3.4.1相似三角形的判定1
- 格式:doc
- 大小:492.67 KB
- 文档页数:2
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△AB C的边BC 上的点,DE∥AB,D F∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
相似三角形的判定方法五种
1、两角分别对应相等的两个三角形相似。
2、两边成比例且夹角相等的两个三角形相似。
3、三边成比例的两个三角形相似。
4、一条直角边与斜边成比例的两个直角三角形相似。
5、用一个三角形的两边去比另一个三角形与之相对应的两边,分别对应成比例,如果三组对应边相比都相同,则三角形相似。
相似三角形介绍
三角分别相等,三边成比例的两个三角形叫做相似三角形。
相似三角形是几何中重要的证明模型之一,是全等三角形的推广。
全等三角形可以被理解为相似比为1的相似三角形。
相似三角形其实是一套定理的集合,它主要描述了在相似三角形是几何中两个三角形中,边、角的关系。
(一)相似三角形1、定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形.①当一个三角形的三个角与另一个(或几个)三角形的三个角对应相等,且三条对应边的比相等时,这两个(或几个)三角形叫做相似三角形,即定义中的两个条件,缺一不可;②相似三角形的特征:形状一样,但大小不一定相等;③相似三角形的定义,可得相似三角形的基本性质:对应角相等,对应边成比例.2、相似三角形对应边的比叫做相似比.①全等三角形一定是相似三角形,其相似比k=1.所以全等三角形是相似三角形的特例.其区别在于全等要求对应边相等,而相似要求对应边成比例.②相似比具有顺序性.例如△ABC∽△A′B′C′的对应边的比,即相似比为k,则△A′B′C′∽△ABC的相似比,当它们全等时,才有k=k′=1.③相似比是一个重要概念,后继学习时出现的频率较高,其实质它是将一个图形放大或缩小的倍数,这一点借助相似三角形可观察得出.3、如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形.4、相似三角形的预备定理:平行于三角形的一条边直线,截其它两边所在的直线,截得的三角形与原三角形相似.①定理的基本图形有三种情况,如图其符号语言:∵DE∥BC,∴△ABC∽△ADE;(双A型)②这个定理是用相似三角形定义推导出来的三角形相似的判定定理.它不但本身有着广泛的应用,同时也是证明相似三角形三个判定定理的基础,故把它称为“预备定理”;③有了预备定理后,在解题时不但要想到“见平行,想比例”,还要想到“见平行,想相似”.(二)相似三角形的判定1、相似三角形的判定:判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
可简单说成:两角对应相等,两三角形相似。
例1、已知:如图,∠1=∠2=∠3,求证:△ABC∽△ADE.例2、如图,E 、F 分别是△ABC 的边BC 上的点,DE ∥AB,DF ∥AC , 求证:△ABC ∽△DEF.判定定理2:如果三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。
湘教版数学九年级上册3.4.1《相似三角的判定》(第4课时)说课稿一. 教材分析湘教版数学九年级上册3.4.1《相似三角形的判定》是本册教材中的重要内容,它为学生提供了判断两个三角形相似的方法,并进一步学习了相似三角形的性质。
本节课的内容是在学生已经掌握了三角形的基本知识以及全等三角形的基础上进行的,为后续学习相似三角形的应用打下基础。
本节课的主要内容包括:相似三角形的定义、相似三角形的判定方法以及相似三角形的性质。
其中,相似三角形的定义是本节课的核心内容,学生需要理解并掌握两个三角形对应角度相等、对应边成比例的概念。
相似三角形的判定方法是本节课的重点内容,学生需要学会运用AA、SSS、SAS三种方法判定两个三角形相似。
相似三角形的性质是本节课的难点内容,学生需要理解并掌握相似三角形的对应边成比例、对应角相等的性质。
二. 学情分析九年级的学生已经具备了一定的数学基础,对三角形的基本知识有了初步了解,具备了一定的逻辑思维能力。
但是,学生在学习本节课时,仍存在以下困难:1.学生对相似三角形的定义理解不够深入,容易与全等三角形混淆。
2.学生对相似三角形的判定方法掌握不牢固,特别是在实际应用中,无法灵活运用。
3.学生对相似三角形的性质理解不透彻,无法运用性质解决实际问题。
三. 说教学目标1.知识与技能目标:学生能理解相似三角形的定义,掌握相似三角形的判定方法,理解相似三角形的性质。
2.过程与方法目标:学生通过观察、操作、交流等活动,培养直观思维能力和推理能力。
3.情感态度与价值观目标:学生体会数学与现实生活的联系,增强学习数学的兴趣和信心。
四. 说教学重难点1.教学重点:相似三角形的定义,相似三角形的判定方法,相似三角形的性质。
2.教学难点:相似三角形的性质的理解和应用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、合作交流法等,引导学生主动探究,提高学生的问题解决能力。
2.教学手段:利用多媒体课件、几何画板等软件,直观展示相似三角形的判定过程,增强学生的直观感受。
湘教版数学九年级上册3.4《相似三角形的判定与性质》教学设计1一. 教材分析《相似三角形的判定与性质》是湘教版数学九年级上册3.4节的内容,本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、三角形的内角和定理等知识的基础上进行学习的。
本节内容主要让学生了解相似三角形的判定方法和性质,培养学生运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经具备了一定的数学基础,能够理解和掌握三角形的分类、内角和定理等基本知识。
但是,对于相似三角形的判定与性质,学生可能初次接触,理解起来可能存在一定的困难。
因此,在教学过程中,教师需要通过具体例题、引导学生动手操作等方式,帮助学生理解和掌握相似三角形的判定与性质。
三. 教学目标1.让学生掌握相似三角形的判定方法。
2.让学生了解相似三角形的性质。
3.培养学生运用数学知识解决实际问题的能力。
四. 教学重难点1.教学重点:相似三角形的判定方法,相似三角形的性质。
2.教学难点:相似三角形的判定与性质在实际问题中的应用。
五. 教学方法1.采用问题驱动法,引导学生探究相似三角形的判定与性质。
2.利用多媒体辅助教学,展示相似三角形的判定与性质的应用。
3.学生进行小组讨论,培养学生的合作能力。
六. 教学准备1.多媒体教学设备。
2.相关教学课件。
3.练习题。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入相似三角形的概念,激发学生的学习兴趣。
例题:在ΔABC中,AB=AC,点D在BC上,且BD=DC。
求证:ΔABD∽ΔACD。
2.呈现(10分钟)教师引导学生观察上述例题,总结相似三角形的判定方法。
1.两角对应相等;2.两边对应成比例且夹角相等;3.三边对应成比例。
4.操练(10分钟)教师给出几个练习题,让学生运用判定方法进行解答。
1.判断ΔABC与ΔA’B’C’是否相似。
2.判断ΔABD与ΔACD是否相似。
3.巩固(10分钟)教师引导学生总结相似三角形的性质,并进行讲解。
G F E D C
B
A 3.4.1.1相似三角形的判定(1)
【教学目标】:
1.使学生掌握相似三角形预备定理并能运用预备定理判定两个三角形相似;
2.初步识别8字型和A 字型相似图形; 【重难点】
学习重点:掌握相似三角形的预备定理 学习难点:运用预备定理进行相似的判定
一、复习相似三角形的概念 若ABC ∆~
,则对应角 ,对应边 ;
即∠A= ,∠B= , =,
C ∠,
AC
C B AB
=
=
,
,;
若k B A AB =,
,
:,那么,
,,C B A ∆~ABC ∆的相似比为 。
例如:3:2:,
,
=B A AB ,那么ABC ∆和,
,,C B A ∆的相似比为 ,而'
'
'
C B A ∆~
ABC ∆的相似比为 。
若1:1:''=B A AB ,那么ABC ∆和'''C B A ∆的相似比
是 ,ABC ∆和'
''C B A ∆的关系是 。
二、探究三角形相似的判定方法
复习:三角形中位线定理。
问题1:D 、E 是ABC ∆中AB 、AC 的中点,那么ABC ∆和ADE ∆相似吗?为什么?
如相似,相似比k= .
问题2:在ABC ∆中,D 是AB 边的中点,DE//BC 交AC 于E ,那么ABC ∆和ADE ∆相似吗?为什么?(分两步:1、证明两个三角形的对应角相等;2、证明两个三角形的对应边的比相等)
结论:1、E 点是中点(经过三角形一边的中点与另一边平行的直线必平分第三边) 2、若AD=DB ,DE//BC ,则ABC ∆~ADE ∆,相似比k=1:2.
问题3:在ABC ∆中,D 是AB 边上任一点,DE//BC 交AC 于E ,那么ABC ∆和ADE ∆相似吗?为什么?
定理:平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似。
猜测:平行于三角形一边的直线和其他两边的延长线相交索构成的三角形与原三角形是否也相似呢?请验证你的猜测。
三、应用新知,体验成功
例1、①如图1,已知:DE//FG//BC ,D 、F 将AB 三等分。
(1)写出图中的相似三角形及对应边的比。
E
D
C
B
A
(2)如果BC=6,则DE= ,FG= 。
②已知DE//BC ,CD 、BE 相交于点O ,写出图中的相似三角形及对应边的比。
③已知:平行四边形ABCD ,写出图中的相似三角形。
若AB=6,BC=8,AE=2,求AF 。
提示:若△1~△2,△2~△3,则△1~△3
小结:预备定理的作用: 例2、如图,G 是平行四边形ABCD 的CD 延长线上一点,连接BG 交对角线AC 于E ,交AD 于F ,则:(1)图中与△AEF 相似的三角形有 。
(2)图中与△ABC 相似的三角形有 。
(3)图中与△GDF 相似的三角形有 。
例3、如图,在ABC ∆中,DE//BC 。
(1) 如果AD=2,DB=3,求DE :BC 的值。
(2) 如果AD=8,DB=12,AC=15,DE=10,求AE
和BC 的长。
(3) AD=EC ,DB=1,AE=4,BC=5,求DE 。
四 小结
五 作业
六拓展1、⊿ABC 中,D 是BC 的中点,M 是AD 的中点,求A N:NC
的值.
2.如图,在ABC ∆中,M 是AC 的中点,E 是AB 上一点,且BE=3AE ,求CD
BC
的值。
比例线段字型字型相似三角形平行线⇒⎩
⎨⎧⇒8A E D C B
A
O E D C B A
F E D C
B A G
F E D C B A
M
E
D
C
B
A N
M D C
B A。