复合材料增强体
- 格式:ppt
- 大小:1.45 MB
- 文档页数:48
复合材料概论全套课件312P一、教学内容本节课我们将学习《复合材料概论》一书的第1章“复合材料概述”和第2章“复合材料的组成与结构”。
详细内容包括复合材料的基本概念、分类、性能特点,以及复合材料的基体、增强体、界面等基本组成部分和作用。
二、教学目标1. 了解复合材料的基本概念、分类及性能特点。
2. 掌握复合材料的组成、结构和制备方法。
3. 能够运用所学知识分析复合材料的性能与应用。
三、教学难点与重点教学难点:复合材料的组成、结构和性能关系。
教学重点:复合材料的基本概念、分类、性能特点及其应用。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。
五、教学过程1. 导入:通过展示复合材料在日常生活中的应用实例,激发学生的学习兴趣,引入本节课的主题。
2. 知识讲解:(1)复合材料的基本概念、分类及性能特点;(2)复合材料的组成、结构和制备方法。
3. 例题讲解:分析一个具体复合材料的性能,引导学生运用所学知识解决问题。
4. 随堂练习:设计若干有关复合材料的选择题、填空题和简答题,巩固所学知识。
5. 小组讨论:分组讨论复合材料在实际应用中的优势与局限性,培养学生的团队协作能力。
六、板书设计1. 复合材料基本概念2. 复合材料分类3. 复合材料性能特点4. 复合材料组成与结构5. 复合材料制备方法七、作业设计1. 作业题目:(1)简述复合材料的基本概念及其分类。
(2)解释复合材料的性能特点及其应用。
(3)分析复合材料组成、结构与性能之间的关系。
2. 答案:(2)复合材料具有轻质、高强度、耐腐蚀、耐磨损、导电性等特点,广泛应用于航空航天、汽车、建筑、电子等领域。
(3)复合材料的性能取决于基体、增强体和界面的性质。
基体负责传递应力,增强体负责提供强度和刚度,界面则是连接基体和增强体的桥梁。
八、课后反思及拓展延伸2. 拓展延伸:鼓励学生查阅相关资料,了解复合材料在新能源、生物医学等领域的应用,拓宽知识视野。
重点和难点解析1. 教学内容的难点与重点;2. 教学过程中的例题讲解;3. 作业设计中的题目和答案;4. 课后反思及拓展延伸。
陶瓷基复合材料论文2015年5月5日摘要:陶瓷基复合材料主要以高性能陶瓷为基体.通过加入颗粒、晶须、连续纤维和层状材料等增强体而形成的复合材料。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
陶瓷基复合材料的研究还处于较初级阶段,我国对陶瓷基复合材料的研究则刚刚起步不久。
关键词:陶瓷基复合材料基体增强体强韧化机理制备技术前言:陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展,从而得到有优良韧性的纤维增强陶瓷基复合材料。
陶瓷基复合材料具有优异的耐高温性能,主要用作高温及耐磨制品。
其最高使用温度主要取决于基体特征。
正文一、陶瓷基复合材料基本概述陶瓷基复合材料的基体为陶瓷。
如碳化硅、氮化硅、氧化铝等,具有耐高温、耐腐蚀、高强度、重量轻和价格低等优点。
化学键往往是介于离子键与共价键之间的混合键。
陶瓷基复合材料中的增强体通常也称为增韧体。
从几何尺寸上可分为纤维(长、短纤维)、晶须和颗粒三类。
碳纤维主要用在把强度、刚度、重量和抗化学性作为设计参数的构件;其它常用纤维是玻璃纤维和硼纤维。
纤维增强陶瓷基复合材料是改善陶瓷材料韧性的重要手段。
目前常用的晶须是SiC和A12O3,常用的基体则为A12O3,ZrO2,SiO2,Si3N4以及莫来石等。
晶须具有长径比,含量较高时,桥架效应使致密化困难,引起了密度的下降导致性能下降。
颗粒代替晶须在原料的混合均匀化及烧结致密化方面均比晶须增强陶瓷基复合材料要容易。
常用的颗粒也是SiC、Si3N4和A12O3等。
陶瓷基复合材料发展迟滞,发展过程中也遇到了比其它复合材料更大的困难。
陶瓷基复合材料综述引言:陶瓷基复合材料是近二十年来发展起来的新型材料,由于该类材料具有良好的高温性能。
因此它作为耐高温结构材料在航空航天工业和能源工业等领域的应用具有巨大的潜力。
如航空发动机的推重比为10时,涡轮前进口温度达1650C, 在这样高的温度下,传统的高温合金材料已经无法满足要求【11,因此国内外的材料研究者纷纷把研究的重点转向陶瓷基复合材料。
研究者通过大量的实验发现,陶瓷基复合材料不仅具有良好的高温稳定性和高温抗氧化能力,而且材料在断裂过程中通过裂纹偏转、纤维断裂和纤维拔出等机理吸收能量,既有效的增强了材料的强度和韧性,又保持了基体材料低膨胀、低密度的特点。
摘要:概述了陶瓷基复合材料的基本概念,介绍了陶瓷基复合材料的性能、分类及其应用,以及各类陶瓷基复合材料的优点、缺点。
重点介绍了陶瓷基复合材料的增韧机理、制备工艺(包括粉末冶金法、浆体法、反应烧结法、液态浸渍法、直接氧化法等)。
最后对陶瓷复合基材料的发展前景及发展方向做了展望。
1、陶瓷基复合材料概述陶瓷分为普通陶瓷和特种陶瓷。
普通陶瓷就是我们日常用的陶瓷、建筑陶瓷、化学陶瓷、电瓷及其他工业用瓷。
虽然陶瓷外表美观,耐腐蚀,但是它塑性差,易碎,是其致命缺点。
而另一种陶瓷:特种陶瓷则刚好解决了这个缺点,让陶瓷的发展有了无限的空间。
特种陶瓷包括功能陶瓷和结构陶瓷。
是一种复合材料。
陶瓷基复合材料是以陶瓷为基体与各种纤维复合的一类复合材料。
陶瓷基体可为氮化硅、碳化硅等高温结构陶瓷。
这些先进陶瓷具有耐高温、高强度和刚度、相对重量较轻、抗腐蚀等优异性能,而其致命的弱点是具有脆性,处于应力状态时,会产生裂纹,甚至断裂导致材料失效。
而采用高强度、高弹性的纤维与基体复合,则是提高陶瓷韧性和可靠性的一个有效的方法。
纤维能阻止裂纹的扩展从而得到有优良韧性的纤维增强陶瓷基复合材料。
2、陶瓷基基复合材料的基体与增强体(2) 增强体:陶瓷基复合材料中的增强体,通常也称为增韧体。
复合材料定义•广义定义:复合材料是由两种或两种以上异质、异形、异性的材料复合形成的新型材料。
一般由基体组元与增强体或功能组元所组成。
复合材料(CompositeMaterials),以下简称CM。
•狭义定义:•(通常研究的内容)用纤维增强树脂、金属、无机非金属材料所得的多相固体材料。
•基体相是一种连续相材料,它把改善性能的增强相材料固结成一体,并起传递应力的作用;•增强相起承受应力(结构复合材料)和显示功能(功能复合材料)的作用。
复合材料既能保持原组成材料的重要特色,又通过复合效应使各组分的性能互相补充,获得原组分不具备的许多优良性能。
CM与化合材料、混合材料的区别:•:• 多相体系和复合效果是复合材料区别于传统的“混合材料”和“化合材料” 的两大特征。
・•• 举例:砂子与石子混合,合金或高分子聚合物•复合效应大致上可归结为两种类型:混合效应和协同效应•混合效应也称作平均效应,是组分材料性能取长补短共同作用的结果.它是组分材料性能比较稳定的总体反映.对局部的扰动反应并不敏感。
在复合材料力学中,它与刚度问题密切相关,表现为各种形式的混合律,而且已形成比较成熟的理论体系,薄弱环节、界面、工艺因素通常对混合效应没有明显的作用。
•协同效应反映的是组分材料的各种原位特性(in situ properties)o所谓的原位特性意味着各相组分材料在复合材料中表现出来的性能并不只是其单独存在时的性能,单独存在时的性能不能表征其复合后材料的性能。
协同效应变化万千,反应往往比混合效应剧烈,是复合材料的本质特征。
按基体类型分类:非金属复合材料:树脂基复合材料(玻璃钢),橡胶基复合材料(轮胎),陶瓷基复合材料(钢筋混凝土、纤维增强陶瓷)。
金属基复合材料:(纤维增强金属)淤按增强材料分类:纤维增强复合材料:纤维增强橡胶(轮胎)、纤维增强塑料(玻璃钢、碳纤维增强塑料)、纤维增强陶瓷、纤维增强金属(碳纤维/铝锡合金)等。
颗粒增强复合材料:陶瓷颗粒----金属基(硬质合金),金属颗粒----塑料基等。
《复合材料》知识清单一、什么是复合材料在现代材料科学的领域中,复合材料是一种极其重要的存在。
简单来说,复合材料就是由两种或两种以上不同性质的材料,通过物理或化学的方法组合在一起,形成的一种新的材料。
它与单一材料的显著区别在于,其性能并非各组成材料性能的简单加和,而是通过协同作用,产生了比单一材料更优异的综合性能。
复合材料的组成部分通常包括基体和增强体。
基体就像是一个承载和传递载荷的基础框架,而增强体则赋予材料更高的强度、刚度等特殊性能。
二、复合材料的分类1、按基体材料分类金属基复合材料:以金属为基体,如铝基、钛基等,具有良好的高温性能和导电导热性。
陶瓷基复合材料:基体为陶瓷,具备耐高温、耐磨等特性。
聚合物基复合材料:常见的有树脂基复合材料,重量轻、耐腐蚀。
2、按增强体的形态分类纤维增强复合材料:其中的纤维可以是玻璃纤维、碳纤维等,具有高强度和高模量。
颗粒增强复合材料:如碳化硅颗粒增强铝基复合材料,能提高硬度和耐磨性。
层状复合材料:由不同材料的层片交替堆叠而成。
三、复合材料的性能特点1、高强度和高刚度由于增强体的存在,复合材料往往具有比传统单一材料更高的强度和刚度。
2、良好的耐疲劳性能能够承受多次循环载荷而不易发生疲劳破坏。
3、优异的耐腐蚀性能可以在恶劣的化学环境中保持稳定。
4、可设计性强通过选择不同的基体和增强体,以及调整它们的比例和分布,可以定制出满足特定需求的性能。
四、复合材料的制备方法1、手糊成型这是一种较为简单的方法,工人将基体材料和增强材料手工铺叠在模具上,然后固化成型。
但这种方法生产效率较低,且质量较难控制。
2、喷射成型将基体材料和短切纤维同时喷射到模具上,然后固化。
3、模压成型将预浸料放入模具中,加热加压使其成型。
4、缠绕成型主要用于制造圆柱体或管状构件,将纤维或带材连续缠绕在芯模上。
5、拉挤成型适用于制造等截面的长条状构件,将纤维通过树脂浸润后,经过模具拉挤固化成型。
五、复合材料的应用领域1、航空航天领域在飞机结构中,如机翼、机身等部位大量使用复合材料,以减轻重量、提高性能。