理,利用能量平衡、物质平衡、反应动力学等规律来建立系统的模型;另一类是系统辨识方法,也就是根据被控过程的输入、输出数据建立效学模型。
属于这类方怯的有最小二乘法、人工神经元网络、模糊模型等。
尽管国内外许多学者在过程建模方面做出了卓有成效的努力,使机理建模和系统辨识方法能够在工业过程中得以有效的应用。
但是,就目前过程控制水平而言,工业过程模型化仍然是控制系统设计与开发的瓶颈。
在这一方面,今后仍有大量的工作要完成。
【2】控制策略与方法毫无疑问,在控制系统的设计与开发方面,控制策略(算法)是接心。
在这方面。
国内外的学者作了长期不懈的努力,取得了许多成果。
将这些控制策略应用于关键的控制回路(产品质量控回路)往往可以取得较高的控制质量并产生一定的经济效益。
目前,在学术界所研究、开发出来的控制策略(算法)多到令人目不接暇,但其中许多算法仍只停留在计算机仿真或实验装置的验证上,真正能有效地应用在工业过程中的仍为数不多。
以下是一些较公认的(特别是能得到工程界的认可)的先进控制策略(算法):1)改进成复合PlD控制算法大量的事实证明。
传统的PID控制算法对于绝大部分工业过程的被控对象(可高达90%)可取得较好的控制效果。
采用改进的PID算法或者将PID算法与其他算按进行有机结合往往可以进一步提高控制质嚣。
2)顶测控制预浏控制是直接从工业过程控制中产生的一类基于模型的新型控制算法。
它高度结合了工业实际的要求,综合控翻质量比较高。
因而很快引起工业控制界以及学术界的广泛兴趣与重视。
预测控制有三要素,即预测模型、滚动优化和反馈校正。
它的机理表明它是一种开放式的控制策略。
体现了人们在处理带有不确定性问题时的一种通用的思想方法。
根据预测摸型的不同的形式。
硬测控制分别称之为Model Predictive Control(MPC),Generalized Predictive Control(GPC)和Receding Horizon Predictive Control(RHPC)。
此外,顶测控制还可以采取其他形式的模型。
如非线性模型、模糊模型和神经网络模型等。
预测具有一系列的优点。
如可以以显式的方式处理约束条件。
鲁棒性强、对大时滞过程有补偿作用而且比较容品处理多变量系统中的耦合作用等。
正因为预测控制有上述一系列优点,所以它已经被国外一些控制公司开发成为商品化软件而成功地应用于过程工业中。
在这方面,许多国外著名的控制工程公司,如Setpoint公司、Treiber公司、Prdfimafies 公司、Predictive Control公司、霍尼韦尔公司、横河公司等。
都开发了各自的商品化预测控制软件包,并被广泛地应用于大型工业过程控制。
特别要提到的是接国Adersa公司在第一代产品IDCoM基础上开发出来的第三代顶澍控制商品化软件Hiecon,经长期的实际运行证明。
它的性能良好,巳被浙江大学中控自动化公司作了结合国情的改进并融人其先进控制软件AdvaaTrol中。
另外,值得可喜的是,在“九五”计划期间,我国组成了以浙江大学为首的高校攻关组。
旨在自行开发我国的工业过程控制商品化软件包,其中就包括有多变量预测控制软件包时。
这些软件包的成功开发与应用,将会大大提高我国工业商品化软件的水平并可节省大量的外汇。
3)自适应控制在过程工业中,不步的过程是时变的,如反应器中催化剂活性的变化。
换热器中结垢的产生与发展等均会使过程的特性发生变化。
如采用参效与结构固定不变的控制器。
则控制系统的性能会不断恶化。
这时就需要采甩自适应控制系统来适应时变的过程。
它是辨识与控制的结合。
目前,比较成熟的自控制分三类:·自整定调节器及其他的简单自适应控制器。