当前位置:文档之家› 回转驱动选型表doc

回转驱动选型表doc

回转驱动选型表doc

徐州万达回转支承有限公司回转驱动装置选型推荐表

回转支承选型计算与结构

回转支承选型计算(JB2300-1999) ?转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数 ?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件

主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图 2 )静态参照载荷Fa' 和M' 的计算方法:

?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs M'=M*fs ?双排异径球式 对于双排异径球式回转支承选型计算,但Fr ≦10%Fa 时,Fr 忽略不计。当Fr ≧10%Fa 时,必须考虑轨道内侧压力角的变化,其计算请与我们联系。 Fa'=Fa*fs M'=M*fs ?三排滚柱式 三排滚柱式回转支承选型时,仅对轴向滚道负荷和倾覆力矩的作用进行计算。 Fa'=Fa*fs M'=M*fs ?动态选型 对于连续运转、高速回转和其它对回转支承的寿命有具体要求的应用场合,请与我公司联系。 ?螺栓承载力验算: ?把回转支承所承受的最大载荷(没有乘静态安全系数fs )作为选择螺栓的载荷。 ?查对载荷是否在所需等级螺栓极限负荷曲线以下;

电机的选型计算

3873滚珠丝杠电机选型计算 设计要求: 夹具加工件重量:W1=300kg 提升部位重量:W2=100kg 行走最大行程:S= 1200mm 最大速度:V=20000mm/min 使用寿命:Lt=20000h 滑动阻力:u=0。01 电机转数:N=1333RPM 运转条件: v(m/min) 加速下降时间:T1=0.75S 匀速下降时间T2=3S 减速下降时间T3=0.75S t(sec) 加速上升时间T4=0.75S 匀速上升时间T5=3S 减速上升时间T6=0.75S 匀速下降3s 1,螺杆轴径,导程,螺杆长度选定 a:导程(l) 由电机最高转数可得

L大于或等于V/N=20000/1333=15mm 即导程要大于15mm,根据THK样本得导程16mm 即L=16mm b:轴负荷计算 1,加速下降段 a1=V/T=20000/60X0.75=444(mm/s2)=0.444m/s2 f=u(W1+W2)xG=0.01(300+100)x9.8=40N F1=(W1+W2)xG-f-(W1+W2)xa1=(300+100)x9.8-40-(300+100)x0.444=3702N 2,匀速下降段 F2=(W1+W2)xG-f=(300+100)x9.8-40=3880N 3减速下降段 F3=(W1+W2)xG-f+(W1+W2)xa1=(300+100)x9.8-40+(300+100)x0.444=4058N 4 加速上升段 F4=(W1+W2)xG+f+(W1+W2)xa1=(300+100)x9.8+40+(300+100)x0.444=4137N 5,匀速上升段 F5=(W1+W2)xG+f=(300+100)x9.8+40=3960N

回转支承的选型设计

回转支承的选型计算 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 C o=f0×d02×z×sinα…………………………………………(A.1) 式中: C o---当量静容量,单位为N; f o---静容量系数,按表A.1 选取,单位为N/mm2 ; d o---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2)

z取较小的圆整值; 式中: D o ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C P =P+4.37M/D0 +3.44Hr …………………………………(A.3) 式中: C P ---当量轴向载荷,单位为N. 单排球式回转支承选型应满足下式要求: C0/C P≥f S 式中: f S---单排式回转支承安全系数, 按表A.2 选取

驱动器正确选型的方法

驱动器正确选型的方法 (驱动器型号的确定方法) 选择驱动器时需满足以下四点相匹配。 1.电机类型 普通直流有刷电机引线特征:两根电源线或两根电源线与一测速线;两电源线多数为红黑两色;电源正负极交换后电机将反转。 直流有刷伺服电机引线特征:两根电源线与4根或5根编码器信号线。 直流无感无刷电机引线特征:三根电源线,多数为黄绿蓝三色。 直流有感无刷电机引线特征:三根电源线与5根霍尔信号线,电源线通常较信号线粗,电源线多数为黄绿蓝三色,霍尔线多数为红黄绿蓝黑五色。 直流无刷伺服电机引线特征:三根电源线与4根或5根编码器信号线。 爱控电机驱动器中AQMH2403ND、AQMH2407ND、AQMH3615NS、AQMD2410NS、AQMD3610NS、AQMD3620NS、AQMD3630NS、AQMD6030NS支持的电机类型为普通直流有刷电机; AQMD3605BLS、AQMD3608BLS、AQMD6010BLS、AQMD6020BLS支持的电机类型为直流有感无刷电机。 2.电机额定电压 额定电压是电器长时间工作时所适用的最佳电压。电机额定电压通常在电机铭牌或数据手册上可找到。 常见的电机额定电压有6V、12V、24V、36V、48V、60V、110V、220V、380V等。

AQMH2403ND电压范围6.8V-27V,无过压或欠压保护,电压过高或过低都可能损坏驱动器。 AQMD2410NS电压范围8V-27V,无过压保护,电压过高可能损坏驱动器。欠压时不能正常工作。 AQMD3610NS电压范围7V-41V,无过压保护,电压过高可能损坏驱动器。欠压时不能正常工作。 AQMD3605BLS、AQMD63608BLS、AQMH3615NS、AQMD3620NS、AQMD3630NS 电压范围6.5V-40V,有欠压保护,电压过低不工作;无过压保护,电压过高可能损坏驱动器。 AQMD6030NS、AQMD6010BLS、AQMD6020BLS电压范围8.5V-66V,有欠压保护,电压过低不工作;无过压保护,电压过高可能损坏驱动器。 3.电机额定电流 额定电流是指电器设备在额定环境条件(环境温度、日照、海拔、安装条件等)下,电气设备的长期连续工作时允许电流。 确定电机额定电流的方法: 1)电机铭牌或电机数据手册上获得。(电机应工作在额定电压下) 2)电机铭牌或电机数据手册上只能获得电机的额定电压和功率时,可用额定功率 除以额定电压再除以效率估算。对于12V电机,效率通常为50%~60%,我们取50%; 对于24V及更高额定电压电机,效率通常为60%~80%,我们取70%。 3)如果只知道电机的额定电压或电机工作在非额定电压下,我们可以取电机堵转 电流除以3作为额定电流;或测量电机的内阻,用工作电压除以电机内阻得到的电流再除以3作为额定电流(注:使用万用表测量电机内阻时,应用测量得的电机内阻示数值减去万用表两表笔直接短接测量得的表笔内阻的示数值)。 电机启动电流的确定: 电机硬启动的启动电流约等于电机堵转电流。堵转电流通常为额定电流的3~5倍。如额定电流2A的电机,堵转电流可能在6A以上,超过了AQMH2403ND 的MOS能承受的最大电流,那么电机硬启动就可能烧毁驱动板。 AQMH2403ND额定电流2.5A,瞬间峰值电流6A,在负载电流3~6A间能进行过流保护,超过6A可有烧毁。 AQMH3615NS额定电流12A,瞬间峰值电流110A。无过流或短路保护,用户需自行接上保险丝。 AQMD2410NS额定电流7.5A,最大输出电流10A(可持续1分钟),瞬间峰值电流15A。过流时稳流输出,堵转时可停机保护,是否停机保护已及堵转多长时间保护可由用户设置。无短路保护,短路可能损坏驱动器。 AQMD3610NS额定电流10A,瞬间峰值电流50A。过流时稳流输出,堵转时可停机保护,是否停机保护已及堵转多长时间保护可由用户设置。不建议短路,短路可能烧掉保险丝。 AQMD3620NS、AQMD6020BLS额定电流15A,最大输出电流20A(可持续5分钟,过热后停止工作),瞬间峰值电流110A。过流时稳流输出,堵转时可停机保护,是否停机保护已及堵转多长时间保护可由用户设置。不建议短路,短路可能烧掉保险丝。 AQMD3630NS、AQMD6030NS额定电流30A,瞬间峰值电流200A。过流时稳流输出,堵转时可停机保护,是否停机保护已及堵转多长时间保护可由用户设置。不建议短路,短路可能烧掉保险丝。

电机减速器的选型计算实例

电机减速器的选型计算 实例 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

电机减速机的选型计算1参数要求 配重300kg,副屏重量为500kg,初选链轮的分度圆直径为164.09mm,链轮齿数为27,(详见misimi手册P1145。副屏移动的最大速度为0.5m/s,加速时间为1s。根据移动屏实际的受力状况,将模型简化为: 物体在竖直方向上受到的合力为: 其中: 所以: 合力产生的力矩: 其中:r为链轮的半径 链轮的转速为: 2减速机的选型 速比的确定: 初选电机的额定转速为3000r/min 初选减速器的速比为50,减速器的输出扭矩由上面计算可知:193.6262Nm 3电机的选型 传动方式为电机—减速机—齿轮-链轮-链条传动,将每一级的效率初定位为0.9,则电机的扭矩为: 初选电机为松下,3000r/min,额定扭矩为:9.55Nm,功率3kw转子转动惯量为 7.85X10-4kgm2带制动器编码器,减速器为台湾行星减速器,速比为50,额定扭矩为650NM 4惯量匹配 负载的转动惯量为:

转换到电机轴的转动惯量为: 惯量比为: 电机选型手册要求惯量比小于15,故所选电机减速器满足要求 减速机扭矩计算方法: 速比=电机输出转数÷减速机输出 ("速比"也称"传动比")知道电机功率和速比及,求减速机扭矩如下公式: 减速机扭矩=9550×电机功率÷电机功率输入转数×速比×使用系数 知道扭矩和减速机输出转数及使用系数,求减速机所需配电机功率如下公式:电机功率=扭矩÷9550×电机功率输入转数÷速比÷使用系数

驱动轮直流电机选择计算

驱动轮电机用于驱动 AGV 的运行,包括AGV 的直行及差速转弯。在选择电机时,我们通常需要计算出电机的额定功率、额定转矩、额定转速等[28]。而在驱动电机的参数计算之前首先需要明确 AGV 的各项设计要求,如表3-1 所示。 3.1.1 电动机的选择 1. 驱动力与转矩关系 AGV 在地面行驶时,轮子与地面接触,AGV 克服摩擦力向前行驶,电机输出转矩Tq 为小车提供驱动力。而Tq 经减速机减速后得到输出转矩Tt 输出至驱动轮,输出转矩Tt 为: q t g T i T η= 式中 g i ——减速机减速比; q T ——电机输出转矩; t T ——输出转矩; η——电机轴经减速机到驱动轮的效率。 驱动轮在电机驱动下在地面转动,此时相对于地将形成一个圆周力,而地面对驱动轮也将产生一个等值、反向的力t F ,该力即为驱动轮的驱动力[29] 。驱动力为: q q q t g t R T i R T F η= = 式中 q R ——驱动轮的驱动半径。 由于驱动轮一般刚性较好,视其自由半径、静力半径、滚动半径三者相同,均为q R 。 2. 驱动力与阻力计算 小车在行驶过程中要克服各种阻碍力,这些力包括:滚动阻力f F 、空气阻力w F 、

坡度阻力r F 、加速度阻力j F 。这些阻力均由驱动力t F 来克服,因此: j r w f t F F F F F +++= (1) 滚动阻力f F 滚动阻力在 AGV 行驶过程中,主要由车轮轴承阻力以及车轮与道路的滚动摩擦阻力所组成,f F 大小为: fg fz f F F F += 式中 fz F ——车轮与轴承间阻力; fg F ——车轮与道路的滚动摩擦阻力。 其中,车轮轴承阻力fz F 为: N 6.3200 48 015.010002 /2 /fz =?? ===D d P D d P F μμ 式中 P ——车轮与地面间的压力,AGV 设计中,小车自重m 为100kg ,最大载 重量m ax M 为200kg ,因此最大整车重量为300kg ,一般情况下,AGV 前行过程中,有三轮同时着地,满足三点决定一平面的规则,各轮的压力为P =1000N [30]; d ——车轮轴直径,驱动轮在本次设计中选择8寸的工业车轮,即d=48mm ; D ——车轮直径,查文献[40]可知,驱动轮在本次设计中选择8 寸的工业车轮,即D =200mm ; μ——车轮轴承摩擦因数,良好的沥青或混凝土路面摩擦阻力系数为0.010—0.018,μ =0.015。 车轮与道路的滚动摩擦阻力fg F 为: N 15015.01000fg =?==Qf F 式中 Q ——车轮承受载荷,Q =1000N ; f ——路面摩擦阻力系数,f =0.015。 则: N 6.18fg fz f =+=F F F (2) 空气阻力w F : 空气阻力是 AGV 行驶过程当中, 车身与空气间形成了相对运动而产生于车身上的阻力,该阻力主要由法向力以及侧向力两部分组成。空气阻力与AGV 沿行驶方向的投影面积以及车身与空气的相对运动速度有关, 但由于AGV 工作于

步进电机——步进电机选型的计算方法

步进电机——步进电机选型的计算方法 步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲]

定位时间[秒] (2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小,所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(TL) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

回转支承的选型计算

回转支承的选型计算 A5 安装螺栓的选择 A.5.1 螺栓按GB/T3098.1 和GB/T5782选用,亦可自行设计大六角头螺栓。性能等级为8.8级,10.9级和12.9级 A.1 外载荷的确定 单排球式回转支承上的外载荷是组合后的总载荷,包括: a) 总倾翻力矩M, 单位为N?mm; b) 总轴向力P, 单位为N; c) 总倾翻力矩M 作用平面的总径向力Hr, 单位为 N。 在计算M、P、Hr 过程中,应根据主机的工作类型,考虑其工作条件,按实际计算工况,最不利载荷组合机型计算。 A.2 单排球式回转支承的当量静容量 按公式 (A.1)计算 Co=f0×d02×z×sinα…………………………………………………………(A.1) 式中: Co---当量静容量,单位为N; fo---静容量系数,按表A.1 选取,单位为N/mm2 ; do---钢球公称直径,单位为mm; α---公称接触角,单位为(°); 对一般建筑机械,可取α=50°, 当2M/PD0≥10 时, 可取α=45°, 对于特殊受力的情况,应根据外力的大小,作用方向另行计算: z---钢球个数,按公式(A.2)计算 z=(πD0-0.5d0)/(d0 + b)………………………………………(A.2) z取较小的圆整值; 式中: Do ---滚道中心直径,单位为mm; b---隔离块隔离宽度,单位为mm, 按表7选取。 表A.1 静容量系数f0 Static Capacity Factor A.3 选型计算 根据组合后的外荷载M、P、Hr ,按公式(A.3)计算当量轴向载荷: JB/T 10839-2008 C =P+4.37M/D0 +3.44Hr ………………………………………………(A.3) P 式中:

步进电机选型的计算方法[1]

步进电机选型表中有部分参数需要计算来得到。但是实际计算中许多情况我们都无法得到确切的机械参数,因此,这里只给出比较简单的计算方法。 ◎驱动模式的选择 驱动模式是指如何将传送装置的运动转换为步进电机的旋转。 下图所示的驱动模式包括了电机的加/减速时间,驱动和定位时间,电机的选型基于模式图。 ●必要脉冲数的计算 必要脉冲数是指传动装置将物体从起始位置传送到目标位置所需要提供给步进电机的脉冲数。必要脉冲数按下面公式计算: 必要脉冲数= 物体移动的距离 距离电机旋转一周移动的距离× 360 o 步进角 ●驱动脉冲速度的计算 驱动脉冲速度是指在设定的定位时间中电机旋转过一定角度所需要的脉冲数。 驱动脉冲数可以根据必要脉冲数、定位时间和加/减速时间计算得出。 (1)自启动运行方式 自启动运行方式是指在驱动电机旋转和停止时不经过加速、减速阶段,而直接以驱动脉冲速度启动和停止的运行方式。 自启动运行方式通常在转速较低的时候使用。同时,因为在启动/停止时存在一个突然的速度变化,所以这种方式需要较大的加/减速力矩。 自启动运行方式的驱动脉冲速度计算方法如下: 驱动脉冲速度[Hz]= 必要脉冲数[脉冲] 定位时间[秒]

(2)加/减速运行方式 加//减速运行方式是指电机首先以一个较低的速度启动,经过一个加速过程后达到正常的驱动脉冲速度,运行一段时间之后再经过一个减速过程后电机停止的运行方式。其定位时间包括加速时间、减速时间和以驱动脉冲速度运行的时间。 加/减速时间需要根据传送距离、速度和定位时间来计算。在加/减速运行方式中,因为速度变化较小, 所以需要的力矩要比自启动方式下的力矩小。加/减速运行方式下的驱动脉冲速度计算方法如下: 必要脉冲数-启动脉冲数[Hz]×加/减速时间[秒] 驱动脉冲速度[Hz]= 定位时间[秒]-加/减速时间[秒] ◎电机力矩的简单计算示例 必要的电机力矩=(负载力矩+加/减速力矩)×安全系数 ●负载力矩的计算(T L) 负载力矩是指传送装置上与负载接触部分所受到的摩擦力矩。步进电机驱动过程中始终需要此力矩。负载力矩根据传动装置和物体的重量的不同而不同。许多情况下我们无法得到精确的系统参数,所以下面只给出了简单的计算方法。 负载力矩可以根据下面的图表和公式来计算。 (1)滚轴丝杆驱动

回转支承选型计算

回转支承选型计算 一、回转支承承载 回转支承在使用过程中,一般要承受轴向力Fa,径向力Fr以及倾覆力矩M的共同作用,对不同的应用场合,由于主机的工作方式及结构型式不同,上述三种载荷的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种型式——座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 客户在选型时,若所用回转支承为座式安装,可按下面的选型计算来进行选型;若所用回转支承为悬挂式安装或其他安装型式,请与我公司技术部进行联系。 二、回转支承的选型 1、结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: ? Do ≤1800时,单排球式为首选型式;Do >1800时,优先选用三排柱式回转支承。 ? 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排异径式。 ? Q系列单排球式回转支承,尺寸更紧凑,重量更轻,具有更好的性价比,为单排球式的首选系列。 2、回转支承的选型计算 单排球式回转支承的选型计算 ①计算额定静容量 C O = 0.6× D O×do0.5 式中:C O─── 额定静容量, kN D O─── 滚道中心直径, mm do───钢球公称直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4370M/D O + 3.44Fr 式中:Cp ─── 当量轴向载荷, kN M ───倾覆力矩,kN·m Fa ───轴向力,kN Fr ───径向力,kN ③安全系数 fs = Co / Cp fs值可按下表选取 三排柱式回转支承的选型计算 ①计算额定静容量 Co= 0.534×D O×do0.75 式中:C O───额定静容量, kN D O─── 滚道中心直径, mm do ─── 上排滚柱直径, mm ②根据组合后的外载荷,计算当量轴向载荷 Cp = Fa + 4500M/D O 式中:C p─── 当量轴向载荷, kN

电机选型计算-个人总结版

电机选型-总结版 电机选型需要计算工作扭矩、启动扭矩、负载转动惯量,其中工作扭矩和启动扭矩最为重要。 1工作扭矩T b计算: 首先核算负载重量W,对于一般线形导轨摩擦系数μ=0.01,计算得到工作力F b。 水平行走:F b=μW 垂直升降:F b=W 1.1齿轮齿条机构 一般齿轮齿条机构整体构造为电机+减速机+齿轮齿条,电机工作扭矩T b的计算公式为: T b=F b?D 2 其中D为齿轮直径。 1.2丝杠螺母机构 一般丝杠螺母机构整体构造为电机+丝杠螺母,电机工作扭矩T b 的计算公式为: T b=F b?BP 2πη 其中BP为丝杠导程;η为丝杠机械效率(一般取0.9~0.95,参考下式计算)。 η=1?μ′?tanα1+μ′ tanα

其中α为丝杠导程角;μ’为丝杠摩擦系数(一般取0.003~0.01,参考下式计算)。 μ=tanβ 其中β丝杠摩擦角(一般取0.17°~0.57°)。 2启动扭矩T计算: 启动扭矩T为惯性扭矩T a和工作扭矩T b之和。其中工作扭矩T b 通过上一部分求得,惯性扭矩T a由惯性力F a大小决定: F a=W?a 其中a为启动加速度(一般取0.1g~g,依设备要求而定,参考下式计算)。 a=v t 其中v为负载工作速度;t为启动加速时间。 T a计算方法与T b计算方法相同。 3 负载转动惯量J计算: 系统转动惯量J总等于电机转动惯量J M、齿轮转动惯量J G、丝杠转动惯量J S和负载转动惯量J之和。其中电机转动惯量J M、齿轮转动惯量J G和丝杠转动惯量J S数值较小,可根据具体情况忽略不计,如需计算请参考HIWIN丝杠选型样本。下面详述负载转动惯量J的计算过程。 将负载重量换算到电机输出轴上转动惯量,常见传动机构与公式如下:

回转支承选型计算

回转支承选型计算: 一、单排球式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN f ——静容量系数,0.108 kN / mm2 D ——滚道中心直径,mm d ——钢球公称直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN Fr ——总倾覆力矩作用平面的总径向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 二、三排柱式回转支承的选型计算 1、计算额定静容量 C0 = f ·D·d 式中:Co ——额定静容量,kN

f ——静容量系数,0.172 kN / mm2 D ——滚道中心直径,mm d ——上排滚柱直径,mm 2、根据组合后的外载荷,计算当量轴向载荷 式中:Cp ——当量轴向载荷,kN M ——总倾覆力矩,kN·m Fa ——总轴向力,kN 3、计算安全系数 fs = Co / Cp fs值可按下表选取。 回转支承安全系数fs 工作类型工作特性机械举例fs 堆取料机,汽车起重机,非港 1.00~1.15 轻型不经常满负荷,回转平稳冲击小 口用轮式起重机 塔式起重机,船用起重机,履 1.15~1.30 中型不经常满负荷,回转较快,有冲击 带起重机 抓斗起重机,港口起重机,单 1.30~1.45 重型经常满负荷,回转快冲击大 斗挖掘机,集装箱起重机 斗轮式挖掘机,隧道掘进机, 1.45~1.70 特重型满负荷,冲击大或工作场所条件恶劣 冶金起重机,海上作业平台起

回转支承产品标准对合理选型的影响 《建筑机械》2002年第三期 现行的单排球式回转支承有两个行业标准JJ36.1-91《建筑机械用回转支承》和JB/T2300-99《回转支承》,也就是在以前的建设部标准JJ36-86和机械部标准JB2300-84的基础上重新修订的。在JJ36.1的基本参数系列表中列出了145种基本参数的145种型号单排球式回转支承,在JB/T2300中列出了120种基本参数的220种型号单排球式回转支承。目前我国除引进主机外,绝大多数主机都是按现行的两个标准规定的参数选择回转支承型号。由于JB2300-84较JJ36-86颁布实施得早,其覆盖面要略大于JJ36-86,两个标准都为回转支承标准化生产做出了贡献。随着各主机待业和回转支承行业的飞速发展,国外机型的大量引进,标准中的问题也显现出来,甚至阻碍了各主机行业和回转支承行业的发展,应引起我们高度重视。 单排球式回转支承的滚道中心直径(D0)和钢球直径(d0)是它的两个主参数,它们不但决定了回转支承的承载能力和使用寿命,也是其它参数设计的依据,因此两者的匹配合理与否不仅是回转支承设计水平的反映,将直接影响主机选用的科学性、经济性和结构的合理性。通常我们用D0/d0的比值来分析主参数匹配的合理性,在D0=500~2500范围内,JJ36.1中 D0/d0=31.25~41.67;JB/T2300中,D0/d0=16.67~62.5。德国ROTHEERDE 公司标准系列单排球式回转支承D0/d0=30~56。那么该比值在什么范围内科学合理呢?通过计算和比较我们不难找到答案。 当回转支承的D0和d0值确定以后,它的额定静容量和额定动容量也随之可计算出来,并可作出其静载和动载曲线,显然当静载曲线和动载曲线靠得很近时,在满足静载荷要求的同时又满足了动载荷(即寿命)的要求。如果两条承载能力曲线离得较远,只能按承载能力较低的一条曲线选用,势必造成另一种能力的浪费。从JB/T2300附录B承载能力曲线中不难看出30·900、30·1000、30·1120、35·1250、35·1400、45·1400、45·1600、45·1800、60·2000、60·2240、60·2500的动、静载曲线靠得较近,主参数匹配合理,它们的比值为30~41.67。同时也可看出,D0/d0比值过小,动载曲线远高于静载曲线(例30·500比值为16.67),比值过大动载曲线远低于静载曲线(例40·2500比值为62.5),在此附录中共有图B1~图B48共48幅曲线图覆盖220种型号,除上述11种主参数匹配代表的55种型号外,其余165种型号(占75%)的主参数匹配不合理。通过以上分析得道的答案是:D0/d0=30~40

回转支承选型计算

回转支承选型计算 转支承受载情况 回转支承在使用过程中,一般要承受轴向力Fa 、径向力Fr 以及倾覆力矩M 的共同作用,对不同的应用场合,由于主机的工作方式及结构形式不同,上述三种荷载的作用组合情况将有所变化,有时可能是两种载荷的共同作用,有时也有可能仅仅是一个载荷的单独作用。 通常,回转支承的安装方式有以下两种形式—座式安装和悬挂式安装。两种安装形式支承承受的载荷示意如下: 二、回转支承选型所需的技术参数 ?回转支承承受的载荷 ?每种载荷及其所占有作业时间的百分比 ?在每种载荷作用下回转支承的转速或转数

?作用在齿轮上的圆周力 ?回转支承的尺寸 ?其他的运转条件 主机厂家可根据产品样本所提供的信息,利用静承载能力曲线图,按回转支承选型计算方法初步选择回转支承,然后,与我公司技术部共同确认。也可向我公司提供会和转支承相关信息,由我公司进行设计选型。 回转支承编号方法(点击进入) ?01系列回转支承承载能力曲线(点击进入) 02系列回转支承承载能力曲线(点击进入) 11系列回转支承承载能力曲线(点击进入) 13系列回转支承承载能力曲线(点击进入) 每一型号回转支承都对应一个承载力曲线图,曲线图可帮助用户初步的选择回转支承。 曲线图中有二种类型曲线,一类为静止承载曲线( 1 线),表示回转支承保持静止状态时所能承受的最大负荷。另一类为回转支承螺栓极限负荷曲线(8.8 、10.9 ),它是在螺栓夹持长度为螺栓工称直径 5 倍,预紧力为螺栓材料屈服极限70% 是确定的。 ?回转支承选型计算方法 ?静态选型 1 )选型计算流程图

2 )静态参照载荷Fa' 和M' 的计算方法: ?单排四点接触球式: 单排四点接触球式回转支承的选型计算分别按承载角45 °和60 °两种情况进行。 I、a=45° II、a=60° Fa'=(1.225*Fa+2.676*Fr)*fs Fa'=(Fa+5.046*Fr)*fs M'=1.225*M*fs M'=M*fs 然后在曲线图上找出以上二点,其中一点在曲线以下即可。 ?单排交叉滚柱式 Fa'=(Fa+2.05Fr)*fs

电动汽车驱动电机的设计与选型

电动汽车驱动电机的设计与选型 全世界的汽车保有量和使用量的逐日增大,世界能源问题越来越突出,电动汽车方向逐渐出现并在汽车领域占有了一个非常重要的位置。早在20世纪50年代初,美国人罗伯特就发明了一种将电动机、传动系统和制动系统融为一体的轮毂装置。该轮毂于1968年被通用电气公司应用在大型的矿用自卸车上。 相对与传动汽车、单电机集中驱动的汽车,轮毂电机式电动汽车具有以下优点:动力控制通过电子线控技术实现对各电动轮进行无级变速控制,以及各电动轮之间的差速要求,省略了传统汽车所需的波箱、离合器、变速器、传动轴等;在电机所安装的位置同时可见,整车的结构变得简洁、紧凑,车身高降低,可利用空间大,传动效率高。容易实现各电动轮的电气制动、机电复合制动和制动能量回馈。底盘结构大为简化,使整车总布置和车身造型设计的自由度增加。若能将底盘承载功能与车身功能分离,则可实现相同底盘不同车身造型的产品多样化和系列化,从而缩短新车型的开发周期,降低开发成本。若在采用轮毂电机驱动系统的四轮电动汽车上导入线控四轮转向技术(4WS),实现车辆转向行驶高性能化,可有效减小转向半径,甚至实现零转向半径,大大增加了转向灵便性。(说起来很轻松,但是如果真正实现起

来,上面那段话恐怕十年之内都没办法产业化,比如机电复合制动,比如制动能量回馈,原理不难,难的是在技术、成本、产业、供应商等等条件都成熟起来之后......)1.电动汽车基本参数参数确定1.1 该电动汽车基本参数要求,如下表:1.2 动力性指标如下: 最大车速X;在车速=60km/h时爬坡度5%(3度);在车速=40km/h时爬坡度12% (6.8度);原地起步至100km/h的加速时间;最大爬坡度(16度);0到75km/h加速时间;具备2~3倍过载能力。2.电机参数设计一般来说,电动汽车整车动力性能指标中最高车速对应的是持续工作区,即电动机的额定功率;而最大爬坡度和全力加速时间对应的是短时工作区(1~5min),即电动机的峰值功率。2.1 以最高车速确定电机额定功率根据虽高车速计算电机功率时,不考虑加速阻力和坡道阻力,电机功率应满足:式中:电机输出功率,kw;传动系效率,取0.9;最大车重,取1400kg;滚动摩擦系数,取0.014;风阻系数,取0.33;迎风面积,取2.50㎡;最高车速,取100km/h。根据(1)(2)式,可以计算出满足最高车速时,电机输出额定功率为21.023kw[3]。2.2 根据要求车速的爬坡度计算 根据公式(4),其中在车速=60km/h时爬坡度5%可得:根据公式(4),其中在车速=40km/h时爬坡度12%可得: 根据(4)式,可以计算出满足车速为60km/h时,爬坡度为

电机选型计算公式总结

电机选型计算公式总结功率:P=FV(线性运动) T=9550P/N(旋转运动) P——功率——W F——力——N V——速度——m/s T——转矩——N.M 速度:V=πD N/60X1000 D——直径——mm N——转速——rad/min 加速度:A=V/t A——加速度——m/s2 t——时间——s

力矩:T=FL 惯性矩:T=Ja L ——力臂——mm (圆一般为节圆半径R ) J ——惯量——kg.m2 a ——角加速度——rad/s2 1. 圆柱体转动惯量(齿轮、联轴节、丝杠、轴的转动惯量) 对于钢材:341032-??=g L rD J π M-圆柱体质量(kg); D-圆柱体直径(cm); L-圆柱体长度或厚度(cm); r-材料比重(gf /cm 3)。2. 丝杠折算到马达轴上的转动惯量: 2i Js J = (kgf·cm·s 2) J s –丝杠转动惯量 i-降速比,1 2z z i =3. g w 2s 2??? ??=π (kgf· 角加速度a=2πn/60t v -工作台移动速度(cm/min); n-丝杠转速(r/min); w-工作台重量(kgf); g-重力加速度,g = 980cm/s 2; s-丝杠螺距(cm)2. 丝杠传动时传动系统折算到驱轴上的总转动惯量:

J 1-齿轮z 1及其轴的转动惯量; J 2-齿轮z 2的转动惯量(kgf·cm·s 2); J s -丝杠转动惯量(kgf·cm·s 2); s-丝杠螺距,(cm); w-工件及工作台重量(kfg).5. 齿轮齿条传动时折算到小齿轮轴上的转动惯量2g w R J (kgf·cm·s 2) R-齿轮分度圆半径(cm); w-工件及工作台重量(kgf) 6. J 1,J 2- Ⅱ轴上齿轮的转动惯量(kgf·cm·s 2); R-齿轮z 分度圆半径(cm); w-工件及工作台重量(kgf)

回转支承选型原则

回转支承选型原则 (万达回转支承研发所,徐州,20100525) (1)结构型式的选择 常用回转支承的结构型式有四种:单排球式、交叉滚柱式、双排球式、三排柱式。 根据我们的经验和计算,有以下结论: 相同外形尺寸的回转支承, 单排球式的承载能力高于交叉滚柱式和双排球式。 在倾覆力矩160吨米载荷以下,选用单排球式回转支承其性价比高于三排柱式回转支承,为首选形式。当倾覆力矩高于160吨米时应该优先考虑选用三排柱式回转支承。 (2)单排球式回转支承系列的选择 在国内,目前单排球式回转支承有3个系列的尺寸规格:HS系列,Q系列和01系列。对于新用户一般不知如何选择那个系列,我们认为每种系列各有优点,分析如下: 3个系列的参数比较(以滚道中心直径1250外齿式为例) 公司主要回转支承产品的类型和规格 回转支承的主要型式是交叉滚柱式,八十年代后开始生产单排球式回转支承,交叉滚柱式回转支承逐渐被取代,为了保持主机的安装尺寸不受影响,设计了外形及安装尺寸与原来交叉滚柱式回转支承完全相同但内部结构改为单排球式的HS系列单排球式回转支承。其特点是外形尺寸大,例如:HSN1250.40的重量是470Kg, 而相同承载能力的QNA1250.40的重量是388 Kg, 所以HS系列回转支承占用较多的资源,制造成本比相同的承载能力的Q系列和01系列回转支承高10%以上,同国外相同承载能力的回转支承相比差得更远。 因此,从节约成本和资源出发,HS系列应该尽可能不用。考虑到改变回转支承后会改变主机的相关尺寸,因此这个过程会比较痛苦,但是新的设计不应该再选用HS系列。 ②. 01系列单排球式回转支承是1984年原机械部推出的以轴承编号为基准的回转支承系列。其安装螺栓孔数量多,比较合理,但是滚道参数存在不合理匹配,例如011.45.1400与 011.35.1400回转支承,其外形尺寸和安装尺寸完全相同,其制造成本基本相同,但是011.45.1400使用的是直径45mm钢球,而011.35.1400使用的是直径35mm钢球,后者的承载能力降低了22%。所以在选用01系列单排球式回转支承应注意选择较大钢球的规格。

步进电机 知识及驱动芯片选型指南

步进电机驱动芯片选型指南 以下是中国步进电机网对步进电机驱动系统所做的较为完整的表述: 1、系统常识: 步进电机和步进电机驱动器构成步进电机驱动系统。步进电机驱动系统的性能,不但取决于步进电机自身的性能,也取决于步进电机驱动器的优劣。对步进电机驱动器的研究几乎是与步进电机的研究同步进行的。 2、系统概述: 步进电机是一种将电脉冲转化为角位移的执行元件。当步进电机驱动器接收到一个脉冲信号(来自控制器),它就驱动步进电机按设定的方向转动一个固定的角度(称为“步距角”),它的旋转是以固定的角度一步一步运行的。 3、系统控制: 步进电机不能直接接到直流或交流电源上工作,必须使用专用的驱动电源(步进电机驱动器)。控制器(脉冲信号发生器)可以通过控制脉冲的个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。 4、用途: 步进电机是一种控制用的特种电机,作为执行元件,是机电一体化的关键产品之一,随着微电子和计算机技术的发展(步进电机驱动器性能提高),步进电机的需求量与日俱增。步进电机在运行中精度没有积累误差的特点,使其广泛应用于各种自动化控制系统,特别是开环控制系统。 5、步进电机按结构分类: 步进电机也叫脉冲电机,包括反应式步进电机(VR)、永磁式步进电机(PM)、混合式步进电机(HB)等。 (1)反应式步进电机: 也叫感应式、磁滞式或磁阻式步进电机。其定子和转子均由软磁材料制成,定子上均匀分布的大磁极上装有多相励磁绕组,定、转子周边均匀分布小齿和槽,通电后利用磁导的变化产生转矩。一般为三、四、五、六相;可实现大转矩输出(消耗功率较大,电流最高可达20A,驱动电压较高);步距角小(最小可做到六分之一度);断电时无定位转矩;电机内阻尼较小,单步运行(指脉冲频率很低时)震荡时间较长;启动和运行频率较高。 (2)永磁式步进电机: 通常电机转子由永磁材料制成,软磁材料制成的定子上有多相励磁绕组,定、转子周边没有小齿和槽,通电后利用永磁体与定子电流磁场相互作用产生转矩。一般为两相或四相;输出转矩小(消耗功率较小,电流一般小于2A,驱动电压12V);步距角大(例如7.5度、15度、22.5度等);断电时具有一定的保持转矩;启动和运行频率较低。(3)混合式步进电机: 也叫永磁反应式、永磁感应式步进电机,混合了永磁式和反应式的优点。其定子和四相反应式步进电机没有区别(但同一相的两个磁极相对,且两个磁极上绕组产生的N、S极性必须相同),转子结构较为复杂(转子内部为圆柱形永磁铁,两端外套软磁材料,周边有小齿和槽)。一般为两相或四相;须供给正负脉冲信号;输出转矩较永磁式大(消耗功率相对较小);步距角较永磁式小(一般为1.8度);断电时无定位转矩;启动和运行频率较高;是目前发展较快的一种步进电机。 6、步进电机按工作方式分类:可分为功率式和伺服式两种。 (1)功率式:输出转矩较大,能直接带动较大负载(一般使用反应式、混合式步进电机)。 (2)伺服式:输出转矩较小,只能带动较小负载(一般使用永磁式、混合式步进电机)。 7、步进电机的选择: (1)首先选择类型,其次是具体的品种与型号。 (2)反应式、永磁式和混合式三种步进电机的性能指标、外形尺寸、安装方法、脉冲电源种类和控制电路等都不同,价格差异也很大,选择时应综合考虑。 (3)具有控制集成电路的步进电机应优先考虑。 8、步进电机的基本参数: (1)电机固有步距角:它表示控制系统每发一个步进脉冲信号,电机所转动的角度。电机出厂时给出了一个步距角

回转支承承载能力

影响回转支承承载能力的四个参数 回转支承的失效形式有两种,一是滚道损坏,二是断齿,而滚道损坏占的比例达98%以上,因此我们说,滚道质量是回转支承质量的核心问题,影响回转支承滚道质量的因素较多,其中滚道淬火硬度、淬硬层深度、滚道曲率半径和接触角无疑是最重要的四个影响因素,它们以不同的方式影响着滚道质量,并决定了回转支承的承载能力和使用寿命。 ?滚道硬度 回转支承滚道淬火硬度对其额定静容量影响较大,如以HRC55时额定静容量为标准1,则滚道硬度与额定静容量有下列对应关系: 标准规定的最低硬度为HRC55,通常实际平均淬火硬度在HRC57左右,因此绝大多数回转支承实际承载能力均高于按HRC55计算的理论值。从上表也可看出当硬度低于HRC53时,即使留有1.2的安全系数,使用也不安全了,特别当硬度只有HRC50时,1.7倍的安全系数也形同虚设,非常危险。硬度不够极易造成回转支承失效,从滚道表面点蚀开始到坍塌结束。 ?滚道淬硬层深度 滚道淬硬层深度目前尚无无损检测的方法,主要靠工艺和装备来保证,必要的淬硬层深度是回转支承滚道不产生剥落的保证。当回转支承受外负荷作用时,钢球与滚道的点接触就变成了面接触,是一个长半轴为a,短半轴为b的椭圆面,滚道除受压应力外,还受到剪切应力作用,最大剪切应力发生在表面下0.47a深处,因此滚道淬硬层深度须大于0.47a(一般取0.6a),这也是标准中根据钢球直径大小,而不是根据回转支承直径大小来规定淬硬层深度的原因,同时给出了具体最小保证值。深度不够又会对回转支承的承载能力产生什么样的影响呢?它定量化的描述是:额定静容量CO与淬硬层深度H0.908成正比,由此可计算出,将要求为4mm的淬硬层深度只淬到2.5mm,那么CO将由1降至0.65,由此而产生的回转支承失效形式为滚道剥落,即使采取焊补措施也无济于事。 ?滚道曲率半径 这里的滚道曲率半径是指滚道在垂直剖面内的曲率半径,它与钢球半径的比值t(一般为1.04~1.08)的大小也显著影响着回转支承的额定静容量和动容量(寿命Lh),设t=1.04时为额定静容量和寿命均为1,则有下列对比关系:

相关主题
文本预览
相关文档 最新文档