复合材料增强体
- 格式:ppt
- 大小:1.45 MB
- 文档页数:48
复合材料概论全套课件312P一、教学内容本节课我们将学习《复合材料概论》一书的第1章“复合材料概述”和第2章“复合材料的组成与结构”。
详细内容包括复合材料的基本概念、分类、性能特点,以及复合材料的基体、增强体、界面等基本组成部分和作用。
二、教学目标1. 了解复合材料的基本概念、分类及性能特点。
2. 掌握复合材料的组成、结构和制备方法。
3. 能够运用所学知识分析复合材料的性能与应用。
三、教学难点与重点教学难点:复合材料的组成、结构和性能关系。
教学重点:复合材料的基本概念、分类、性能特点及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
五、教学过程1. 导入:通过展示复合材料在日常生活中的应用实例,激发学生的学习兴趣,引入本节课的主题。
2. 知识讲解:(1)复合材料的基本概念、分类及性能特点;(2)复合材料的组成、结构和制备方法。
3. 例题讲解:分析一个具体复合材料的性能,引导学生运用所学知识解决问题。
4. 随堂练习:设计若干有关复合材料的选择题、填空题和简答题,巩固所学知识。
5. 小组讨论:分组讨论复合材料在实际应用中的优势与局限性,培养学生的团队协作能力。
六、板书设计1. 复合材料基本概念2. 复合材料分类3. 复合材料性能特点4. 复合材料组成与结构5. 复合材料制备方法七、作业设计1. 作业题目:(1)简述复合材料的基本概念及其分类。
(2)解释复合材料的性能特点及其应用。
(3)分析复合材料组成、结构与性能之间的关系。
2. 答案:(2)复合材料具有轻质、高强度、耐腐蚀、耐磨损、导电性等特点,广泛应用于航空航天、汽车、建筑、电子等领域。
(3)复合材料的性能取决于基体、增强体和界面的性质。
基体负责传递应力,增强体负责提供强度和刚度,界面则是连接基体和增强体的桥梁。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生查阅相关资料,了解复合材料在新能源、生物医学等领域的应用,拓宽知识视野。
重点和难点解析1. 教学内容的难点与重点;2. 教学过程中的例题讲解;3. 作业设计中的题目和答案;4. 课后反思及拓展延伸。
陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
化学键往往是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。
纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。
目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。
颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。
常用的颗粒也是SiC、Si3N4和A12O3等。
陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。
陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。
因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。
如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。
研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。
摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。
最后对陶瓷复合基材料的发展前景及发展方向做了展望。
1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。
普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。
虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。
而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。
特种陶瓷包括功能陶瓷和结构陶瓷。
是一种复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。
2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。
复合材料定义•广义定义:复合材料是由两种或两种以上异质、异形、异性的材料复合形成的新型材料。
一般由基体组元与增强体或功能组元所组成。
复合材料(CompositeMaterials),以下简称CM。
•狭义定义:•(通常研究的内容)用纤维增强树脂、金属、无机非金属材料所得的多相固体材料。
•基体相是一种连续相材料,它把改善性能的增强相材料固结成一体,并起传递应力的作用;•增强相起承受应力(结构复合材料)和显示功能(功能复合材料)的作用。
复合材料既能保持原组成材料的重要特色,又通过复合效应使各组分的性能互相补充,获得原组分不具备的许多优良性能。
CM与化合材料、混合材料的区别:•:• 多相体系和复合效果是复合材料区别于传统的“混合材料”和“化合材料” 的两大特征。
・•• 举例:砂子与石子混合,合金或高分子聚合物•复合效应大致上可归结为两种类型:混合效应和协同效应•混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果.它是组分材料性能比较稳定的总体反映.对局部的扰动反应并不敏感。
在复合材料力学中,它与刚度问题密切相关,表现为各种形式的混合律,而且已形成比较成熟的理论体系,薄弱环节、界面、工艺因素通常对混合效应没有明显的作用。
•协同效应反映的是组分材料的各种原位特性(in situ properties)o所谓的原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
协同效应变化万千,反应往往比混合效应剧烈,是复合材料的本质特征。
按基体类型分类:非金属复合材料:树脂基复合材料(玻璃钢),橡胶基复合材料(轮胎),陶瓷基复合材料(钢筋混凝土、纤维增强陶瓷)。
金属基复合材料:(纤维增强金属)淤按增强材料分类:纤维增强复合材料:纤维增强橡胶(轮胎)、纤维增强塑料(玻璃钢、碳纤维增强塑料)、纤维增强陶瓷、纤维增强金属(碳纤维/铝锡合金)等。
颗粒增强复合材料:陶瓷颗粒----金属基(硬质合金),金属颗粒----塑料基等。
《复合材料》知识清单一、什么是复合材料在现代材料科学的领域中,复合材料是一种极其重要的存在。
简单来说,复合材料就是由两种或两种以上不同性质的材料,通过物理或化学的方法组合在一起,形成的一种新的材料。
它与单一材料的显著区别在于,其性能并非各组成材料性能的简单加和,而是通过协同作用,产生了比单一材料更优异的综合性能。
复合材料的组成部分通常包括基体和增强体。
基体就像是一个承载和传递载荷的基础框架,而增强体则赋予材料更高的强度、刚度等特殊性能。
二、复合材料的分类1、按基体材料分类金属基复合材料:以金属为基体,如铝基、钛基等,具有良好的高温性能和导电导热性。
陶瓷基复合材料:基体为陶瓷,具备耐高温、耐磨等特性。
聚合物基复合材料:常见的有树脂基复合材料,重量轻、耐腐蚀。
2、按增强体的形态分类纤维增强复合材料:其中的纤维可以是玻璃纤维、碳纤维等,具有高强度和高模量。
颗粒增强复合材料:如碳化硅颗粒增强铝基复合材料,能提高硬度和耐磨性。
层状复合材料:由不同材料的层片交替堆叠而成。
三、复合材料的性能特点1、高强度和高刚度由于增强体的存在,复合材料往往具有比传统单一材料更高的强度和刚度。
2、良好的耐疲劳性能能够承受多次循环载荷而不易发生疲劳破坏。
3、优异的耐腐蚀性能可以在恶劣的化学环境中保持稳定。
4、可设计性强通过选择不同的基体和增强体,以及调整它们的比例和分布,可以定制出满足特定需求的性能。
四、复合材料的制备方法1、手糊成型这是一种较为简单的方法,工人将基体材料和增强材料手工铺叠在模具上,然后固化成型。
但这种方法生产效率较低,且质量较难控制。
2、喷射成型将基体材料和短切纤维同时喷射到模具上,然后固化。
3、模压成型将预浸料放入模具中,加热加压使其成型。
4、缠绕成型主要用于制造圆柱体或管状构件,将纤维或带材连续缠绕在芯模上。
5、拉挤成型适用于制造等截面的长条状构件,将纤维通过树脂浸润后,经过模具拉挤固化成型。
五、复合材料的应用领域1、航空航天领域在飞机结构中,如机翼、机身等部位大量使用复合材料,以减轻重量、提高性能。
复合材料至少具有增强体和基体两种不同性质的组分,界面就是在这些组分复合的过程中产生的。
在纤维增强复合材料中,纤维和基体都保持着它们自己的物理和化学特性,但是因为二者之间界面的存在,使得复合材料产生组合的崭新的独特的力学性能。
对于复合材料,界面是一种极为重要的微结构,是复合材料的“心脏”,是联系增强体和基体的“纽带”,对各组分性能的发挥程度和复合材料的总算性能都具有举足轻重的影响。
复合材料之所以比单一材料具有优异的性能,就是因为其各组分间的协同效应,而复合材料的界面就是产生这种效应的根本缘故。
图1 纤维-树脂复合材料界面暗示图复合材料的界面不是零厚度的二维“假想面”,而是具有一定厚度的极为复杂多变的“界面相”或者“界面层”。
界面相的成分、结构、形态和能量均与本体相很不相同,同时,不同的复合材料体系界面相也是不同的。
总之界面具有异常复杂而奥秘的结构,鼓励着人们去探索,去发现。
通过对复合材料的深入研究,人们已经提出了多种复合材料界面理论,比较有代表性的有浸润理论、蔓延理论、化学键理论、啮合理论等。
每一种理论都有一定的实验根据作为支撑,但是因为界面的复杂性,每一种理论都不能完美地解释一切界面现象。
任何事物都不是不可认知的,随着科学技术的发展和界面表征技术的长进,界面理论将会发展和完美,蒙在“界面相”上的奥秘面纱必将在不久的未来被人们揭开。
下面向几种重要的界面理论作容易的推荐:(1)浸润理论:由Zisman于1963年提出。
界面的粘结强度受浸润作用影响,良好的浸润是形成良好界面的基本条件之一。
润湿良好对两相界面的接触有第1 页/共 3 页益,可以减少缺陷的发生,增多机械锚合的接触点,也可以提高断裂能。
因此,增大纤维表面的自由能,提高纤维的浸润性能对增强纤维和树脂间的界面粘结性能有很大协助。
然而,粘结毕竟是异常复杂的过程,不能单纯从浸润性解释所有的界面现象,偶尔候处理后的纤维浸润性变差界面粘结性却浮上了很大的提高。
一名词解释1复合材料:是由两种或两种以上物理和化学性质不同的物质组合而成的一种多相固体材料.2基体:在复合材料中,有一相是为连续相的, 复合材料中起到粘接增强体成为整体并转递载荷到增强体的主要组分之一3增强体:在复合材料中,有一相是分散相, 为复合材料中承受载荷的组分4聚合物基复合材料:是以有机聚合物基为基体,连续纤维为增强材料组合而成的.5金属基复合材料:以金属为基体,以高强度的第二相为增强体而制得的复合材料.6陶瓷基复合材料:基体为陶瓷,以纤维,晶须,颗粒为增强体,(纤维:碳纤维,玻璃纤维,硼纤维)7水泥基复合材料:以水泥为基体与其他材料组合而得到的具有新性能的材料.8碳/碳复合材料:由碳纤维或各种碳织物增强碳,或石墨化的树脂碳以及化学气相沉(CVD)碳所形成的复合材料,也称为碳纤维增强碳复合材料.9玻璃钢:玻璃纤维增强热固性塑料(GFRP)是以玻璃纤维做为增强材料,热固性塑料(环氧树脂,酚醛树脂,不饱和聚酯树脂)做为基体的纤维增强塑料.10脱模剂:为使制品与模具分离而附于模具成型面的物质.11复合材料的蠕变: 固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。
12CVD:化学气相沉积13玻璃纤维:以玻璃球或废旧玻璃为原料经高温熔制,拉丝,纺纱 ,织布等工艺制造成的.14碳纤维:由有机纤维经固相反应转变而成的纤维状聚合物碳.是一种非金属材料.15硼纤维:一种将硼元素通过高温化学气相沉积在钨丝表面制成的高性能增强纤维,具有很高的比强度和比模量,也是制造金属复合材料最早采用的高性能纤维.16氧化铝纤维:以氧化铝为主要纤维组分的陶瓷纤维统称氧化纤维.17晶须:指人工控制条件下以高纯度单晶形式生长成的一种短纤维.18A玻璃:(有碱玻璃纤维),类似于窗玻璃及玻璃瓶钠钙玻璃.由于含碱量高,强度低,对潮气侵蚀极为敏感.E玻璃:(无碱玻璃纤维),以钙铝硼硅酸盐组成的玻璃纤维.这种纤维强度较高,耐热性和电性能优良,能抗大气侵蚀,化学稳定性也好,但不耐碱,最大的特点是电性能好,也称做电气玻璃.S玻璃:镁铝硅酸玻璃纤维,具有高的比强度.M玻璃:高模量玻璃19玻璃纤维增强环氧树脂:指玻璃纤维做为增强材料,环氧树脂做为基体的纤维增强塑料.20玻璃纤维增强酚醛树脂: 指玻璃纤维做为增强材料,以酚醛树脂做为基体的纤维增强塑料.21玻璃纤维增聚酯树脂: 指玻璃纤维做为增强材料,以不饱和聚酯做为基体的纤维增强塑料.22单模,对模:手糊成型模具分单模和对模.单模分阳模和阴模.23等代设计法:指在载荷和使用环境不变的条件下,用相同形状的复合材料层合板来代替其他材料,并用原来的材料的设计方法进行设计,以保证强度或刚度.24水泥:凡细磨成粉末状,加入适量的水后成为塑性浆体,既能在空气中,水中硬化,并能将砂,石等散粒或纤维材料牢固地胶结在一起的水硬性胶凝材料.二重要知识1 复合材料中的基体有三种主要作用A力学上:粘结纤维,保护纤维,传递应力 B物理上:耐热性,电性能 C化学上:耐溶解性,耐水性,老化性{固结增强相,均衡载荷和传递应力,保持基本性质}2复合材料的界面的作用和效应作用:起载荷传递作用,效应:a传递效应,b不连续效应, c 散射和吸收效应 d诱导效应3复合材料的可设计性以及意义,如何设计防腐蚀(碱性)玻璃纤维增强塑料?复合材料的可设计性:材料的性能,形状,以及物理,化学性能都可以通过复合材料的基体和增强材料的选择以及工艺的选择来实现各种不同的需求.4增强材料的表面处理,沃兰的结构式,沃兰和有机硅烷对玻璃纤维表面处理的机理?增强材料的表面处理:为改善纤维表面的浸润性,提高界面结合力,对纤维进行的预处理.(就是在增强材料表面涂覆上一种称为表面处理的物质,这种表面处理剂包括浸润剂及一系列的偶联剂和助剂等物质,以利于增强材料与基体形成一个良好的粘结面,从而达到提高复合材料各种性能和目的.)5玻璃纤维,碳纤维,硼纤维,芳纶的生产过程以及性能(优点和缺点),表面处理方法?一.玻璃纤维的性能:物理性能:1,拉伸强度高,防水,防霉,防蛀,耐高温和绝缘性能,缺点:具有脆性,不耐腐,对人的皮肤有刺激性. 化学性能:除对氢氟酸,浓碱,浓磷酸外对所有化学品和有机溶剂都有良好的化学稳定性.表面处理方法:前处理法,后处理法,迁移法二.碳纤维 A生产过程:拉丝-----牵伸------稳定-----碳化-----石墨化B性能:物理性能:1,比重在1.5—2.0之间,2热膨系数与其他类纤维不同,具有各向异性,3导热率有方向性,随温度升高而降低,4有导电性, 化学性能:除能被氧化剂外,对一般酸碱是惰性的.C表面处理方法:氧化法,沉积化,电聚合法,电沉积法,等离子体处理.三,硼纤维:性能:具有良好的力学性能,强度高,模量高,密度小,弯曲强度比拉伸强度高,2化学稳定性好,但表面具有活性.四.芳伦:性能:1力学性能是拉伸强度高,弹性模量高,密度小,2热稳定性,耐火而不熔,3化学性能是有良好有耐介质性能,受酸碱的侵蚀,耐水性不好.处理方法:有机化学反应,等离子体处理.6不饱和聚酯树脂的固化过程以及性能(优点和缺点)?不饱和聚酯树脂的固化过程:a 胶凝阶段,b硬化阶段c完全固化阶段性能:A优点:1,工艺性能良好,如室温下粘度低,可以在室温下固化,在常压下成型2,固化后树脂的综合性能良好3,价格低廉B缺点:固化时体积收缩率较大成型时气味和毒性较大,耐热性,强度和模量都较低,容易变形,7,玻璃纤维增强环氧树脂,玻璃纤维增强酚醛树脂,玻璃纤维增强聚酯树脂主要性能?1,比重小,比强度高,2良好的耐腐蚀性,在酸,碱,有机溶剂,海水等介中均很稳定.3,良好的电绝缘材料,4,不受电磁作用的影响 5,保温,隔热,隔音,减振 6最大的缺点是刚性差8铝基复合材料的制造与加工?铝基复合材料的制造:过程分为三个阶段:纤维排列,复合材料组分的组装压合和零件层压.加工:成型,连接,机械加工,热处理.9陶瓷基复合材料的使用范围?10晶须或者纤维增韧陶瓷基复合材料的制造工艺和成型加工方法?制造工艺:配料----成型----烧结----精加工.成型加工方法:1,泥浆烧铸法2,热压烧结法3浸渍法11 RTM成型工艺,模压成型工艺和手糊成型工艺?RTM成型工艺:是一种闭模成型工艺方法,工艺过程为:将液态热固性树脂(不饱和聚酯)及固化剂,由计量设备分别从储桶内抽出,经静态混合器混合均匀,注人事先铺有玻璃纤维增强材料的密封模内,经固化,脱模,后加工而成制品.模压成型工艺:模压成型是一种对热固性树脂和热塑性树脂都适用的纤维复合材料成型方法 .将定量的模塑料或颗粒状树脂与短纤维的混合物放入敞开的金属对模中,闭模后加热使其熔化,并在压力作用下充满腔,形成与模腔相同形状的模制品,再经加热使树脂进下步发生交联反应而固化,或者冷却使热塑性树脂硬化,脱模后得到复合材料制品手糊成型工艺:手糊成型工艺是聚合物基复合材料制造中最早采用和最简单的方法,是先在模具上涂刷含有固化剂的树脂混合物,再在其上铺贴一层按要求剪裁好的纤维织物,用刷牙,压辊或刮刀压挤织物,使其均匀浸胶并排除气泡后,再涂刷树脂混合物和铺贴第二层纤维织物,在一定压力作用下加热固化成型,或树脂体系固化时放出的热量固化成型(冷压成型)最后脱模得到制品.12在连续玻璃纤维及制品的制造过程中,拉丝时要的浸润剂的原因?原因:是由于浸润剂有多方面的作用,1原丝中的纤维不散乱而能相互粘附在一起.2防止纤维间的磨损.3原丝相互间不粘结在一起.4便于纺织加工.13金属基纤维复合材料的界面结合形式以及影响界面稳定性的因素?界面结合形式:1物理结合2,溶解和浸润结合3,反应结合影响界面稳定性的因素:1,物理方面的不稳定因素主要指在高温条件下增强纤维与基体之间的熔融.2化学方面的不稳定因素主要与复合材料在加工和使用过程中发生的界面化学作用有关,有连续界面反应,交换式界面反应和暂稳态界面变化.14 晶须增韧陶瓷基复合材料的强韧化机理?靠晶须的拔出桥连与裂纹转向机制对强度和韧性的提高产生突出贡献.晶须的拔出长度存在一个临界值lpo,当晶须某端距主裂纹距离小于临界值,则晶须拔出长度小于临界拔出长度lpo,当晶须两端到主裂纹的距离均大于临界拔出长度时,晶须拔出过程产生断裂,断裂长度小于临界拔出长度,界面结合强度直接影响复合材料的韧化机制与韧化效果,界面强度过高,晶须与基体一起断裂,另一方面,界面强度提有利于载荷转移,提高强化效果,界面强度过低,则晶须拔出功减小.。