第一章-量子论基础
- 格式:doc
- 大小:133.50 KB
- 文档页数:7
“物理化学”目录目录第一章量子力学基础§1−1 量子论的诞生㈠旧量子论㈡波粒二象性㈢测不准关系§1−2 实物粒子运动状态−波函数㈠波函数及其性质㈡态叠加原理及其应用§1−3 波函数的求解㈠算符理论初步㈡量子力学的基本假定㈢微观粒子的运动规律−−薛定谔方程§1−4 简单体系㈠势相中的粒子㈡简谐振子㈢刚性转子附录Ⅰ:线性谐振子方程的解Ⅱ:刚性转子方程的解。
第二章原子结构和原子光谱§2−1 单电子原子的薛定谔方程及其解㈠方程的建立㈡方程的一般解㈢解的讨论㈣轨道的空间分布§2−2 多电子原子的薛定谔方程及其解㈠多电子原子的薛定谔方程和原子单位㈡单电子独立模型与轨道近似㈢中心力场近似㈣屏蔽模型㈤自洽场方法§2−3 电子自旋和核外电子排布规则㈠电子自旋㈡全同粒子和保里原理㈢核外电子排布规则§2−4 原子状态和原子光谱项㈠多电子原子状态㈡原子光谱项㈢原子光谱附录Ⅰ:R(r)方程的解第三章共价键理论和双原子分子结构§3−1 价键理论㈠价键理论对H2分子的处理㈡解的讨论㈢价健理论的要点和应用㈣杂化轨道理论§3−2 分子轨道理论㈠分子轨道理论对H的处理㈡解的讨论㈢分子轨道理论的要点㈣分子轨道理论和价键理论的比较§3−3 双原子分子结构㈠分子轨道的符号和能级㈡同核双原子分子结构㈢异核双原子分子结构㈣双原子分子光谱项第四章分子对称性和点群§4−1 对称元素和对称操作㈠对称元素和对称操作的种类㈡对称操作的乘法表㈢对称操作组合的若干规则§4−2 分子点群㈠群的基础知识㈡分子点群及分类㈢分子所属点群的判断方法㈣分子的对称性和物理性质§4−3 群表示理论㈠对称操作的矩阵表示㈡表示和特征标㈢不可约表示的性质§4−4 群论在化学中的应用㈠能量本征函数是不可约表示的基㈡对称性匹配群轨道㈢投影算符及其应用㈣直积和非零矩阵元的检验第五章多原子分子结构§5−1 饱和多原子分子结构㈠离域分子轨道㈡定域轨道理论㈢离域轨道和定域轨道关系§5−2 共轭分子结构㈠休克尔分子轨道法㈡ HMO应用实例㈢共轭直链多烯和共轭环多烯㈣杂化原子和无机共轭分子㈤共轭大π键形成条件和类型§5−3 缺电子分子和原子簇结构㈠缺电子分子和多中心键㈡原子簇化合物及其分类㈢硼烷(碳硼烷)的结构规则㈣多面体碳原子簇结构规则㈤过渡金属原子簇化合物结构规则§5−4 配位化合物结构㈠晶体场理论㈡分子轨道理论㈢σ-π配键与有关的配位化合物§5−5 量子化学计算方法和分子性质的计算㈠ ab initio方法㈡ DFT方法㈢分子性质的计算第六章分子间相互作用§6−1 分子间作用力㈠静电力㈡诱导力㈢色散力㈣分子间作用能㈤分子间势能函数与范德华半径§6−2 气体中的分子相互作用㈠实际气体和范德华方程㈡临界点和超临界现象㈢对比态原理§6−3 液体中的分子相互作用㈠液体结构特征和径向分布函数J(R)㈡J(R)的测定和计算㈢氢键和疏水作用§6−4 超分子结构化学及分子组装㈠形成稳定超分子的因素㈡分子识别和超分子自组装第七章固态§7−1 晶体结构的周期性㈠周期性和点阵㈡点阵单位和晶胞㈢晶面表示方法§7−2 晶体结构的对称性㈠晶体中的对称元素㈡晶系和14种空间点阵㈢晶体的宏观对称性和32点群㈣晶体的微观对称性和230空间群§7−3 金属晶体㈠三种典型金属结构㈡金属原子半径㈢合金结构㈣能带理论§7−4 离子晶体㈠几种典型的离子晶体结构㈡点阵能㈢离子半径和离子极化㈣泡林规则和复杂离子化合物结构§7−5 共价晶体和其它键型晶体㈠共价晶体–金刚石㈡混合键型晶体–石墨㈢氢键型晶体–冰㈣分子晶体–干冰§7−6 实际固体㈠晶体缺陷㈡非晶态第八章微观结构测定的基本原理(1)—分子光谱§8−1 概论§8−2 转动光谱㈠刚性转子模型㈡非刚性转子模型㈢多原子分子转动光谱§8−3 振动光谱㈠谐振子模型㈡非谐振子模型㈢振动光谱的精细结构(振转光谱)㈣多原子分子振动模式§8−4 电子光谱㈠电子能级和电子光谱选律㈡电子光谱的精细结构(电子振转光谱)㈢富兰克−康登原理㈣多原子分子电子光谱§8−5 拉曼光谱㈠拉曼散射和拉曼光谱选律㈡转动和振动拉曼光谱第九章微观结构测定的基本原理(2)—磁共振和其它§9−1 核磁共振㈠核磁矩及与外磁场的相互作用㈡核磁共振现象㈢化学位移㈣核的自旋−自旋偶合§9−2 顺磁共振㈠分子的磁性及与外磁场的相互作用㈡顺磁共振现象㈢g因子和超精细结构§9−3 电子能谱㈠电子能谱概述㈡紫外光电子能谱㈢X射线光电子能谱㈣俄歇电子能谱§9−4 X射线衍射㈠晶体对X射线的衍射㈡衍射方向㈢衍射强度㈣X射线的衍射谱§9−5 电子和中子衍射㈠电子衍射㈡电子衍射测定气体分子的几何结构㈢低能电子衍射在表面分析中的应用㈣中子衍射第十章统计力学基础§10−1 基本概念㈠概率㈡宏观态和微观态㈢热力学概率和熵㈣量子态能级和简并度§10−2 麦克斯韦−玻耳兹曼统计㈠麦克斯韦−玻耳兹曼统计法㈡麦克斯韦−玻耳兹曼分布定律§10−3 分子配分函数㈠配分函数的物理意义㈡分子配分函数与内能§10−4 正则系综及配分函数㈠系综的概念㈡正则分布与分子配分函数㈢独立等同可辨和不可辨粒子体系§10−5 配分函数的计算㈠平动配分函数㈡转动配分函数㈢振动配分函数㈣电子配分函数㈤核配分函数㈥粒子的全配分函数§10−6 量子统计㈠玻色−爱因斯坦统计法㈡费米−狄喇克统计法㈢金属中自由电子的热容第十一章热力学第一定律和热化学§11−1 热力学第一定律㈠热力学常用的一些基本概念㈡热力学第一定律的表述㈢内能的概念㈣功和热量㈤热力学第一定律的统计解释㈥功的计算和可逆过程§11−2 焓和热容㈠焓的概念㈡热容的概念㈢理想气体的热容㈣气体热容与温度的关系㈤等压热容和等容热容的关系§11−3理想气体的热力学过程㈠焦尔实验㈡绝热过程㈢理想气体的卡诺循环§11−4焦尔−汤姆逊效应㈠焦耳−汤姆逊实验㈡焦耳−汤姆逊系数§11−5化学反应的热效应㈠热化学方程式和标准态㈡反应进度㈢恒压反应热和恒容反应热及其相互关系㈣盖斯定律㈤反应焓变与温度的关系§11−6 几种重要的焓变计算㈠燃烧焓㈡生成焓㈢溶解焓和稀释焓㈣从键焓估算反应焓变和生成焓第十二章热力学第二定律和热力学第三定律§12−1 热力学第二定律的引出㈠热力学第二定律解决什么问题㈡自然过程的共同特点§12−2 过程方向性的判据−−熵函数㈠熵的引出㈡克劳修斯不等式和熵增加原理㈢熵和热力学第二定律的统计解释§12−3 热力学第三定律㈠热力学第三定律的引出及表述㈡热力学第三定律的实验验证㈢热力学第三定律的统计解释§12−4 熵变的计算㈠恒温过程的熵变算㈡变温过程的熵变㈢相变过程的熵变㈣标准熵的计算㈤化学反应的熵变§12−5 吉氏自由能和亥氏自由能㈠亥姆霍兹自由能及等温等容过程方向的判断㈡吉布斯自由能及等温等压过程方向的判断㈢吉氏和亥氏自由能的统计热力学计算㈣吉布斯自由能的计算§12−6 热力学函数间的关系及其应用㈠热力学的四个基本关系式㈡麦克斯韦关系式㈢麦克斯韦关系式的应用㈣在纯物质两相平衡的应用§12−7 化学势㈠化学势概念的引出㈡化学势与温度和压力的关系㈢化学势在相变和化学反应中的应用㈣气体化学势第十三章溶液体系热力学§13−1 偏摩尔量㈠偏摩尔量定义㈡偏摩尔量的基本公式§13−2 理想溶液及其性质㈠理想溶液的经验定义和分子图像㈡理想溶液的热力学定义㈢理想溶液的性质§13−3 稀溶液及其性质㈠稀溶液的经验定义和分子图像㈡稀溶液的热力学定义㈢稀溶液的依数性§13−4 实际溶液和活度㈠实际溶液及其化学势表达式㈡活度的测定㈢超额函数第十四章化学平衡体系热力学§14−1 化学反应的自由能降低原理§14−2 化学反应等温式和平衡常数㈠均相化学反应㈡非均相化学反应§14−3 反应平衡常数的计算和测定方法㈠平衡常数的表达方法㈡平衡常数的测定和计算㈢平衡转化率和平衡组成计算§14−4 理想气体反应平衡常数的统计热力学计算㈠能量零点的选择㈡自由能函数的计算和应用举例㈢从配分函数直接计算平衡常数§14−5 平衡常数与温度和压力的关系㈠平衡常数与温度的关系㈡平衡常数与压力的关系§14−6 气相反应条件分析㈠常压气相反应㈡高压气相反应§14−7 液相反应和复杂反应条件分析㈠液相反应㈡复杂反应第十五章相平衡体系热力学§15−1 相律㈠相、组份数和自由度㈡相律的推导§15−2 单组份体系的相图㈠单组分体系相图的理论基础㈡相图实例㈢升华操作原理和水杨酸的升华提纯㈣二级相变§15−3 二组分液固体系㈠液固体系相图㈡杠杆规则及其应用㈢溶解度曲线的计算㈣生成稳定和不稳定化合物的液固体系㈤生成完全互溶的固溶体的液固体系㈥生成部分互溶的固溶体的液固体系§15−4 二组分气液体系㈠理想溶液的气液体系㈡完全互溶的实际溶液的气液平衡㈢蒸馏(或精馏)原理§15−5 二组分液液体系㈠部分互溶体系㈡完全不互溶体系§15−6 三组分体系㈠部分互溶的三液体系㈡固-固-液盐水体系第十六章界面现象和胶体分散体系§16−1 表面自由能和表面张力㈠表面自由能及其定义㈡表面张力§16−2 弯曲液体表面的现象㈠弯曲液面的附加压力㈡附加压力与曲面的曲率半径和表面张力的关系㈢表面曲率与液体蒸气压的关系§16−3 润湿和铺展㈠粘附功㈡接触角与润湿的关系§16−4 表面相热力学㈠表面相和表面过剩量㈡吉布斯吸附方程式§16−5 表面活性剂㈠表面活性剂的分类及其定向排列功能㈡表面活性剂的作用㈢表面活性剂的结构与其性能间的关系§16−6 胶体分散体系㈠胶体体系的分类㈡胶体体系的不稳定性及其电-化学性质第十七章气体的吸附和表面化学§17−1 气体在固体表面的吸附㈠物理吸附和化学吸附㈡吸附势能曲线㈢朗格缪尔吸附等温式㈣费罗因德利希和捷姆金吸附等温式㈤ BET吸附等温式及比表面测定原理§17−2 现代表面化学的研究内容㈠表面组成的研究㈡表面结构的研究㈢表面反应的研究§17−3 表面性质对表面反应性能的影响㈠表面组成和价态的影响㈡表面结构的影响§17−4 表面吸附态和表面反应机理㈠热脱附方法研究表面吸附态㈡用表面能谱研究表面吸附态㈢用隧道扫描探针研究表面吸附态第十八章传递过程和非平衡态热力学§18−1 传递过程基本规律㈠热传导㈡粘度㈢扩散§18−2 非平衡态热力学㈠熵产生原理㈡昂萨格倒易关系㈢最小熵产生原理第十九章化学动力学基本规律§19−1 化学反应的速率方程㈠化学反应速率㈡质量作用定律㈢反应级数和反应分子数§19−2 具有简单级数的反应㈠零级反应㈡一级反应㈢二级反应㈣三级反应㈤速率方程的确定§19−3 温度对反应速率的影响㈠温度和反应速率之间的经验关系式㈡活化能对反应速率的影响㈢活化能的物理意义§19−4 典型的复杂反应㈠对峙反应㈡平行反应㈢连续反应§19−5 反应机理和近似处理方法㈠反应机理㈡稳态近似㈢平衡态近似§19−6 化学反应中的动态与平衡㈠微观可逆性原理和仔细平衡原理㈡速率常数和平衡常数的关系第二十章各种反应体系的动力学§20−1 链反应㈠直链反应㈡支链反应§20−2 液相反应㈠遭遇对㈡扩散控制的反应㈢液相中的快速反应㈣化学振荡反应§20−3 催化反应㈠催化剂的特性㈡均相催化反应㈢气固相催化反应㈣络合催化反应㈤不对称催化反应㈥酶催化反应§20−4 流动体系反应㈠连续管式反应㈡连续釜式反应§20−5 光化学反应㈠光化学基础㈡光化学反应的类型第二十一章基元反应的速率理论§21−1 双分子反应的简单碰撞理论㈠硬球碰撞模型㈡反应硬球碰撞模型㈢反应碰撞模型与实验结果比较§21−2 反应速率的过渡态理论㈠过渡态理论㈡过渡态理论的热力学处理§21−3 单分子反应理论㈠林德曼理论㈡ RRKM理论§21−4 分子轨道对称守恒原理㈠实验事实㈡能量相关原理㈢前线轨道理论第二十二章分子反应动力学§22−1 化学反应的不同层次㈠总包反应㈡基元反应㈢态-态反应§22−2 势能面及反应途径㈠势能面㈡反应体系在势能面上的运动㈢势能面的特征对反应的影响§22−3 分子反应动力学实验㈠激光的基本原理和激光器㈡特定状态的反应物制备㈢反应的测量第二十三章电解质溶液§23−1 电解质溶液的导电现象㈠金属导体和离子导体㈡法拉第定律㈢电解质溶液的电导率㈣离子的电迁移和迁移数§23−2 电解质溶液的活度和活度系数㈠离子强度和活度系数㈡强电解质的离子相互作用理论第二十四章电化学热力学§24−1 可逆电池的电动势㈠化学反应的吉氏自由能变化和可逆电池的电动势㈡可逆电池和不可逆电池㈢可逆电池的电动势测定㈣可逆电池电动势与物质活度的关系㈤可逆电池的动电势和温度关系§24−2 电极电势和标准电极电势㈠电池电动势产生原因㈡电极电势表达式㈢标准电极电势㈣可逆电极的种类㈤电极电势和电池电动势的计算§24−3 浓差电池和液体接界电势㈠浓差电池㈡液体接界电势㈢液体接界电势的计算§24−4 离子选择性电极和膜电势㈠用氢离子选择性电极测溶液PH㈡离子选择性电极的一般工作原理㈢膜电势§24−5 电势-pH图及其应用㈠电势-pH图的涵义㈡电势-pH图的构建及其应用第二十五章电化学动力学及其应用§25−1 电极极化㈠极化和超电势㈡氢超电势理论㈢超电势的测量方法及其应用§25−2 电化学测量㈠循环伏安法㈡计时电流和计时电位法㈢交流阻抗法§25−3 应用电化学㈠电解㈡金属的电沉积㈢金属的腐蚀和防腐㈣化学电源§25−4 电化学中的若干现代研究课题㈠表面电化学㈡电极过程的时空分辨㈢光电化学。
第一章 量子理论基础1.设一电子为电势差V 所加速,最后打在靶上,若电子的动能转化为一个光子,求当这光子相应的光波波长分别为5000A (可见光),1A (x 射线)以及0.001A (γ射线)时,加速电子所需的电势差是多少?[解] 电子在电势差V 加速下,得到的能量是eV m =221υ这个能量全部转化为一个光子的能量,即λνυhch eV m ===221 )(1024.1106.11031063.6419834A e hc V λλλ⨯=⋅⨯⨯⨯⨯==∴--(伏) 当A 50001=λ时, 48.21=V (伏)A 12=λ时 421024.1⨯=V (伏)A 001.03=λ时 731024.1⨯=V (伏)2.利用普朗克的能量分布函数证明辐射的总能量和绝对温度的四次方成正比,并求比例系数。
[解] 普朗克公式为18/33-⋅=kT hv v e dvc hvd πνρ单位体积辐射的总能量为⎰⎰∞∞-==00/3313T hv v e dv v c h dv U κπρ令kThvy =,则 440333418T T e dy y c h k U y σπ=⎪⎪⎭⎫ ⎝⎛-=⎰∞ (★) 其中 ⎰∞-=0333418y e dyy c h k πσ (★★) (★)式表明,辐射的总能量U 和绝对温度T 的四次方成正比。
这个公式就是斯忒蕃——玻耳兹曼公式。
其中σ是比例常数,可求出如下:因为)1()1(1121 +++=-=-------y y y y y ye e e e e e ∑∞=-=1n ny edy e y e dy y n ny y ⎰∑⎰∞∞=-∞⎪⎭⎫ ⎝⎛=-013031 令 ny x =,上式成为dx e x n e dy y xn y⎰∑⎰∞-∞=∞=-03140311 用分部积分法求后一积分,有⎰⎰⎰∞-∞∞--∞∞--+-=+-=0220332333dx xe ex dx e x ex dx e x x x xx x66660=-=+-=∞∞--∞-⎰xx xe dx e xe又因无穷级数 ∑∞==144901n n π故⎰∞=⨯=-0443159061ππye dy y 因此,比例常数⎰∞-⨯==-=015334533341056.715818ch k e dy y ch k y ππσ尔格/厘米3·度43.求与下列各粒子相关的德布罗意波长:(1)能量为100电子伏的自由电子; (2)能量为0.1电子伏的自由中子; (3)能量为0.1电子伏,质量为1克的质点; (4)温度T =1k 时,具有动能kT E 23=(k 为玻耳兹曼常数)的氦原子。
第一章量子论基础一、填空1.经典物理学不能解释:___、___、___、___ 和___等问题。
2.1900年,为解决黑体辐射的困难,普朗克提出了____的概念,导出了以他名字命名的普朗克公式____;1905年,普朗克的量子化概念被爱因斯坦进一步推广,得到了光子的动量和波矢量的关系式____。
这两个关系式合称为普朗克-爱因斯坦关系式。
3.利用普朗克-爱因斯坦关系式,可以解释____、____和____实验结果。
二、概念与名词解释1.黑体辐射2.玻尔的量子论3.光的波粒二象性4.德布罗意关系5.杜隆-珀蒂定律三、计算1.设一电子为电势差V所加速,最后打在靶子上.若电子的动能转化为一个光子,求当这个光子相应的光波波长分别为500nm(可见光)、0.1nm(X射线)以及0.0001nm(γ射线)时,加速电子所需的电势差是多少?2.求下列各粒子的德布罗意波的波长:(1)能量为0.1eV,质量为1g的质点;(2)T=1K 时,具有动能E=3kT/2(k 为玻耳兹曼常数)的氦原子;(3)速度为500m/s ,质量为20g 的子弹.3.利用玻尔量子化条件求:(1)一维谐振子的能量 ;(2)在均匀磁场中作圆周运动的电子的可能轨道半径.4.设箱的长宽高分别为a 、b 、c ,用玻尔量子化条件求箱内运动粒子的能量。
5.利用玻尔量子化条件求转动惯量为I 的平面转子的能量.6.由p=mv 及220/c v -1/m m =出发,利用202c m -mc T =,导出相对论粒子德布罗意波长与动能的关系。
m 0为该粒子的静止质量。
7.一个德布罗意波在k 空间的表示/4)k -(k a -1/4202e )(2a C(k)π=,求: (1)ψ(x,t)和|ψ(x,t)|2,在时刻t 这是否是个高斯波包?(2)波包的宽度Δ(x,t); (3)⎰+∞∞-ψdx t)(x ,2是否依赖于t?8.两个光子在一定条件下可以转化为正负电子对. 如果两光子的能量相等, 问要实现这种转化, 光子的波长最大是多少?9.当自由电子与中子的德布罗意波长均为10-10m 时,求它们各自具有的能量。
第一章-量子论基础第五章 近似方法一、概念与名词解释1. 斯塔克效应2. 跃迁概率3. 费米黄金规则4. 选择定则二、计算1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正.2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正.3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正.4. 设哈密顿量在能量表象中的矩阵是 ,a E b b a E 0201⎪⎪⎭⎫ ⎝⎛++a 、b 是实数. (1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较.5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202*b *a b 01a 01>⎪⎪⎪⎪⎭⎫ ⎝⎛λλλλ, (1) 用简并微扰方法求能量至二级修正;(2) 求能量的准确值,并与(1)的结果比较.6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级修正.7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为, 1/2)a (a Hˆ0ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ˆ的作用,求体系的能级到二级近似. 已知升与降算符对0Hˆ的本征态|n>的作用为. 1n n n a ; 1n 1n n a -=++=+9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy.若λ<<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 , bz axy H'2+=求第一激发态的一级能量修正.13. 一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<λ=a)x (a/2 x/a)-2x(1a/2)x (0 x/a 2H'作用,求基态能量的一级修正. 14. 处于一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<<<=2a/3)x (a/3 V -a)x a/3,2a/3x (0 0H'1的作用,计算基态能量的一级修正. 15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰23. 求氢原子n=3,简并度n 2=9时的斯塔克效应.24. 设在t=0时,电荷为e 的线性谐振子处于基态. 在t>0时起,附加一与谐振子振动方向相同的恒定外电场ε,求其处在任意态的概率.25. 一个自旋为ħ/2,磁矩为sˆg ˆ =μ的粒子处于如下弱旋转磁场中 , k B j t)sin(B i t)cos(B B 00 +ω+ω=粒子与磁场的作用为 .B s ˆg⋅-若粒子开始处于s z = ħ/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)= -g 2/r 3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以)exp(-cr (r)2=φ为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为 , x /2p ˆH ˆ42x λ+μ=以/2)x exp(-a a/(x)22π=φ为试探波函数,a 为变分参数,求其基态能量.31. 取尝试波函数为 ,Ce 2-ax C 为归一化常数,a 是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数C.32. 设粒子在中心力场V(r)= -Ar n (n 为整数)中运动,选R(r)=Nexp(-βr)为试探波函数,求其基态能量. 进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用Φ=exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f 为变分参数,求势场为V(x)=g 2(x 2-1)2/2的基态能量,其中g 是个很大的常数.三、证明1. 在无简并的微扰论中,证明(1)n(1)n (1)n (3)n (2)n(1)n (0)n (1)n (0)n (0)n (1)n(0)n (0)n (0)n E -W ˆE E E E H ˆE E H ˆφφ=++=φ+φφ+=φφ 2. 一维运动的体系,定义从|m>态跃迁到|n>态相应的振子强度为, /m x n 2m f 2nm nm ω= m 是粒子质量,求证:∑=n nm 1f3. 设体系在t=0时处于基态|0>,若长时间加上微扰),(x)exp(-t/F ˆt)(x,W ˆτ=证明该体系处于另一能量本征态|1>的概率为222012/)E -(E 1F ˆ0τ+四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为M. 在棒的两端分别有电荷+Q 和-Q.(1) 写出体系的哈密顿量、本征函数和本征值;(2) 如果在转动平面内存在一电场强度为E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?(3) 如果这个电场很强,求基态的近似波函数和相应的能量值.2. 对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是. R)(r R)(r 0V ⎩⎨⎧≥∞<=相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是)1/a z )/b y (x ( 0V 22222el ,(其他地方)内在⎩⎨⎧∞=++=其中a ≈R(1+2β/3), b ≈R(1-β/3),且β<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核基态能量的变化.(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H 0+H'描述,其中H'=i λ[A,H 0]是一个加在非微扰哈密顿量H 0上的微扰,A 是个厄米算符,λ是个实数.设B 是另一个厄米算子,而且C=i[B,A].(1) 已知A 、B 、C 在无微扰(非简并)基态的平均值为<A>0、<B>0、<C>0.当微扰加入时,求B 在微扰后的基态上的平均值至λ的第一级;(2) 将这个结果用到如下三维问题上:.x H',x m 212m p H 331i 2i 22i 0λ=⎪⎪⎭⎫ ⎝⎛ω+=∑=计算x i 在基态的平均值<x i >(i=1,2,3)至λ的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向. 电场沿z 轴方向,可视为均匀电场. 设电容器突然充电,然后放电,电场随时间的变化是).( 0)(t e 0)(t 0(t)t/-0为常数τ⎩⎨⎧>ε<=ετ求时间充分长后,氢原子跃迁到2s 态和2p 态的概率.5. 考虑势U=g|x|的能级.(1) 用量纲分析,推导本征值和参数(质量m 、ħ、g)的关系;(2) 用尝试波函数φ=C θ(x+a) θ(a-x)(1-|x|/a)对基态能量作变分计算;0)(x 10)(x 0(x)这里C、a是复数⎪⎪⎭⎫ ⎝⎛⎩⎨⎧><=θ, (3) 为什么φ=C θ(x+C) θ(a-x)不是一个好的尝试波函数?(4) 如果要求第一激发态能量,你将如何处理?6. 一个质量为m 的粒子在汤川势U(r)= -λe -μr /r 中运动,用变分法,取尝试波函数φ=e -ar ,问λ的临界值λ0等于多少时,能使得λ<λ0无束缚态,λ>λ0有束缚态?7. 介子一般可看成夸克和反夸克)q (q 的束缚态. 考虑s 态介子,设夸克质量为mq ,束缚q q 和的势U=A/r+Br ,A<0,B>0.(1) 选用类似于氢原子基态波函数的φ=e -r/a 作为尝试波函数,用变分法求基态能量(在用变分法决定a 的方程中,可近似取A =0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。
第五章 近似方法一、概念与名词解释1. 斯塔克效应2. 跃迁概率3. 费米黄金规则4. 选择定则二、计算1. 如果类氢原子的核不是点电荷,而是半径为r 0,电荷均匀分布的小球,计算这种效应对类氢原子基态能量的一级修正.2. 转动惯量为I ,电矩为D 的空间转子处在均匀电场E 中,如果电场较小,用微扰理论求转子基态能量的二级修正.3. 转动惯量为I ,电矩为D 的平面转子处在均匀弱电场E 中,电场处在转子运动的平面上,用微扰法求转子的能量的二级修正.4. 设哈密顿量在能量表象中的矩阵是 ,a Eb b a E 0201⎪⎪⎭⎫ ⎝⎛++a 、b 是实数. (1) 用微扰公式求能量至二级修正;(2) 直接用求解能量本征方程的方法求能量的准确解,并与(1)的结果比较.5. 设哈密顿量在能量表象中的矩阵是)E (E E E 0 0 E 010202*b *a b 01a 01>⎪⎪⎪⎪⎭⎫ ⎝⎛λλλλ, (1) 用简并微扰方法求能量至二级修正;(2) 求能量的准确值,并与(1)的结果比较.6. 在简并情况下,求简并微扰论的波函数的一级修正和能量的二级修正.7. 线谐振子受到微扰aexp(-βx 2)的作用,计算基态能量的一级修正,其中常数β>0.8. 设线谐振子哈密顿算符用升算符a +与降算符a 表示为, 1/2)a (a H ˆ0ω+=+ 此体系受到微扰ω+λ=+ a)(a 'H ˆ的作用,求体系的能级到二级近似. 已知升与降算符对0H ˆ的本征态|n>的作用为.1n n n a ;1n 1n n a -=++=+9. 一个电荷为q 的线谐振子受到恒定弱电场i E ε=的作用,利用微扰论求其能量至二级近似,并与其精确结果比较.10. 一维非简谐振子的哈密顿量为H=p 2/2m+m ω2x 2/2+βx 3. β是常数,若将3x H'β=看成是微扰,用微扰论求能量至二级修正,求能量本征函数至一级修正.11. 二维耦合谐振子的哈密顿量为H=(p x 2+p y 2)/2μ+μω2(x 2+y 2)/2+λxy. 若λ<<1,试用微扰论求其第一激发态的能级与本征函数.12. 在各向同性三维谐振子上加一微扰 , bz ax y H'2+=求第一激发态的一级能量修正.13. 一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<λ=a)x (a/2 x/a)-2x(1a/2)x (0 x/a 2H'作用,求基态能量的一级修正. 14. 处于一维无限深势阱(0<x<a)中的粒子,受到微扰⎩⎨⎧<<<<<<=2a/3)x (a/3 V -a)x a/3,2a/3x (0 0H'1的作用,计算基态能量的一级修正. 15. 在一维无限深势阱(0<x<a)中运动的粒子,受微扰⎩⎨⎧<<<<=a)x (a/2 b a/2)x (0 b H'+-作用,求波函数至一级修正. 16. 一个粒子处在二维无限深势阱⎩⎨⎧∞<<=)( a)y x,(0 0y)V(x,其他中运动,现加上微扰 a),y x,xy(0H'≤≤λ=求基态能量和第一激发态的能量修正值.17. 粒子在如下势阱中运动, a)x 0,(xa)x (0 a x/a)/80sin(V(x)222⎩⎨⎧><∞≤≤μππ= -求其基态能量的一级近似.18. 粒子处于如下势阱中, a)X 0,(x a)x (a/2 a /80a/2)x (0 0V (x )222⎪⎩⎪⎨⎧><∞≤≤μπ<<= 求其能级的一级近似值.19. 自旋为ħ/2的粒子处于一维无限深方势阱(0<x<a)中,若其受到微扰⎩⎨⎧><≤≤πλ=a)x 0,(x0a)x (0 s ˆx/a)cos(2H'y 的作用,求基态能量至一级修正,其中λ为一小量.20. 两个自旋为ħ/2,固有磁矩算符分别为2211ˆˆˆˆσβ=μσα=μ和的粒子,处于均匀磁场k B B 0 =中,若粒子间的相互作用21ˆˆσ⋅σγ 可视为微扰,求体系能量的二级近似,其中α、β、γ为实常数.21. 类氢原子中,电子与原子核的库仑作用为U(r)=-Ze 2/r ,当核电荷增加e(从Z →Z+1),相互作用增加/r -e H'2=,试用微扰论求能量的一级修正并与严格解比较.22. 设氢原子处于均匀的弱电场k 0 ε=ε和弱磁场k B B 0 =中,不考虑自旋效应,用微扰论讨论其n=2的能级劈裂情况.23. 求氢原子n=3,简并度n 2=9时的斯塔克效应.24. 设在t=0时,电荷为e 的线性谐振子处于基态. 在t>0时起,附加一与谐振子振动方向相同的恒定外电场ε,求其处在任意态的概率.25. 一个自旋为ħ/2,磁矩为s ˆg ˆ=μ的粒子处于如下弱旋转磁场中 , k B j t)sin(B i t)cos(B B 00 +ω+ω=粒子与磁场的作用为 .B s ˆg ⋅-若粒子开始处于s z = ħ/2的状态,讨论跃迁情况并计算跃迁概率.26. 求氢原子的第一激发态的自发辐射系数.27. 一个处在第一激发态(2p)的氢原子位于一空腔中,求空腔温度等于多少时,自发跃迁概率和受激跃迁概率相等.28. 一个粒子在吸引势V(r)= -g 2/r 3/2中运动,试用类氢原子的波函数作为尝试波函数,求基态能量.29. 以)ex p(-cr (r)2=φ为试探波函数,求氢原子基态能量与波函数,其中c>0.30. 设一维非简谐振子的哈密顿算符为 , x /2p ˆH ˆ42x λ+μ=以/2)x ex p(-a a/(x )22π=φ为试探波函数,a 为变分参数,求其基态能量.31. 取尝试波函数为 ,Ce 2-ax C 为归一化常数,a 是变分参数,试用变分法求谐振子的基态能量和基态波函数,并算出归一化常数C.32. 设粒子在中心力场V(r)= -Ar n (n 为整数)中运动,选R(r)=Nexp(-βr)为试探波函数,求其基态能量. 进而求出库仑场(n= -1,A>0)和谐振子势(n=2,A<0)的结果,并与严格解比较.33. 试用Φ=exp[-f(x-1)2(x+2)/3]/(x+1)为试探波函数,f 为变分参数,求势场为V(x)=g 2(x 2-1)2/2的基态能量,其中g 是个很大的常数.三、证明1. 在无简并的微扰论中,证明(1)n(1)n (1)n (3)n (2)n (1)n (0)n (1)n (0)n (0)n (1)n(0)n (0)n (0)n E -W ˆE E E E H ˆE E H ˆφφ=++=φ+φφ+=φφ2. 一维运动的体系,定义从|m>态跃迁到|n>态相应的振子强度为, /m x n 2m f 2nm nm ω= m 是粒子质量,求证:∑=n nm 1f3. 设体系在t=0时处于基态|0>,若长时间加上微扰),(x )ex p(-t/F ˆt)(x ,Wˆτ=证明该体系处于另一能量本征态|1>的概率为222012/)E -(E 1Fˆ0τ+四、综合题1. 一根长度为d 质量均匀分布的棒可绕其中心在一平面内转动,棒的质量为M. 在棒的两端分别有电荷+Q 和-Q.(1) 写出体系的哈密顿量、本征函数和本征值;(2) 如果在转动平面内存在一电场强度为E 的弱电场,准确到一级修正,它的本征函数和能量如何变化?(3) 如果这个电场很强,求基态的近似波函数和相应的能量值.2. 对于一个球形核来说,可以假定核子处在一个半径为R 的球对称势阱中,势场是. R)(r R)(r 0V ⎩⎨⎧≥∞<=相应地,对发生微小形变的核,可以认为核子处在椭球形势阱中,势壁高仍为无限大,即势场是)1/a z )/b y (x ( 0V 22222el ,(其他地方)内在⎩⎨⎧∞=++=其中a ≈R(1+2β/3), b ≈R(1-β/3),且β<<1,利用微扰论,准确到一级近似,求椭球形核相对于球形核基态能量的变化.(提示:作变量代换,将椭球形势阱化成球形势阱后再讨论微扰影响.)3. 一个量子体系由哈密顿量H=H 0+H'描述,其中H'=i λ[A,H 0]是一个加在非微扰哈密顿量H 0上的微扰,A 是个厄米算符,λ是个实数.设B 是另一个厄米算子,而且C=i[B,A].(1) 已知A 、B 、C 在无微扰(非简并)基态的平均值为<A>0、<B>0、<C>0.当微扰加入时,求B 在微扰后的基态上的平均值至λ的第一级;(2) 将这个结果用到如下三维问题上:.x H',x m 212m p H 331i 2i 22i 0λ=⎪⎪⎭⎫ ⎝⎛ω+=∑=计算x i 在基态的平均值<x i >(i=1,2,3)至λ的最低阶,并将这个结果和精确解相比较.4. 把处在基态的氢原子放在平行板电容器中,取平行板法线方向为z 轴方向. 电场沿z 轴方向,可视为均匀电场. 设电容器突然充电,然后放电,电场随时间的变化是).( 0)(t e 0)(t0(t)t/-0为常数τ⎩⎨⎧>ε<=ετ求时间充分长后,氢原子跃迁到2s 态和2p 态的概率.5. 考虑势U=g|x|的能级.(1) 用量纲分析,推导本征值和参数(质量m 、ħ、g)的关系;(2) 用尝试波函数φ=C θ(x+a) θ(a-x)(1-|x|/a)对基态能量作变分计算;0)(x 10)(x 0(x)这里C、a是复数⎪⎪⎭⎫ ⎝⎛⎩⎨⎧><=θ, (3) 为什么φ=C θ(x+C) θ(a-x)不是一个好的尝试波函数?(4) 如果要求第一激发态能量,你将如何处理?6. 一个质量为m的粒子在汤川势U(r)= -λe-μr/r中运动,用变分法,取尝试波函数φ=e-ar,问λ的临界值λ0等于多少时,能使得λ<λ0无束缚态,λ>λ0有束缚态?7. 介子一般可看成夸克和反夸克)q(q的束缚态. 考虑s态介子,设夸克质量为mq,束缚qq和的势U=A/r+Br,A<0,B>0.(1) 选用类似于氢原子基态波函数的φ=e-r/a作为尝试波函数,用变分法求基态能量(在用变分法决定a的方程中,可近似取A=0来简化计算).(2) 用不确定性原理估算基态能量,并和变分法的结果(1)比较.。