复合材料增强体的种类与性能
- 格式:ppt
- 大小:6.42 MB
- 文档页数:57
聚合物基复合材料的种类
聚合物基复合材料的种类有很多,常见的种类包括以下几种:
1. 碳纤维增强复合材料:碳纤维增强复合材料是以碳纤维为增强剂,与树脂等聚合物基体相结合制成的材料。
具有高强度、高模量、低密度等优点,广泛应用于航空航天、汽车、体育器材等领域。
2. 玻纤增强复合材料:玻璃纤维增强复合材料是以玻璃纤维为增强剂,与聚合物基体相结合制成的材料。
具有良好的绝缘性能、耐腐蚀性能和机械性能,广泛应用于建筑、电子、船舶等领域。
3. 高分子发泡材料:高分子发泡材料是一种以聚合物为基体,通过在其中注入发泡剂生成气泡而形成的轻质材料。
具有低密度、吸震性能好等特点,广泛应用于包装、建筑隔音等领域。
4. 聚合物纳米复合材料:聚合物纳米复合材料是以纳米颗粒作为填充剂,与聚合物基体相结合制成的材料。
具有优异的力学性能、导电性能、热稳定性等特点,广泛应用于电子、光学、医疗等领域。
5. 高分子合金材料:高分子合金材料是将两种或多种不同的聚合物混合共混,形成互相不溶的两相或多相结构的材料。
具有综合性能优良、可调控性好等特点,广泛应用于汽车、电子、家电等领域。
以上所列的聚合物基复合材料种类只是其中的一部分,随着科技的不断发展,新的聚合物基复合材料种类也在不断涌现。
碳纤维增强复合材料的力学性能和设计一、什么是碳纤维增强复合材料在现代工业生产中,碳纤维增强复合材料是一种非常重要的新型材料,它不仅具有轻质、高强、高刚度等优良的物理力学性能,而且还具有较好的耐腐蚀性、耐磨性以及绝缘性。
碳纤维增强复合材料是由碳纤维和树脂、金属等复合材料制成的,这样的材料在现代航空、汽车、轨道交通、电子科技、船舶制造、体育器材等领域得到广泛的应用。
二、碳纤维增强复合材料的力学性能1、高强度:碳纤维的特殊结构和生长过程使得其具有很高的强度,而且这种强度与单向排列方向有很大关系。
因此,增强材料大多用于单向、对角和斜交等布局。
2、高刚度:材料的刚度是各个方向上的刚度之和,因此确定各向异性对基体中碳纤维增强材料的刚度起着决定性作用。
在各向同性材料的情况下,碳纤维增强材料通常具有比基体材料高几倍甚至十倍以上的刚度。
3、疲劳寿命较长:碳纤维增强材料的疲劳性能比其他材料要好,能够承受数百万次循环载荷,而且具有较长的使用寿命。
4、耐磨性强:碳纤维增强材料具有较高的物理力学性能,因此具有很强的耐磨性,特别适合用于制造高速运动的器械。
三、碳纤维增强复合材料的设计1、确定应用载荷:设计时必须要先明确碳纤维增强复合材料所要承受的载荷种类,包括静载和动载。
2、确定应变水平:应变水平是材料破坏的重要参数之一,针对不同应变水平设计不同的材料也是十分必要的。
合适的应变水平设计可以确保材料在特定要求下具有最佳性能。
3、确定强度参数:材料的强度是指承受载荷时材料破坏的极限值。
因此,通过实验和仿真计算来得到材料的破坏极限值,再以此为依据来确定设计强度决策。
4、考虑制造成本:设计材料必须要考虑到成本因素,包括制造、运输、安装等费用。
因此,在涉及到大批量生产时,提前考虑到成本问题十分重要,可以有效降低生产成本。
四、结论碳纤维增强复合材料在现代工业生产中具有十分广泛的应用,由于其具有很高的物理力学性能,设计时需要考虑的因素也比较多。
1.1 增强体的概念增强体的概念:复合材料中能明显提高基体材料某一性能的组元物质增强体的特征:(1)具有能明显提高基体某种所需的特殊性能;(2)增强体应具有稳定的化学性质;(3)与基体有良好的润湿性1.2 增强体的分类(1)颗粒类增强体(零维)性能特点:高强度、高模量、耐热、耐磨、耐腐蚀实例:碳化硅、氧化铝、氮化硅、碳化硼、石墨、碳化钛、滑石、碳酸钙等无机非金属颗粒复合材料性能特点:具有各向同性(2)纤维类增强体(一维)连续长纤维:长度:连续长度一般超过数百米;性能特点:沿轴向有很高的强度和弹性模量分类:分为单丝和束丝两种。
应用:成本高、性能高,只用于高性能复合材料复合材料性能特点:具有各向异性连续长纤维实例单丝:硼纤维、CVD法制备的碳化硅纤维(直径约为95-140微米)束丝:碳纤维、氧化铝纤维、氮化硅纤维烧结法制备的碳化硅纤维等(含500-12000根单丝,单丝直径5.6-14微米)短纤维:长度:连续长度一般几十毫米性能特点:沿轴向有方向性,但性能一般比长纤维低应用:成本比较低,应用广实例:硅酸铝纤维、氧化铝纤维碳纤维、氮化硼纤维等复合材料特点:无明显方向性(制造时排列无序短纤维:长度:连续长度一般几十毫米性能特点:沿轴向有方向性,但性能一般比长纤维低应用:成本比较低,应用广实例:硅酸铝纤维、氧化铝纤维碳纤维、氮化硼纤维等复合材料特点:无明显方向性(制造时排列无序)(3)晶须类增强体(一维)外形尺寸:直径0.2-1微米,长约为几十微米性能特点:有很高的强度和模量(结构细小、缺陷少)应用:陶瓷增韧(成本比颗粒高得多)实例:碳化硅、氧化铝、氮化硅等复合材料性能特点:各向同性。
(4)金属丝增强体(一维)不锈钢丝、钨丝等(W/Al、W/Ni、不锈钢丝/Al)(5)片状物增强体(二维)陶瓷薄片:SiC/C、SiC/ZrO2、Si3N4/BN等。
(6)纤维编织类增强体(三维)纤维编织成的三维结构1.3 纤维类增强体具有高强度的原因(1)固体材料的理论强度:σth = (Eγ/a0)1/2纤维类增强体:Be、B、C、Al、Si以及它们与N、O的化合物(常温下原子半径小、化学性质稳定)纤维类增强体理论强度高纤维材料所包含的缺陷的形状、位置、取向和数目都有别与同质地的块状材料内部径向最大裂纹尺寸:非常小(纤维类增强材料)一般(同质地块状材料)内部轴向最大裂纹尺寸:一般(纤维类增强材料)一般(同质地块状材料)纤维中轴向的最大裂纹尺寸虽然可与块体材料中的相比,但对轴向性能的影响则很小(纤维主要承受轴向拉伸载荷)。
复合材料知识点总结一、复合材料的分类根据复合材料中各种材料所起的作用不同,复合材料可以分为增强复合材料和基体复合材料。
增强材料一般用于提高复合材料的力学性能,例如增加复合材料的强度、硬度、耐热性、耐腐蚀性等;而基体材料则用于提供基本的形状和结构,比如塑料、橡胶、树脂等。
根据增强材料的种类不同,复合材料可以分为纤维增强复合材料和颗粒增强复合材料。
纤维增强复合材料的增强材料是纤维,可以是碳纤维、玻璃纤维、芳纶纤维等;颗粒增强复合材料的增强材料则是颗粒,可以是金属颗粒、陶瓷颗粒、碳纳米颗粒等。
根据不同的基体材料,复合材料可以分为有机基复合材料和无机基复合材料。
有机基复合材料的基体材料是有机物质,比如树脂、塑料、橡胶等;无机基复合材料的基体材料是无机物质,比如金属、陶瓷、玻璃等。
二、复合材料的特点1. 高强度:复合材料中的增强材料可以有效地提高材料的强度,使其具有更高的拉伸、压缩、弯曲等强度。
2. 轻质:由于增强材料通常采用纤维和颗粒等轻质材料,所以复合材料通常具有很高的强度和刚度,同时重量较轻。
3. 耐热耐腐蚀性:纤维增强复合材料由于采用高强度的纤维材料,具有很好的耐热性和耐腐蚀性,可以在较高温度和腐蚀环境下长时间使用。
4. 成形性好:复合材料可以通过挤压、注塑、压制等多种成型方法加工成各种形状,适用于各种复杂的结构。
5. 良好的设计性:通过改变复合材料中的增强材料的种类、形状、分布、比例等来调节和改变材料的力学性能,可以根据需要进行定向设计。
6. 良好的防护性:复合材料可以通过增加增强材料和基体材料的层数、厚度和结构来增强材料的防护性,有较好的抗冲击、防弹、防爆性能。
三、复合材料的制备工艺1. 纤维增强复合材料的制备工艺(1)手工层叠法:将预先浸渍结合的纤维连续层叠到工件模具内,在每一层的纤维层之间涂覆树脂黏合剂,然后将所有层放置在加压机中,施加适当的压力和温度,使树脂固化。
(2)自动层叠法:采用机械装置将预先浸渍结合的纤维连续层叠到工件模具内,然后使用自动化设备完成树脂涂布和固化过程。