大学物理3_5
- 格式:ppt
- 大小:305.00 KB
- 文档页数:9
习题11-1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,t 至()t t +∆时间内的位移为r ∆,路程为s ∆,位矢大小的变化量为r ∆(或称r ∆),平均速度为v ,平均速率为v 。
(1)根据上述情况,则必有( B ) (A )r s r ∆=∆=∆(B )r s r ∆≠∆≠∆,当0t ∆→时有dr ds dr =≠ (C )r r s ∆≠∆≠∆,当0t ∆→时有dr dr ds =≠ (D )r s r ∆=∆≠∆,当0t ∆→时有dr dr ds == (2)根据上述情况,则必有( C )(A ),v v v v == (B ),v v v v ≠≠ (C ),v v v v =≠ (D ),v v v v ≠=1-2 一运动质点在某瞬间位于位矢(,)r x y 的端点处,对其速度的大小有四种意见,即(1)dr dt ;(2)dr dt ;(3)dsdt;(4下列判断正确的是:( D )(A )只有(1)(2)正确 (B )只有(2)正确 (C )只有(2)(3)正确 (D )只有(3)(4)正确1-3 质点作曲线运动,r 表示位置矢量,v 表示速度,a 表示加速度,s 表示路程,t a 表示切向加速度。
对下列表达式,即(1)dv dt a =;(2)dr dt v =;(3)ds dt v =;(4)t dv dt a =。
下述判断正确的是( D )(A )只有(1)、(4)是对的 (B )只有(2)、(4)是对的 (C )只有(2)是对的 (D )只有(3)是对的 1-4 一个质点在做圆周运动时,则有( B ) (A )切向加速度一定改变,法向加速度也改变 (B )切向加速度可能不变,法向加速度一定改变 (C )切向加速度可能不变,法向加速度不变(D )切向加速度一定改变,法向加速度不变*1-5 如图所示,湖中有一小船,有人用绳绕过岸上一定高度处的定滑轮拉湖中的船向岸边运动。
习题55.1选择题(1)一物体作简谐振动,振动方程为)2cos(πω+=t A x ,则该物体在0=t 时刻的动能与8/T t =(T 为振动周期)时刻的动能之比为: (A)1:4 (B )1:2 (C )1:1 (D) 2:1[答案:D](2)弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为(A)kA 2 (B) kA 2/2(C) kA 2//4 (D)0[答案:D](3)谐振动过程中,动能和势能相等的位置的位移等于 (A)4A ±(B) 2A ± (C) 23A±(D) 22A ± [答案:D]5.2 填空题(1)一质点在X 轴上作简谐振动,振幅A =4cm ,周期T =2s ,其平衡位置取作坐标原点。
若t =0时质点第一次通过x =-2cm 处且向X 轴负方向运动,则质点第二次通过x =-2cm 处的时刻为____s 。
[答案:23s ](2)一水平弹簧简谐振子的振动曲线如题5.2(2)图所示。
振子在位移为零,速度为-wA 、加速度为零和弹性力为零的状态,对应于曲线上的____________点。
振子处在位移的绝对值为A 、速度为零、加速度为-w 2A 和弹性力为-KA 的状态,则对应曲线上的____________点。
题5.2(2) 图[答案:b 、f ; a 、e](3)一质点沿x 轴作简谐振动,振动范围的中心点为x 轴的原点,已知周期为T ,振幅为A 。
(a)若t=0时质点过x=0处且朝x 轴正方向运动,则振动方程为x=___________________。
(b) 若t=0时质点过x=A/2处且朝x 轴负方向运动,则振动方程为x=_________________。
[答案:cos(2//2)x A t T ππ=-; cos(2//3)x A t T ππ=+]5.3 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动;(2)如题5.3图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).题5.3图 题5.3图(b)解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如质量、转动惯量、摆长……等等在运动中保持为常量;二,系统是在自己的稳定平衡位置附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系统的运动微分方程能用0d d 222=+ξωξt描述时,其所作的运动就是谐振动.(1)拍皮球时球的运动不是谐振动.第一,球的运动轨道中并不存在一个稳定的平衡位置; 第二,球在运动中所受的三个力:重力,地面给予的弹力,击球者给予的拍击力,都不是线性回复力.(2)小球在题5.3图所示的情况中所作的小弧度的运动,是谐振动.显然,小球在运动过程中,各种参量均为常量;该系统(指小球凹槽、地球系统)的稳定平衡位置即凹槽最低点,即系统势能最小值位置点O ;而小球在运动中的回复力为θsin mg -,如题5.3图(b)中所示,因S ∆<<R ,故RS∆=θ→0,所以回复力为θmg -.式中负号,表示回复力的方向始终与角位移的方向相反.即小球在O 点附近的往复运动中所受回复力为线性的.若以小球为对象,则小球在以O '为圆心的竖直平面内作圆周运动,由牛顿第二定律,在凹槽切线方向上有θθmg tmR -=22d d令Rg=2ω,则有 222d 0d tθωθ+=5.4 弹簧振子的振幅增大到原振幅的两倍时,其振动周期、振动能量、最大速度和最大加速度等物理量将如何变化?解:弹簧振子的振动周期、振动能量、最大速度和最大加速度的表达式分别为222122,m m T E kA v A a Aππωωω===== 所以当振幅增大到原振幅的两倍时,振动周期不变,振动能量增大为原来的4倍,最大速度增大为原来的2倍,最大加速度增大为原来的2倍。
第3章动量守恒定律和能量守恒定律习题一选择题3-1 以下说法正确的是[ ](A)大力的冲量一定比小力的冲量大(B)小力的冲量有可能比大力的冲量大(C)速度大的物体动量一定大(D)质量大的物体动量一定大解析:物体的质量与速度的乘积为动量,描述力的时间累积作用的物理量是冲量,因此答案A、C、D均不正确,选B。
3-2 质量为m的铁锤铅直向下打在桩上而静止,设打击时间为t∆,打击前锤的速率为v,则打击时铁捶受到的合力大小应为[ ](A)mvmgt+∆(B)mg(C)mvmgt-∆(D)mvt∆解析:由动量定理可知,F t p mv∆=∆=,所以mvFt=∆,选D。
3-3 作匀速圆周运动的物体运动一周后回到原处,这一周期内物体[ ] (A)动量守恒,合外力为零(B)动量守恒,合外力不为零(C)动量变化为零,合外力不为零, 合外力的冲量为零(D)动量变化为零,合外力为零解析:作匀速圆周运动的物体运动一周过程中,速度的方向始终在改变,因此动量并不守恒,只是在这一过程的始末动量变化为零,合外力的冲量为零。
由于作匀速圆周运动,因此合外力不为零。
答案选C。
3-4 如图3-4所示,14圆弧轨道(质量为M)与水平面光滑接触,一物体(质量为m)自轨道顶端滑下,M与m间有摩擦,则[ ](A )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能守恒(B )M 与m 组成的系统动量不守恒, 水平方向动量守恒,M 、m 与地组成的系统机械能不守恒(C )M 与m 组成的系统动量不守恒, 水平方向动量不守恒,M 、m 与地组成的系统机械能守恒(D )M 与m 组成系统的总动量及水平方向动量都守恒,M 、m 与地组成的系统机械能不守恒解析:M 与m 组成的系统在水平方向上不受外力,在竖直方向上有外力作用,因此系统水平方向动量守恒,总动量不守恒,。
由于M 与m 间有摩擦,m 自轨道顶端滑下过程中摩擦力做功,机械能转化成其它形式的能量,系统机械能不守恒。
1-1 。
分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P ′点,各量关系如图所示, 其中路程Δs =PP ′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故tst d d d d =r ,即|v |=v .由此可见,应选(C). 1-2。
分析与解trd d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D).1-3 。
分析与解td d v表示切向加速度a t,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,起改变速度大小的作用;t r d d 在极坐标系中表示径向速率v r (如题1 -2 所述);tsd d 在自然坐标系中表示质点的速率v ;而td d v表示加速度的大小而不是切向加速度a t.因此只有(3) 式表达是正确的.故选(D). 1-4 。
分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1-5 。
大学物理3预习指南及期末考点(20xx、春) (实验事实、模型建立、研究方法、概念引入、推导过程、公式意义、图片分析、结论应用)第一部分力学(分数分布20%)1-1质点模型及质点运动状态、状态变化与运动过程的描述;1-2恒力与变力作用下确定质点任一时刻的速度与位置的方法与步骤;2-1变力作用一段时间过程使质点状态发生变化的研究方法与动量原理及应用;2-2元分析法在计算变力做功中的应用与动能定理;2-3角动量与力矩概念的引入及右螺旋法则的应用;2-4质点系总动量的计算、变化、守恒判据与分动量守恒条件及应用;2-5质点系动能定理的表达式、势能属于系统的概念与机械能守恒与转换定律表述形式;2-6质点系角动量的计算、角动量定理与角动量守恒定律;3-1刚体模型及定轴转动的角量描述、力矩做功的计算与转动惯量的物理意义;3-2刚体定轴转动角动量定理与守恒定律的表述及应用;3-3弹性体模型及拉伸形变中形变与回复力的关系;3-4波在弹性介质中传播时质元既形变又加速的分析与描述;3-5理想流体模型及流速场描述方法与定常流连续性方程的建立、应用;3-6细流管中流体流动时的功能关系与伯努利方程的意义及应用;重点要求:第一章1-1.运动学方程(1)由位置矢量式写分量式(2)由运动学方程求位移、速度、加速度1-2.牛顿运动定律(1)积分法解一维变力f=f(x)情况下的运动问题;(2)积分法解一维变力f=f(v) 情况下的运动问题。
1-3.动量定理(1)冲量计算(2)求动量增量1-4动能定理变力的功计算1-5角动量定理(1)判断对不同参考点角动量(2)判断力矩方向(3)合力与力矩1-6 综述:模型方法的要点与应用(第一章第四节)第二章2-1保守力与非保守力的区分;2-1质点系内力的功之和不为零;2-3质点系内力矩之和为零;2-4机械能守恒定律;2-5动量守恒定律;第三章3-1 定轴转动(1)几个物理量;(2)角量与线量关系;(3)匀变速转动规律;3-2转动惯量数学表达式;3-3转动动能定理(1)转动动能计算(2)摩擦力矩简单计算3-4定轴转动中的角动量守恒3-5固体的弹性(1)胡克定律简单应用(2)应力定义叙述与公式3-6理想流体(1)定义叙述(2)定常流定义叙述(3)流量(4)连续性方程简单应用第二部分场(分数分布30%)4-1点电荷模型与静电力及静电场强弱的判断、检测、量度与计算的关系;4-2元分析法与场强叠加原理在连续分布电荷电场计算中的应用;4-3电场线与电通量的关系及高斯定理的意义与应用;4-4静电力的功、电势、环流与无旋场的相互关系及计算;5-1运动电荷在磁场受洛仑兹力与霍尔效应微观机理分析;5-2电流元模型及所受安培力的微观机理与平面线圈受磁力矩的分析、计算;5-3毕奥-沙伐尔定律中各量意义及积分计算中的几个关键步骤;5-4表征稳恒磁场无源、有旋性质的两定理的积分公式与应用;6-1法拉第电磁感应定律的物理意义及定律在互感、自感中的应用;6-2用洛仑兹力分析产生动生电动势的微观机理与计算电动势时的积分3要素;6-3磁场随时间变化在空间激发电场的现象、规律与感生电动势计算;6-4研究电容器充(放)电时提出位移电流所采用的几个基本概念与逻辑推理过程;第四章4-1库仑定律内容与应用4-2场强偶极子中垂线场强计算、带电细线旁一点的场强、带电圆线圈轴线上一点及圆心处场强、无限大带电平面的场强公式4-3高斯定理(1)数学表达式(2)用高斯定理求:球对称问题的场强、无限大带电平面的场强、柱对称问题的场强(3)电荷、场强与通量的关系4-4静电场环路定理(1)点电荷的电势(2)带电圆环中心的电势公式(3)带电圆环轴线上电势的积分计算(5-2-2)4-5 静电场是有源无旋场公式表述(8-1-5)第五章5-1洛伦兹力(1)磁场中电荷螺旋线运动参数计算(2)霍尔效应现象(3)霍尔电场场强与电势差的计算5-2安培定律(1)安培力方向的判断方法、带电半圆导线受力公式、带电直线受力、单匝与多匝带电线圈的磁矩公式、带电平面线圈受磁力矩定性分析。
第1单元 质点运动学一. 选择题1. 某质点作直线运动的运动学方程为x =3t -5t 3+ 6 (SI),则该质点作[ ]。
(A) 匀加速直线运动,加速度沿x 轴正方向; (B) 匀加速直线运动,加速度沿x 轴负方向; (C) 变加速直线运动,加速度沿x 轴正方向;(D) 变加速直线运动,加速度沿x 轴负方向。
2. 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程,t a 表示切向加速度,下列表达式中[ ]。
(1) a t d /d v , (2) v t /r d d , (3) v t S d /d , (4) t a t d /d v。
(A) 只有(1)、(4)是对的; (B) 只有(2)、(4)是对的;(C) 只有(2)是对的; (D) 只有(3)是对的。
3. 一质点在平面上运动,已知质点位置矢量的表示式为 j bt i at r 22 (其中a 、b 为常量), 则该质点作[ ]。
(A) 匀速直线运动; (B) 变速直线运动; (C) 抛物线运动; (D)一般曲线运动。
4. 一小球沿斜面向上运动,其运动方程为s=5+4t t 2(SI), 则小球运动到最高点的时刻是[ ]。
(A) t=4s ; (B) t=2s ; (C) t=8s ; (D) t=5s 。
5. 一质点在xy 平面内运动,其位置矢量为j t i t r ˆ)210(ˆ42(SI ),则该质点的位置矢量与速度矢量恰好垂直的时刻为[ ]。
(A) s t 2 ; (B )s t 5; (C )s t 4 ; (D )s t 3 。
6. 某物体的运动规律为t k t 2d /d v v ,式中的k 为大于零的常量。
当0 t 时,初速为v 0,则速度v 与时间t 的函数关系是[ ]。
(A) 0221v vkt ; (B) 0221v v kt ; (C) 02121v v kt ; (D) 02121v vkt 。