无机纳米材料简介

  • 格式:wps
  • 大小:17.50 KB
  • 文档页数:4

下载文档原格式

  / 4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无机纳米材料简介

无机纳米材料是纳米材料从物质的类别来划分出的一种纳米材料。指其组成的主体是无机物质。

无机纳米材料主要包括:纳米氧化物、纳米复合氧化物、纳米金属及合金,以及其他无机纳米材料。

一、纳米氧化物:

纳米氧化物指的是粒径达到纳米级的氧化物,比如纳米二氧化钛

(T25),纳米二氧化硅(SP30),纳米氧化锌(JE01),纳米氧化铝(L30),纳米氧化锆,纳米氧化铈,纳米氧化铁等等。

纳米氧化物的基本技术指标包含:粒径,含量,比表面积,pH, 以及一些金属成分的含量。

纳米氧化物在催化领域的应用

纳米催化剂具有表面效应,吸附特性及表面反应等特性,因此纳米催化剂在催化领域的应用十分广泛。实际上,国际上已把纳米粒子催化剂称为第四代催化剂。我国目前在纳米材料的研究应用水平在某些方面处于世界领先地位,已实现产业化的SiO2(如VK-SP30)、CaCO3、TiO2(如VK-T25)、ZnO等少数几个品种,这些制备出来的纳米材料在催化领域中主要用于两个方面:一是直接用作主催化剂,二是作为纳米催化剂载体制成负载型催化剂使用。国际现在企业主要有杜邦,德固赛,国内的有杭州万景等企业生产纳米氧化物系列的产品。

2.1 石油化工催化领域

由于纳米材料颗粒的大小可以人工控制,又由于尺寸小,比表面积大,表面的键态和颗粒内部不同及表面原子配位不全等,从而导致表面的活性部位增加。另外,随着粒径的减小,表面光滑程度变差,形成了凹凸不平的原子台阶,这样就增加了化学反应的接触面。利用纳米微粒的高比表面积和高活性这些特性,可以显著提高催化效率。例如,纳米Ni粉可将有机化学加氢和脱氢反应速度提高15倍;超细Pt粉、碳化钨粉是高效的加氢催化剂;在甲醛氧化制甲醇反应中,使用纳米SiO2,选择性可提高5倍,利用纳米Pt催化剂,放在TiO2担体上,通过光照,使甲醇水溶液制氢产率

提高几十倍。在石油化工工业采用纳米催化材料,可提高反应器的效率,改善产品结构,提高产品附加值、产率和质量。纳米稀土氧化物,如La2O3、CeO2、Sm2O3、Pr6O11等,可作为二氧化碳选择性氧化乙烷制乙烯的催化剂;纳米碳管用于合成氨催化剂有着潜在的前景,林敬东等用Ni-MgO催化甲烷法制得的纳米碳管作催化剂载体,嵌入钾催化剂,经脱氧、净化处理后,用于N2-3H2合成NH3的催化反应中,产物中合成氨的产率为5.32mL(STP)氨/h·g·cat,大大高于同条件常用催化剂的产率,而且纳米碳管表面更趋于碱性,有利于生成的氨脱附。

2.2 石油化工添加剂的应用

纳米材料在石油化工添加剂中的应用纳米材料可以作润滑油添加剂,用脂肪酸修饰的ZrO2及MoS2的纳米微粒具有非常好的润滑性及抗磨性;用分散型的氧化锑纳米微粒做成水溶胶作催化裂化金属钝化剂,挂锑效率提高20%,稳定性、磨蚀性能均得到增强。

2.3 光催化领域

纳米粒子作光催化剂有着许多优点,首先是粒径小,粒子达到表面数量多,光催化效率高;其次是纳米粒子分散在介质中具有透明性,容易运用光学手段和方法来观察界面间的电荷转移及纳米粒子光催化剂受氧化还原的影响等。利用纳米TiO2的光催化性质来处理废水和改善环境是一种行之有效的方法,TiO2光催化剂能有效地分解室内外的有机污染物,氧化去除大气中的氮氧化物、硫化物,以及各类臭气等;在TiO2上沉积5%纳米MoS2时,苯酚分解速度与非负载型TiO2相比提高了一倍;将CdS颗粒制成纳米级,其对甲醇氧化成乙二醇的光催化活性显著提高;另外,用MoS2做光催化剂进行苯酚的光氧化时,当颗粒尺寸为4.5nm时,可利用大于450nm 的光进行反应,而用直径大于8nm的MoS2就不行。

二、纳米复合氧化物

纳米复合材料是以树脂、橡胶、陶瓷和金属等基体为连续相,以纳米尺寸的金属、半导体、刚性粒子和其他无机粒子、纤维、纳米碳管等改性为分散相,通过适当的制备方法将改性剂均匀性地分散于基体材料中,形成一相含有纳米尺寸材料的复合体系,这一体系材料称之为纳米复合材料。

复合材料由于其优良的综合性能,特别是其性能的可设计性被广泛应用于航空航天、国防、交通、体育等领域,纳米复合材料则是其中最具吸引力的部分,近年来发展很快,世界发达国家新材料发展的战略都把纳米复合材料的发展放到重要的位置。该研究方向主要包括纳米聚合物基复合材料、纳米碳管功能复合材料、纳米钨铜复合材料。

在纳米聚合物基复合材料方面,主要采用同向双螺杆挤出方法分散纳米粉体,分散水平达到纳米级,得到了性能符合设计要求的纳米复合材料。我们制备的纳米蒙脱土/PA6复合材料中,纳米蒙脱土的层间距为1.96nm,处于国内同类材料的领先水平(中国科学院为1.5~1.7nm),蒙脱土复合到尼龙基体中后完全剥离成为厚度1~1.5nm的纳米微粒,其复合材料的耐温性能、阻隔性能、抗吸水性能均非常优秀,此材料已经实现了产业化;正在开发的纳米TiO2/聚丙烯复合材料具有优良的抗菌效果,纳米TiO2粉体在聚丙烯中分散达到60nm以下,此项技术正在申报发明专利。

由于纳米聚合物复合材料的成型工艺不同于普通的聚合物,本方向还积极开展新的成型方法研究,以促进纳米复合材料产业化的进行。

碳纳米管是上个世纪九十年代初发现的一种新型的碳团簇类纤维材

料,具有许多特别优秀的性能。

我们在碳纳米管取得的研究成果主要包括:

1)大规模生产多壁碳纳米管的技术,生产出的碳纳米管的质量处于世界先进水平,生产成本也很低,为碳纳米管的工业应用创造了条件。

2)开发了制造碳纳米管为电极材料的双电层大容量电容器的技术。

3)开发了制造具有软基底定向碳纳米管膜的技术。

铜复合材料具有良好的导电导热性、低的热膨胀系数而被广泛地用作电接触材料、电子封装和热沉材料。采用纳米粉末制备的纳米钨铜复合材料具有非常优越的物理力学性能,我们采用国际前沿的金属复合盐溶液雾化干燥还原技术成功制备了纳米钨铜复合粉体和纳米氮化钨-铜复合粉

体,目前正在加紧其产业化应用研究。

综上所述,无机纳米复合材料以其优异的性能越来越受到人们的关注,对无机纳米复合材料的研究在国内外都属于起步发展阶段,尤其在国