无机纳米材料在生物医学的应用
- 格式:doc
- 大小:31.00 KB
- 文档页数:8
纳米材料在生物医学中的应用随着科学技术的不断进步和人类认知的不断深入,越来越多的先进材料被应用于生物医学领域中。
其中纳米材料作为新兴材料,具有结构奇异、性质优异、功能多样等特点,成为了近年来研究的热点之一。
那么,纳米材料在生物医学领域的应用具体有哪些呢?一、纳米材料在药物传递中的应用纳米材料在药物传递方面的应用广泛,主要是通过改变材料的尺寸和表面性质来实现药物的高效传递,从而达到更好的治疗效果。
纳米材料具有非常小的尺寸和大的比表面积,这使得它们能够更好地穿透组织和细胞,减少副作用,并且可以有效地保护药物免受光热、化学和生物因素的影响。
此外,纳米材料还可以通过改变药物的释放速度、靶向性、生物可降解性等性质来增强药物的效力,减轻药物副作用和增强使用安全性。
二、纳米材料在生物成像中的应用纳米材料在生物成像方面的应用主要体现在两个方面:一是通过纳米材料的特殊结构和磁性、荧光、放射性等特性,实现对生物 signals 的采集和信号转换;二是通过纳米材料的多样性和多功能性,能够在生物学显像操作中实现多模式或多层次的成像。
例如,可通过利用纳米材料的荧光特性来制备多种荧光标记的纳米粒子,用于细胞和器官成像、生物检测、生态监测等方面;同时也可通过利用纳米金颗粒的表面增强拉曼等效应技术来实现更加精细、高分辨率的生物成像。
三、纳米材料在生物传感中的应用纳米材料在生物传感方面的应用主要是通过利用其独特的性质,如表面增强拉曼散射、表面等离子激元振荡、自组装等现象,来实现对生物大分子(如DNA、RNA、蛋白质)的快速、敏感、特异性检测。
这种生物传感器可能成为下一代的生物检测和治疗技术,有潜力促进生物医学诊断和治疗的发展。
四、纳米材料在组织工程中的应用组织工程学是一门研究如何制造全新生物组织的学科,其最大的挑战是如何构造具备理想机械性能、形态和功能的人工生物组织。
纳米材料因其尺寸微小,能够模拟自然环境,为生物材料的设计和制备提供了新的思路和方法。
纳米材料在医学领域的应用从纳米到医学:纳米材料在医学领域的应用近年来,随着纳米材料在制造业、电子领域的广泛应用,人们对纳米科技所带来的应用前景越来越关注。
除了这些领域,纳米材料还有一个非常广泛的应用领域,那就是医学。
作为一种具有优异的物理、化学特性的材料,纳米材料可以在医学上发挥许多非常有意义的作用。
这其中一大原因是,纳米材料具有纳米尺度下的特殊性能,比如极小的体积、高比表面积、较大的特征长度等,使得它们在医学上的应用领域不断地扩展。
现今,纳米材料在医学上的应用早已广泛,几乎涵盖了许多不同的医学领域,尤其是在诊断、治疗和生物传感方面。
一、纳米材料在医学上的诊断应用诊断是疾病治疗的重要前提,而纳米材料的高比表面积、光效应、磁效应、超声效应和荧光效应等物理特性,使其在医学诊断中得到了广泛应用。
1.纳米颗粒在影像诊断上的应用由于超小的尺寸和磁特性,纳米颗粒可以被用于MRI或磁共振成像,能够在诊断癌症和肿瘤等疾病时做到高精度定位。
而且,当添加一定数目的特定功能基团时,纳米颗粒还可改变其在体内与细胞基质、蛋白质和细胞膜的相互作用,从而可以实现特定的定位及诊断。
2.纳米荧光材料在生物成像上的应用与纳米颗粒相似,纳米荧光材料也可作为生物成像标记物,通过在亲水性、生物相容性、荧光亮度和纳米尺寸的控制上进行改良,使得其在显微镜、X线成像、大鼠的体内荧光成像等方面具有作用,从而体现了在精细和标本处理方面的应用价值。
二、纳米材料在医学上的治疗应用除了纳米材料在医学上的诊断应用,纳米材料在医学上的治疗应用也非常重要。
纳米材料的独特特性如高比表面积、生物相容性等特性,为纳米材料的制药、传输和控制提供了便利。
1.纳米材料在药物传递上的应用纳米材料可以被用于药物传递,这是因为纳米材料的高比表面积意味着它们可以同时包裹更多的药物,增强药物的生物利用度。
而且,因为药物能与纳米材料更好地结合,这就减少了药物流失的风险,从而也减少了患者的用药量。
无机纳米材料应用下生物医学论文无机纳米材料应用下生物医学论文1无机纳米材料在生物医学上的应用1.1药物载体许多药物都有细胞毒性,在杀死病毒细胞的同时,也会对正常细胞造成损伤。
因而,理想的药物载体不仅应有较好的生物相容性、较高的载药率,还应具有靶向性,即到达目标病灶部位才释放药物分子。
无机纳米材料的大小和表面的电荷等理化性质决定了纳米材料的性能,研究这些可控特性可应用在生物医学领域中。
例如,用多孔硅作为药物载体递送柔红霉素,治疗视网膜疾病持续时间从几天延长到3个月。
通过调控将纳米粒子孔径从15nm变为95nm,使柔红霉素的释放率增大了63倍,从而调控药物的释放。
用介孔二氧化硅纳米粒子运载化疗药物、探针分子向肿瘤细胞进行递送,可用于癌症等疾病的靶向性治疗和早期诊断。
介孔二氧化硅在药物传输、靶向给药、基因转染、组织工程、细胞示踪、蛋白质固定与分离等方面有广泛的应用。
碳纳米管及其衍生材料可开发用于电敏感的透皮药物释放,又可作药物载体进行持续性释放。
比如,用超支化聚合物修饰碳纳米管,可以从复合物的羟基末端聚集活性基团,从而增强溶解性能,作为抗癌的药物载体,也可以用作药物缓释载体。
用聚乙烯亚胺修饰多壁碳纳米管,分散性好,能降低对细胞的毒性,进一步结合在壳聚糖/甘油磷酸盐上,能增加凝胶的机械强度。
同时,改变溶液的pH值、温度等来构建具有双缓释功能的温敏性凝胶,能减少凝胶的突释现象。
纳米钻石(dND)装载化疗药物具有较低的毒性和较高的生物兼容性。
将叶酸等靶向分子修饰纳米钻石表面,用于装载抗癌药物,以H2N-PEG-NH2作为桥梁分子,形成纳米靶向载药系统,对C6细胞具有靶向作用,为研制肿瘤靶向治疗提供了参考依据。
为了避免被单核细胞、巨噬细胞系统等非特异性吸收,并让药物优先进入肿瘤细胞,用超支化缩水甘油(PG)修饰纳米钻石得到dND-PG,有较好的生物相容性,能避免被正常细胞的巨噬细胞非特异性摄取。
加载抗癌药物阿霉素显示出对肿瘤细胞具有选择性的毒性作用,可作为肿瘤药物载体,对肿瘤细胞进行选择性给药。
无机纳米材料的表征及其应用一、引言随着纳米技术的不断发展,无机纳米材料的研究和应用已经得到了广泛的关注和研究。
无机纳米材料因其特殊的性质和表面活性,具有广泛的应用前景,如生物医学、能源、催化、电子器件等领域。
无机纳米材料的表征是研究其性质和应用的重要基础。
本文将全面介绍无机纳米材料的表征及其应用。
二、无机纳米材料的表征1.传统表征方法无机纳米材料的传统表征方法包括透射电镜(TEM)、扫描电镜(SEM)、X射线粉末衍射(XRD)、拉曼光谱和红外光谱等。
TEM和SEM可以观察到无机纳米材料的形貌、尺寸和形状等结构特征。
XRD可以分析无机纳米材料的晶体结构和晶格参数,拉曼光谱和红外光谱可以标识无机纳米材料的化学组成和表面结构等。
2.高级表征方法高级表征方法包括扫描透射电镜(STEM)、原子力显微镜(AFM)、X射线光电子能谱(XPS)、透射电子能谱(TEM)和霍尔效应测量等。
STEM可以比TEM更准确地确定无机纳米材料的形貌、尺寸和形状。
AFM可以测定无机纳米材料的表面形貌和荷电性等。
XPS可以观察无机纳米材料的化学组成和氧化状态。
TEM可以测定无机纳米材料的电子结构和拓扑结构等。
霍尔效应测量可以测定无机纳米材料的导电性和磁性等。
三、无机纳米材料的应用1.生物医学无机纳米材料在生物医学领域的应用主要包括药物输送、光热治疗和生物成像等。
无机纳米粒子具有潜在的药物传递载体,可用于药物递送系统、高效零毒或靶向性药物在癌细胞中的投放,同时具有药物控释的功能。
纳米粒子还可作为激活器,经过特殊处理的无机纳米材料可通过将其植入到病变组织中,利用近红外激光激发得到的光热效应增强治愈效果,如提高癌症治疗的效率。
此外,无机纳米材料还可用于生物成像、诊断等领域。
2.能源无机纳米材料在能源领域的应用主要包括储能和转换、太阳能电池、燃料电池和电解水等。
以铁氧体纳米杂化材料为例,其具有优异的储能性能和高电导率,可用于电池等储能器件中。
纳米材料在生物医学中的应用一、纳米材料在生物医学领域的应用1. 生物传感器:纳米材料可以用于生物传感器的制备和运载。
由于其特殊的物理和化学特性,纳米材料能够在低浓度下高度灵敏地探测生物分子,如蛋白质、DNA、RNA等。
纳米材料的高比表面积也能够提高生物分子的靶向性和识别能力,因此在生物传感器中的应用前景广阔。
2. 药物传输:纳米材料在药物传输方面有着巨大的应用前景。
基于其独特的尺寸和表面性质,纳米材料可以实现药物的高效载体和传输,可以改善药物的生物利用度和保留时间,降低药物的副作用。
纳米材料还可以通过靶向控制药物的释放,提高药物的效力和准确性。
3. 治疗:纳米材料的生物学特性还可以被用来治疗疾病。
纳米材料可以通过特定的靶向途径有效地将药物输送到病灶部位,实现对肿瘤、炎症等疾病的治疗。
纳米材料本身也具有良好的生物相容性和生物降解性,可以大大减少对人体的副作用和不良反应。
4. 影像检测:纳米材料在影像检测方面也有很大的应用潜力。
纳米材料可以被用作造影剂,可以通过在体内对比增强显像的方式,帮助医生更准确地进行检测和诊断。
纳米材料还可以通过特定的结构设计和表面修饰,提高对特定靶向组织或细胞的识别和检测能力。
二、纳米材料在生物医学领域的研究进展1. 纳米生物传感器的研究进展纳米生物传感器是将纳米材料作为传感器材料,能够感知和转换生物分子的信号。
近年来,许多基于纳米材料的生物传感器已经被开发出来,并且在许多生物医学领域得到应用。
一种基于纳米金材料的葡萄糖生物传感器已经被研发出来,能够检测血液中的葡萄糖浓度,用于糖尿病的监测和治疗。
2. 纳米材料在药物传输方面的研究进展纳米材料在药物传输方面的研究也越来越受到关注。
以纳米脂质体为载体的药物传输系统已经在临床中得到应用,并被用于多种疾病的治疗。
纳米材料的特殊表面性质也为药物的靶向控制提供了很多可能性。
一种基于聚合物纳米粒子的药物传输系统已经被成功研发出来,并能够实现对癌细胞的高度靶向,从而提高了治疗效果。
纳米材料在生物医学中的应用一、纳米材料简介纳米材料是一种尺度在 1-100 纳米(1nm=10^-9m)之间的材料。
随着纳米技术的不断发展,纳米材料的种类也越来越多,包括碳纳米管、纳米金属、纳米氧化物、纳米化合物等。
纳米材料具有独特的物理和化学特性,在生物医学领域有着广阔的应用前景。
二、纳米材料在生物医学中的应用1. 纳米药物纳米药物是指纳米材料作为载体,将药物包裹其中,以此实现针对性输送和控制释放。
这种药物具有高效、低剂量、较少毒副作用等优点。
例如,近年来研究的纳米抗癌药物在治疗肺癌、乳腺癌等疾病中显示出显著的疗效,成为靶向治疗的重要手段。
2. 纳米生物传感器纳米生物传感器是指将纳米材料与生物体相互作用,通过监测生物体内的物质浓度、生物物质分子等信息,实现对生物体状态的检测、分析和诊断。
例如,纳米粒子的表面修饰可实现对病毒、细菌等病原体的高灵敏性检测,从而提高疾病早期诊断的准确性。
3. 纳米材料的组织工程和再生医学纳米材料在组织工程和再生医学中应用广泛。
例如,纳米材料可以通过与生物体组织细胞相互作用,促进细胞生长和分化。
这种作用可应用于骨折愈合、心脏组织修复等方面。
同时,纳米材料还可以用于人工关节、血管、器官等的研究和制造,应用效果显著。
4. 纳米光学成像纳米光学成像是一种通过光学手段对微观物质进行成像的技术。
纳米材料在这方面的应用虽然有限,但正在逐渐发展。
例如,纳米金颗粒的表面修饰可实现在体内的光学成像,用于疾病诊断和研究。
三、纳米材料在生物医学中的优势与传统医疗技术相比,纳米技术具有以下优势:1. 高效性:纳米药物能够精准靶向病变部位,达到更高的药效和更少的伤害。
2. 安全性:在合理使用下,纳米材料的毒副作用很小,对人体安全。
3. 可控性:纳米药物的性质可以通过合理设计进行调控,达到更好的治疗效果。
4. 生物相容性:多数纳米材料具有很好的生物相容性,不会被生物体的免疫系统排斥。
四、纳米材料在生物医学中的挑战虽然纳米技术在生物医学领域有着广阔的应用前景,但其面临以下挑战:1. 在生物体内的稳定性问题;纳米药物在体内易受生物环境的影响,失去原有的性质和效果。
纳米材料在生物医学领域的应用纳米科技作为当今科技领域中备受关注的一项重要技术,其应用领域也越来越广泛。
尤其在生物医学领域,纳米材料的应用具有广泛的展望和前景。
本文将就此主题展开讨论。
一、纳米材料的特性及其在生物医学领域的应用纳米材料以其独特的特性,如比表面积大、表面反应活性高、强烈的量子效应等特点,使其在生物医学领域表现出了出色的潜力。
纳米材料的各种特殊功能使其在生物医学领域开发和应用具有明显的优势。
1.纳米材料在生物医学领域的应用纳米材料被用来治疗癌症、糖尿病、心血管疾病、神经系统疾病等多种疾病。
其中,用纳米颗粒治疗肿瘤是众所周知的一个领域。
纳米材料具有增强肿瘤组织特异性的功能,使其在探索癌症诊断和治疗方面变得更加有前景。
另外,纳米材料的表面特性允许其对生物界面的研究,包括细胞循环、细胞代谢和生物学组织学探索等领域。
2.纳米材料的生物应用在生物医学应用方面,纳米材料可以用来制备药物载体、光感材料、生物传感器、杀菌剂、非线性光学分子和缺陷材料等。
纳米材料可以在靶向方面获得更好的控制,减少作用不明、细胞毒性不足或过于导致多种副作用的控制问题。
此外,与常规药物相比,使用纳米材料包装的药物有更好的溶解性,可以在目标区域精确释放。
二、纳米材料在癌症治疗中的应用目前,癌症仍然是世界各国普遍面临的危险疾病之一,而纳米材料就因为其与癌症相关的潜力变得更加重要。
因此,在癌症治疗方面的纳米领域研究也越来越引人注目了。
1.纳米材料作为癌症治疗药物的载体与常规药物相比,使用纳米材料包装的药物在药物分子、药物动力学、药物分布、药物释放以及局部治疗性等方面都具有很大的优势。
使用适当的纳米材料可以为药物输送、释放,甚至作为一种辅助药物。
纳米材料还被广泛应用于癌症的高密度诊断。
对于人类乳腺的癌症治疗,纳米球奶糖材料可以制备成光纤,允许准确定位和吸收受体细胞。
2.纳米材料的靶向治疗纳米材料具有高比表面积、界面反应能力和分子大小能力,便于生物分子界面的靶向自由转运。
纳米材料的生物医学应用随着科学技术的不断进步,纳米技术在生物医学领域的应用越来越受到重视。
纳米材料具有独特的物理、化学和生物学特性,使其在生物医学领域具有广阔的应用前景。
本文将从诊断、治疗和药物传递等方面阐述纳米材料在生物医学中的重要应用。
一、纳米材料在疾病诊断中的应用纳米材料的特殊性质使其成为一种理想的生物标记物。
通过在纳米颗粒上修饰抗体、蛋白质或核酸等生物分子,可以实现对特定疾病标志物的高度选择性和灵敏检测。
例如,在癌症的早期诊断中,通过将纳米颗粒与抗体结合,可以实现对肿瘤特异性标志物的检测,提高诊断的准确性和灵敏性。
二、纳米材料在疾病治疗中的应用1. 肿瘤治疗纳米材料在肿瘤治疗中具有重要的应用潜力。
一方面,纳米颗粒可以通过改变其大小、形状或表面性质,实现药物的靶向输送,提高药物在肿瘤组织中的积累,减少对正常组织的损伤。
另一方面,纳米材料还可以作为肿瘤热疗的载体,通过外加磁场或光照射使纳米材料产生热效应,破坏肿瘤细胞的结构,实现肿瘤的热疗。
2. 动脉粥样硬化治疗动脉粥样硬化是一种常见的血管疾病,纳米材料在治疗该疾病中显示出巨大的潜力。
通过将纳米颗粒修饰上抗炎药物或血管重建因子等生物活性物质,可以实现对病变血管的定向治疗,促进血管再生,改善血管通透性。
三、纳米材料在药物传递中的应用纳米材料在药物传递中的应用已经取得了重要的突破。
通过将药物包裹在纳米粒子内部,可以提高药物的溶解度、稳定性和生物利用度。
另外,纳米材料还可以通过改变其表面性质,实现对药物的控制释放,提高药物在靶组织中的作用时间。
此外,纳米材料还可以通过改变其形状、结构或尺寸,实现对药物的靶向输送,减少药物在体内的分布和代谢,提高药物的效果。
总之,纳米材料在生物医学中的应用潜力巨大。
通过纳米技术的引入,可以实现对疾病的早期诊断、靶向治疗和药物传递的精准控制。
然而,纳米材料的安全性和生物相容性仍然是需要面对的挑战。
进一步的研究需要加强对纳米材料的毒性评估和生物安全性研究,以确保其在生物医学应用中的可持续发展和广泛应用。
纳米材料在生物医学领域的应用随着科技的进步和人们对健康意识的不断提高,生物医学领域的研究日益深入。
同时,纳米技术的应用也逐渐扩展到了生物医学领域。
纳米材料在生物医学领域的应用,可以为医学研究提供更多的思路和方法,为疾病的治疗和预防带来更多的可能性。
一、纳米材料的定义和分类纳米材料是一种尺寸在纳米级别的物质,其尺寸范围大约在1到100纳米之间。
在纳米级别下,物质的性质与传统材料有了很大的不同。
纳米材料可以分为有机和无机两种类型,其中无机类型的纳米材料包括金属纳米颗粒、纳米薄膜、纳米线、纳米管等;有机型的纳米材料则包括碳纳米管、纳米球等。
二、纳米材料在生物医学领域的应用1. 生物成像纳米材料在生物成像上有着广泛的应用,例如纳米线和金属纳米粒子可以被用于MRI和CT扫描。
此外,纳米荧光素和磷酸铁锂等材料也可以被用于光学和磁性共振成像技术。
2. 药物输送药物输送是纳米材料在生物医学领域中应用的一个重要方向。
纳米材料可以包裹着药物,并通过靶向技术将药物释放到具体的部位。
这种技术可以减少药物对非靶向组织造成的副作用,提高药物的疗效。
目前,纳米材料在癌症治疗中的应用已经得到了广泛的研究。
3. 生物传感为了更好地了解人体内部的状况,研究人员正在研发纳米生物传感器。
这种技术可以检测蛋白质、DNA和其他重要分子的含量和位置,从而帮助医生进行更加准确的判断和治疗。
4. 组织工程组织工程是又一个广泛应用于生物医学领域的纳米材料领域。
纳米材料可以与细胞相互作用,从而帮助生长新的组织。
这项技术不仅可以帮助治疗损伤和疾病,而且可以为研究新型医疗治疗方案提供基础。
三、纳米材料应用中存在的挑战随着纳米技术的应用逐渐扩展到了生物医学领域,也出现了一些挑战。
首先,纳米材料的毒性和生物兼容性仍然存在争议。
另外,无法准确、有效地控制纳米材料的释放量和释放速率,也是一个困难点。
四、纳米材料在生物医学领域的未来发展尽管在纳米材料在生物医学领域的应用中存在挑战,但纳米技术在生物医学领域中的潜力仍然巨大。
无机化学在生物医药领域有哪些重要应用在当今的生物医药领域,无机化学正发挥着越来越关键的作用。
无机化学不再仅仅是实验室里的理论研究,而是与生物医学紧密结合,为疾病的诊断、治疗和预防带来了创新性的突破。
首先,无机化学在药物研发方面有着重要的应用。
许多金属配合物被设计和合成出来,成为具有特定生物活性的药物。
例如,铂类药物,如顺铂、卡铂等,在癌症治疗中展现出了显著的疗效。
它们通过与肿瘤细胞的 DNA 结合,干扰 DNA 的复制和转录,从而抑制肿瘤细胞的生长和分裂。
除了铂类药物,金、银等金属的配合物也在抗菌、抗病毒等领域显示出潜力。
金纳米粒子可以通过与细菌细胞膜的相互作用,破坏细胞膜的完整性,达到抗菌的效果。
无机化学在医学成像领域也扮演着不可或缺的角色。
磁共振成像(MRI)中使用的造影剂通常是基于无机化合物。
钆配合物是常见的MRI 造影剂,它们能够改变周围组织的磁共振信号强度,使病变组织在图像中更加清晰地显示出来。
此外,正电子发射断层扫描(PET)中使用的放射性同位素,如 18F、68Ga 等,也是无机化学的研究范畴。
这些同位素标记的化合物能够准确地定位肿瘤、心血管疾病等病变部位,为疾病的早期诊断提供重要依据。
在生物传感器的开发中,无机化学同样发挥着重要作用。
基于无机纳米材料,如碳纳米管、量子点等构建的生物传感器,具有高灵敏度、高选择性和快速响应的特点。
例如,量子点可以用于检测生物分子,如蛋白质、核酸等。
其独特的光学性质使得检测过程更加灵敏和准确。
碳纳米管则可以用于检测生物体内的小分子,如葡萄糖、多巴胺等。
通过修饰碳纳米管的表面,可以实现对特定分子的特异性识别和检测。
无机化学在基因治疗方面也有着潜在的应用。
纳米材料,如氧化铁纳米粒子,可以作为基因载体,将治疗性基因递送到细胞内。
这些纳米粒子能够保护基因免受体内环境的降解,并通过特定的机制进入细胞,实现基因的有效传递和表达。
此外,无机材料还可以用于调控基因的表达,为治疗遗传性疾病和慢性疾病提供新的策略。
纳米材料在生物医学领域的应用纳米材料一直是材料科学领域的一个重要研究方向。
随着现代生命科学的飞速发展,纳米材料在生物医学领域中的应用也日益显现出其重要性和存在的必要性。
纳米材料能够以其特有的粒径、表面、形态等性质调节材料与细胞、生物分子间的相互作用,从而实现在药物输送、生物成像、诊断和治疗等方面的应用。
下面将从这些方面展开论述。
一、药物输送由于纳米材料具有较大的比表面积、独特的化学反应活性和生物相容性等优异特性,它们能够有效地运输和释放药物。
也就是说,纳米材料作为药物输送的载体,可以将药物精确地释放到特定的细胞和组织中,使得药物的作用更加明确和地理位置更加清晰。
例如,聚乳酸-羟基磷灰石纳米颗粒被用来承载头发林和多西紫杉醇等抗癌药物,以作为一种靶向药物输送系统,使得药物对肿瘤细胞的杀伤效果更加明确,对正常细胞的不良反应有所降低。
二、生物成像纳米材料在生物成像方面也有着广泛的应用。
由于纳米材料具有独特的光学性质,尤其是金或银纳米颗粒,可以产生表面等离子体共振的现象,在选择性激发下放电出光谱点和散射光谱,从而可以实现对生物体内分子的定量分析和成像。
以砷化铟纳米棒和聚氨酯为材料组成的新型纳米复合体系,在对肿瘤细胞内部进行光学成像时,能够捕获显著的近红外光信号,表现出色彩鲜艳和良好的对比度,使得生物体内部的成像质量大幅度得到提高。
三、诊断纳米材料还可以用于对生物样本进行快速和低成本的检测,该类检测可用于体内检测生物分子或细胞水平的生物分子检测。
例如,氧化铁和金纳米颗粒可以被用于快速筛查血液样本,检测是否存在病原体或药物残留物,甚至可以检测血液中的癌症细胞。
这些方法无需复杂的实验室测试,专门的仪器设备或多次程序的操作,因此可大大提高检测效率和精度,并为诊断提供了一个简便有效的手段。
四、治疗除了用于诊断和药物输送,纳米材料还可以用于治疗。
例如,Silica-PDA-Clearly的纳米材料被用来进行抗肿瘤治疗。
纳米材料在生物医学中的研究应用随着生物医学技术的发展,纳米材料被越来越多地应用于医学领域。
纳米材料具有独特的物理、化学和生物学性质,可用于制备高效的药物传递系统、医学成像剂,以及用于治疗癌症、感染和神经退行性疾病等多种疾病的诊断和治疗工具。
本文将从以下三个方面介绍纳米材料在生物医学中的研究应用。
一、纳米材料在药物传递系统中的应用由于药物的生理药理、生物化学机制使其难以溶解、易被分解、难以吸收和靶向等问题,现有的很多药物的疗效较低。
而纳米材料具有独特的表面特性和功能,能够在生物体内稳定地运输、传递、释放药物,为药物的疗效提高、毒副作用降低创造了更好的空间。
在利用纳米材料作为生物医学药物载体的研究中,人们创造了多种不同的载体材料。
其中,磁性铁氧体纳米粒子、纳米金、纳米碳管、纳米硅、聚乳酸-羟基乙酸、聚乳酸、纳米凝胶等都是主流的纳米药物载体材料。
同时,金属表面修饰技术、纳米多酸或小分子药物修饰、靶向受体修饰等也可搭载在这类纳米药物载体材料上,建立一种高效的多模式生物医学药物传递体系。
二、纳米材料在医学成像中的应用现代医学成像技术,如计算机断层扫描(CT)、磁共振成像(MRI)和荧光成像等,对医学诊断和治疗都有着重要的作用。
但传统的医学成像技术都有其自身的缺陷,其中主要的问题是分辨率、特异性、敏感性和荧光探测的低效性。
在这种情况下,纳米材料的特殊性质使其成为新型医学成像剂的理想候选者。
纳米粒子、纳米棒、纳米膜和纳米分子团等纳米材料,可以通过散斑和荧光效应实现更好的生物体内成像。
例如,通过核磁共振成像技术同时包含对于构建组织及病理过程的对比增强成像,而超顺磁铁氧化物在核磁共振成像诊断中反应快、效果好、成像清晰,因此在诊断荧光技术的开发过程中成为一个有前景的领域。
三、纳米材料在治疗疾病中的应用纳米材料可以通过靶向等方式进入人体细胞,从而在治疗癌症、感染和神经退行性疾病等方面发挥作用。
例如,纳米颗粒可以通过靶向携带各种药物或光热剂或光敏剂,使治疗药物更加准确和高效地传递到肿瘤细胞,以实现有效的癌症治疗。
无机纳米材料的制备及其应用一、引言无机纳米材料是目前材料学研究的前沿领域之一,其具有巨大的潜力和广泛的应用前景。
随着纳米科技的不断进步,无机纳米材料的制备技术和应用越来越成熟。
本文将介绍无机纳米材料的制备及其应用。
二、无机纳米材料的制备技术1. 水热法水热法是制备无机纳米材料的一种常见方法。
该方法利用高温高压反应条件下的溶液化学反应,形成纳米晶体结构。
水热法具有简单、快速、低成本等优点,适用于多种无机材料的制备。
2. 气相法气相法是制备无机纳米材料的一种方法,利用化学气相沉积,其原理是将气态材料经过气化后在反应室中进行反应,生成纳米材料。
气相法具有可扩展性强、纯度高等优点,适用于多种无机材料的制备。
3. 电化学法电化学法是一种制备无机纳米材料的方法,通过电解水溶液来制备纳米材料,其原理是利用电化学反应产生的氢气来还原金属离子,生成纳米级材料。
电化学法具有易控制、纯度高等优点,适用于多种无机材料的制备。
三、无机纳米材料的应用1. 光电领域无机纳米材料在光电领域具有广泛的应用,例如用于制备光电器件、用于光催化等。
利用无机纳米材料的特殊光电性质,可提高光电器件的性能。
2. 催化领域无机纳米材料在催化领域中也具有重要应用。
例如用于催化剂的制备、用于汽车尾气净化等。
利用无机纳米材料的高比表面积、活性位点等特性,可提高催化剂的效率、稳定性。
3. 生物医学领域无机纳米材料在生物医学领域中具有广泛的应用,例如用于药物输送、用于检测生物分子等。
利用无机纳米材料的生物相容性、药物包载能力等特性,可提高药物的生物利用度、诊断的准确性。
四、无机纳米材料的发展趋势随着纳米科技的不断进步,无机纳米材料将会在许多领域发挥举足轻重的作用。
未来,我们将更加关注无机纳米材料的结构设计、性能控制与应用创新等方面。
五、结论本文综述了无机纳米材料的制备技术及其应用,为进一步研究无机纳米材料提供了参考。
未来,我们将继续关注无机纳米材料的发展趋势,并推动其在各个领域的应用。
纳米材料在生物医学方面的应用摘要:纳米材料和纳米技术是一门新兴的学科领域,在最近几年得到了科学界的重视,其在各个领域的应用都越来越广泛。
由于纳米材料的特殊的尺寸效应,纳米颗粒、纳米管以及各种纳米技术在生物医学方面的应用正蓬勃发展,势头十足。
目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等,纳米材料在生物医学的许多方面都有广泛的应用前景。
关键词:纳米材料,生物医学,应用一、纳米生物材料的概述纳米生物材料是指用于对生物材料进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术纳米材料。
纳米生物材料可以分为两类:一种是适合于生物体内应用的纳米材料,它本身既可以是具有生物活性的,也可以是不具有生物活性的,而仅仅易于被生物体所接受,且不引起不良反应;另一类是利用生物分子的特性而发展的新型纳米材料,它们可能不再被用于生物体,而被用于其他纳米技术或微制造。
纳米材料分为两个层次:纳米微粒和纳米固体。
如今,人们已经能够直接利用原子、分子进行生产、制备出仅包含几十个到几百万个原子的单个粒径为1~100纳米的纳米微粒,并把它们作为基本构成单元,适当排列成三维的纳米固体。
纳米材料由于其结构的特殊性,表现出许多不同于传统材料的物理、化学性能。
在自然界,天然纳米生物材料早就存在,自然界的蛋白质就有许多纳米微孔;人类及兽类的牙齿也是由纳米级有机物质所构成。
在医学领域中,纳米材料也已经得到成功的应用,最引人注目的是作为药物载体,或制作人体生物医学材料,如人工肾脏、人工关节等。
国外用纳米陶瓷微粒作载体的病毒诱导物也取得成功。
由于纳米微粒比红细胞还要小很多,因此,可以在血液中自由运行,从而在疾病的诊断和治疗中发挥独特的作用。
二、纳米生物医学材料的分类按照材料科学的分类方法,纳米生物医学材料可以分为纳米金属生物材料、纳米无机非金属生物材料、纳米高分子生物材料、纳米复合生物材料。
但是按照其在生物医学领域的应用则可分为:细胞分离用纳米材料、细胞内部染色用纳米材料、抗菌及创伤敷料用纳米材料、组织工程中的纳米生物材料、生物活性材料等。
纳米材料在生物医学中的应用纳米材料作为一种新兴的材料,因其独特的物理、化学及生物学特性,在生物医学领域展现出广泛的应用潜力。
随着纳米技术的不断发展,纳米材料在药物传递、成像诊断、抗菌材料以及癌症治疗等多个方面引起了研究者的广泛关注。
一、药物传递系统1.1 纳米载体纳米材料作为药物载体,能够提高药物的生物相容性和稳定性。
在药物传递系统中,纳米颗粒(如:)可以包裹药物,控制其释放速率。
与传统的药物传递方式相比,纳米载体具有更好的靶向性和更低的副作用。
例如,使用聚合物基纳米颗粒传递抗癌药物,可以显著提高药物在肿瘤细胞内的浓度,从而提高治疗效果。
1.2 靶向药物传递通过功能化纳米材料的表面,例如修饰特定的靶向分子(如:),可以实现靶向药物传递。
这种方法不仅有效减少了药物在正常细胞中的分布,还增加了药物在病变细胞中的浓度,降低了副作用,改善了患者的治疗体验。
二、成像诊断2.1 纳米探针纳米材料也广泛应用于医学成像领域。
纳米探针(如:)可以用于磁共振成像(MRI)、计算机断层扫描(CT)和光学成像。
这些纳米探针通常具有良好的生物相容性和较高的信号强度,能够提高影像的分辨率和对比度。
例如,使用铁氧体纳米颗粒作为MRI的对比剂,可以提高对病变组织的检测能力。
2.2 多模态成像纳米材料的另一大优势是可以实现多模态成像。
通过将不同类型的成像纳米材料结合(如:),可以在一次检测中获得丰富的信息,这对于肿瘤的早期诊断和治疗效果评估具有重要意义。
三、抗菌材料3.1 纳米银纳米材料在抗菌方面的应用也越来越受到关注。
以纳米银为例,其优越的抗菌性能使其成为防止细菌感染的重要材料。
纳米银颗粒通过释放银离子,能够有效抑制多种细菌及真菌的生长,因此在医疗器械、伤口敷料等领域有着广泛的应用前景。
3.2 纳米氧化锌另一种常见的抗菌纳米材料是纳米氧化锌(ZnO),它同样展现出良好的抗菌性能。
其应用包括在医疗器械表面涂层,显著降低感染风险。
无机纳米材料在生物医学中的应用随着纳米技术的不断发展和应用,无机纳米材料成为了生物医学研究领域中一个重要的研究课题。
这些无机纳米材料因其小尺寸、可调性、高比表面积和生物相容性等独特性质,在生物医学领域中有着广泛的应用前景。
本文将从材料的分类出发,介绍无机纳米材料在生物医学领域中的应用。
1、金属纳米材料金属纳米材料因其表面受到的电子、原子结构以及局域表面等结构特有的性质,广泛用于生物医学领域的成像、治疗和生物传感器等方面的研究。
其中,金属纳米粒子作为一种新型的对于肿瘤治疗和诊断的重要成像剂和治疗载体,其独特的光学、电学和热学性质成为了其优于传统成像技术和治疗方法的重要因素。
2、纳米碳材料纳米碳材料(如碳纳米管和石墨烯)在生物医学领域的研究中也得到了广泛的应用。
通过无机纳米碳材料可以制备出大量的生物医学材料,包括显微镜探针、细胞成像剂和药物给药追踪等。
3、无机纳米晶体无机纳米晶体具有广阔的应用前景,从成像、治疗到疾病的诊断和药物递送都具有潜在的应用价值。
例如,纳米晶体对于深度扫描、慢动态生物图像以及动态代谢的测定有着广泛的用途。
由于其在多种介质中的光学表现,纳米晶体成为了多模态成像(MMI)中不可忽略的一部分。
4、纳米氧化物材料氧化物纳米材料在生物医学领域中也有着广泛的应用。
以二氧化钛为例,它在近红外发光生物成像、肿瘤光动力治疗和口腔疾病口腔洁净治疗等方面都有着重要意义。
此外,纳米氧化铁与荧光成像技术的结合在胃肠道道疾病、肝脏疾病、肺癌和肿瘤治疗领域都有着广泛的应用。
5、纳米硅材料应用纳米硅材料作为治疗和成像的载体面临着成像、治疗和药物输送的复合问题。
纳米硅材料可以被制成许多形式,如纳米颗粒、纳米管、薄片、多孔镀层、膜和粉末,这使其有着广泛的生物应用范围,如对于胰腺癌治疗和多孔材料制备等等。
结论总之,无机纳米材料在生物医学领域中的应用涵盖了成像、治疗、生物传感器、药物递送和诊断等多个方面。
随着科技的不断发展和技术的不断提高,相信无机纳米材料在生物医学领域中的应用将会越来越广泛。
纳米材料在生物医学领域的应用随着纳米科技的快速发展,纳米材料在各个领域的应用越来越广泛。
特别是在生物医学领域,纳米材料的应用正带来一系列的革命性变化。
本文将探讨纳米材料在生物医学领域的应用,并重点介绍纳米材料在诊断、治疗和药物传输方面的潜力。
一、纳米材料在诊断中的应用1. 生物成像技术纳米材料在生物成像技术中的应用具有广阔的前景。
纳米颗粒可以通过特定的标记分子与细胞或分子结合,并利用成像设备追踪和检测患者体内的病理生物活动。
例如,纳米颗粒可以被用作磁共振成像(MRI)的造影剂,通过对比增强图像来检测肿瘤的存在和位置。
2. 生物传感器纳米材料还可以用于生物传感器的制造。
利用纳米颗粒具有的特殊性质,可以构建高灵敏度、高选择性的生物传感器,用于检测和监测生物分子的存在。
例如,利用纳米金颗粒的表面增强拉曼散射(SERS)效应,可以实现对低浓度生物分子的高灵敏检测,从而提高早期诊断的准确性。
二、纳米材料在治疗中的应用1. 药物递送系统纳米材料在药物递送系统中发挥着重要的作用。
通过将药物封装在纳米载体中,可以提高药物的稳定性、增加药物的溶解度,并减少药物对正常细胞的副作用。
纳米药物递送系统可以通过改变纳米颗粒表面的性质,实现靶向传递药物到特定的细胞或组织,提高治疗效果。
2. 热疗和光疗纳米材料还可以用于热疗和光疗。
通过在纳米颗粒表面引入光敏剂或磁性材料,可以实现对肿瘤的热疗或光疗。
当纳米颗粒吸收特定波长的光或受到外部磁场的作用时,会产生热效应,破坏肿瘤细胞,从而达到治疗的目的。
三、纳米材料在药物传输中的应用1. 药物包裹和释放纳米材料可以用于药物的包裹和释放。
通过改变纳米颗粒的结构和性质,可以实现对药物的控制释放。
例如,通过改变纳米颗粒的孔隙结构和表面功能化处理,可以实现药物的缓慢释放,延长药物的作用时间,提高疗效。
2. 多药物联合治疗纳米材料还可以用于多药物联合治疗。
通过将不同的药物封装在不同的纳米载体中,并通过合理的组合和控制释放方式,可以实现对不同病理机制的治疗。
无机纳米材料在生物医学的应用班级:材料科学与工程(1)班姓名:***学号:************摘要:主要介绍了几种介绍了介孔二氧化硅、纳米碳等非金属类纳米材料,以及磁性铁、氧化铈、银纳米粒子、金纳米粒子、镍等金属类纳米材料,比较了不同来源无机纳米材料的发展、特点、优势,明确了无机纳米材料具有环境友好、成本低、生物相容性好及低毒性等特点,综述了无机纳米材料在生物医药、临床诊断、疾病预防等生物医学方面的研究与应用。
关键词:无机纳米材料生物医学Abstract: This paper mainly introduces several kinds of the mesoporous silica, nano carbon and other non metal nano materials, and magnetic iron, cerium oxide, silver nanoparticles, gold nanoparticles, nickel and other metal nano materials, compared the development of different sources of inorganic nano materials, features, advantages, the inorganic nano material is environmentally friendly low cost, good biocompatibility and low toxicity characteristics, the application of inorganic nano materials in the biomedical, clinical diagnosis, disease prevention research and application in biomedicine.Keywords: inorganic nano materials biomedicine1前言当物质到达纳米尺寸后,其性能就会发生突变,出现特殊性能,如小尺寸效应、表面效应、量子尺寸效应、宏观量子隧道效应等[1]。
由于纳米材料环境友好、成本低、生物相容性好、毒性低,在医药卫生领域有着广泛的应用和明确的产业化前景,特别是纳米药物载体,纳米医用材料、纳米生物传感器和成像技术以及微型智能化医疗器械等[2],相比常规药物以及化疗、放疗,无机纳米材料用于药物载体可达到靶向运输、控释缓释药物的效果,因此无机纳米材料在靶向性给药、药物控制释放和缓释、癌症治疗等方面有良好的应用前景[3]。
2无机纳米材料的分类依据材料来源不同,将无机纳米材料分为两大类:一类是介孔二氧化硅、碳纳米材料等非金属类材料,另一类时磁性铁、银、金纳米粒子、纳米羟基磷灰石、层状双金属氢氧化物等金属类材料[4]。
2.1非金属类2.1.1介孔二氧化硅介孔二氧化硅(mesoporous silica nano-particles,MSNs)是粒径为10-600nm、孔径为2-50 nm 的二氧化硅纳米粒子[5],通常以表面活性剂或两亲性嵌段共聚物作为模板,与无机源进行界面聚合,最后通过高温煅烧或萃取等方法除去模板,保留二氧化硅骨架形成的多孔结构。
介孔二氧化硅是一种新型的无机纳米材料,具有独特的网状孔道结构,孔道规整,孔径连续可调,具有较大的比表面积和比孔容,表面易功能化,毒性低,有良好的生物相容性和稳定性[6-7]。
2.1.2碳纳米材料由碳元素所构成的材料种类繁多,形态各异,例如sp2结构的石墨、sp3结构的金刚石,和无定型炭黑。
近些年,各种新型碳纳米材料引起人们广泛注意,如石墨烯、碳纳米管、富勒烯及碳量子点等。
碳纳米材料具有独特的结构和性能,它们具有比表面积大、易功能化、具有光热效应、独特的荧光性能等特点,在药物缓释控释、荧光示踪、光热治疗等方面具有独特的应用价值[8-9]。
2.2金属类2.2.1磁性铁当材料的尺寸小至纳米级别时,磁性会发生变化。
磁性纳米氧化铁材料具有较好的化学稳定性、生物相容性和较高的磁响应性。
磁性铁氧化物纳米材料因为在药物靶向运输、肿瘤治疗、磁性流体和化学传感等方面所表现出的广阔应用前景[10]。
2.2.2银纳米粒子银纳米复合粒子通常具有较小的不超过100nm的直径,含有20-15000个银原子。
由于纳米银的表面增强拉曼光谱效应、小粒径效应、较大的比表面积等特点,使其具有非常好的抗菌效果,且安全性相对较高,抗菌性能持久。
除了抗菌性能外,银纳米复合材料还具有许多其他性能。
例如:抗病毒、抗血管病,因此银纳米复合材料在医疗器械、伤口处理、生殖等诸多领域被广泛应用[11]。
2.2.3金纳米粒子纳米金是指直径0.8-250mm 的缔合金溶胶,它属于纳米金属材料中研究最早的种类,纳米金具有良好的纳米表面效应、量子效应以及宏观量子隧道效应,它具有很多良好的化学特性,比如抗氧性和生物相容性[12]。
2.2.4纳米羟基磷灰石纳米羟基磷灰石(nano-hydroxyaptite,nHAP)是陶瓷类多孔无机材料,溶解度较好,有较大的表面能、良好的生物活性和生物相容性,可用作骨移植的生物材料,修复、整合人体骨组织,并能改善力学机能,有广泛的临床应用价值[13]。
2.2.5层状双金属氢氧化物层状双金属氢氧化物(layered double hydrox-ides,LDHs)由二价金属离子及三价金属离子组成,层状结构有记忆效应,其层间的阴离子可交换,有特殊的酸碱性、荧光性质、热稳定性。
LDHs 毒性低,能满足组织、血液、免疫等方面的生物兼容性要求;可被生物降解,生物相容性好,细胞内的酸性环境可使其溶解为离子,通过细胞膜上的离子通道排至细胞外[14]。
利用LDHs 作为药物载体,可提高药物输送效率,增强药物的溶解性。
3无机纳米材料在生物医学的应用3.1载体作用纳米药物载体的发展为药物的靶向输送与治疗提供了可能性,它具有以下优势:(1)可提高化学药物疗法、光动力巧法、光热疗法等治疗方法的疗效(2)可改变所负载药物自身的动力学特性及其在生物体内的分布,比如载带化学药物及生物大分子跨越相关的生理屏障[15](3)可通过制备不同剂型的纳米粒子适应不同的给药途径(4)在纳米粒子载体表面修饰相关配体,如透明质酸、叶酸、转铁蛋白、单克隆抗体、麦胚凝集素、多肽、Tat肽等,可以提高纳米粒子对靶细胞或特定细胞器的靶向性。
理想的纳米药物载体应该具有制备方法简单、低毒性、可控释放、体内循环时间较长、生物可降解等优势。
目前研究较多的纳米药物载体主要有无机纳米材料、碳纳米材料、脂质体、聚合物、水凝胶等。
3.2骨移植临床上可用自体骨移植来治疗创伤、感染、肿瘤等造成的骨缺损,由于骨移植的来源有限,且手术时间长,易导致失血过多和供骨区并发症等,应用受到限制。
将异体骨用作骨移植,则存在免疫排斥反应,且易被感染。
而人工骨同自体骨有相近的疗效,人工骨材料可采用钛、生物陶瓷、纳米骨、3D 模拟人工骨髓等纳米材料。
纳米羟基磷灰石与人体内的无机成分相似,其粒子有小尺寸效应、量子效应及表面效应等,可用作牙种植体或作为骨骼材料,能避免产生排斥反应,促进血液循环,促进人体骨组织的修复、整合和骨缺损后的治愈[16]。
3.3临床诊断与治疗纳米材料在临床诊断治疗方面应用广泛,但多处于试验阶段。
磁性氧化铁纳米粒子可作为造影剂用于肿瘤诊断中,对肿瘤分子产生磁共振分子影像或多模态肿瘤分子影像,也可用于循环肿瘤细胞的分离、富集[17]。
磁性纳米粒子还可用于生物传感器中,利用磁现象和纳米粒子从液相中分离并捕获生物分子[18]。
用介孔二氧化硅制成的细胞荧光成像探针利用量子点良好的光稳定性、较长的荧光寿命和较高的生物相容性,结合介孔二氧化硅可特异性地识别Ramos 细胞的特点,并用激光共聚焦显微镜对Ramos 细胞进行荧光成像,实现了对肿瘤细胞的早期诊断、检测成像[19]。
富勒烯特殊的结构和性质使其可以广泛地应用于光热治疗、辐射化疗、癌症治疗等医学领域,也可作为核磁共振成像的造影剂用于临床诊断[20]。
但富勒烯不溶于水,对生物体存在潜在的毒性,限制了其在临床的应用[21]。
富勒烯结合含羟基的亲水性分子可改善其溶解性,羟基化富勒烯无明显毒性,可作为抗氧化剂。
聚羟基富勒烯利用近红外光激活体内的纳米材料,用光热对肿瘤细胞定位,避免了金纳米粒子、碳纳米管等在体内造成聚积,利用免疫刺激作用来抑制肿瘤细胞的转移、生长,从而减小肿瘤的尺寸,最终造成肿瘤细胞凋亡。
因此,改造碳纳米结构,在成像、吸附、药物装载与靶向运输等生物医学工程方面有潜在的应用价值。
金纳米粒子有较好的生物相容性,功能化的金纳米粒子可用于生物分析、药物检测、临床诊断等生物医药领域,可作为纳米探针检测重金属离子、三聚氰胺等小分子,也可检测DNA、蛋白质等生物大分子,还可以用于对细胞表面和细胞内部的多糖、核酸、多肽等的精确定位[22]。
4展望无机纳米材料在生物医学应用中有待解决的问题还有很多,在今后的研究中,提高疾病治疗的针对性、靶向性和可调控性;使无机纳米材料相对固定在肿瘤细胞表面,不扩散到正常组织,提高肿瘤部位的有效浓度,降低纳米材料的毒副作用达到临床应用的标准将成为重点。
参考文献[1]杨慧,丁良,岳志莲. 纳米生物技术在医学中的应用[J]. 生物技术通报,2016,(01):49-57.[2]张冬英. 纳米材料在生物医药方面的应用及发展动态[J]. 湖北成人教育学院学报,2017,(02):78-81.[3]李珺,李晓桐,赵明. 无机纳米材料及其在生物医学方面的应用研究[J]. 医疗卫生装备,2015,(07):97-101+105.[4]段利利. 纳米材料的国内外研究现状及应用[J]. 山东工业技术,2015,(23):225.[5]穆京海,叶舟,张权,尹健. 介孔二氧化硅在癌症化疗药物控释和靶向输送中的应用进展[J]. 生物技术进展,2016,(03):179-184+229.[6]王延庆. 介孔氧化硅和氧化硅复合物的制备与应用[D].天津工业大学,2016.[7]周婕,李艳,罗成. 介孔二氧化硅纳米粒的医学应用及安全性研究进展[J]. 中国新药与临床杂志,2017,(03):124-130.[8]刘艳,赵玉军. 碳纳米复合材料在电化学生物传感器中的应用[J]. 广东化工,2016,(19):99-101.[9]孔祥权. 功能化碳材料的制备、表征及其在生物医学中的应用[D].暨南大学,2016.[10]李磊. 铁氧化物纳米复合材料的设计与制备及其SERS性能研究[D].中国科学技术大学,2016.[11]王春燕. 银纳米复合材料的研究进展[J]. 化工管理,2017,(08):104-105.[12]易真志. 纳米金在生物医学技术应用现状探讨[J]. 科技展望,2016,(16):259.[13]潘倩雯,刘宏,李力. 纳米羟基磷灰石复合材料人工骨的研究进展[J]. 中国药房,2017,(04):566-569.[14]敖燕辉,王丹丹,王沛芳,王超. 层状双金属氢氧化物的制备方法及光催化应用[J]. 四川环境,2016,(01):136-143.[15]尚乐,周庆翰. 多功能磁性纳米药物载体的制备及表征[J]. 西南民族大学学报(自然科学版),2016,(05):531-537.[16]许瑾,吴晶晶,王晓冬,王秀梅,韩倩倩. 羟基磷灰石复合骨组织工程支架的研究进展[J]. 生物骨科材料与临床研究,2016,(02):63-66.[17]蒋革,袁玉姣,李宗谕. 磁性氧化铁纳米颗粒在肿瘤诊疗方面的研究进展[J]. 化工管理,2015,(30):99-100.[18]王巧英,祝青,周丽蓉,王燕,曾晓霞. 磁性氧化铁纳米粒子在生物医学应用中的研究进展[J]. 山西医药杂志,2016,(03):272-275.[19]王红红. 基于二氧化硅的纳米荧光探针用于活细胞细胞器中pH的检测与成像[D].山东师范大学,2016.[20]许哲. 富勒烯的功能化及其对细胞防护的应用研究[D].辽宁大学,2016.[21]田可心,甄明明,翟美丽,王春儒. 水溶性纳米富勒烯衍生物的制备及其对细胞氧化应激保护作用的研究[J]. 化工新型材料,2016,(08):207-208+211.[22]易真志. 纳米金在生物医学技术应用现状探讨[J]. 科技展望,2016,(16):259.。