克拉默(Cramer)法则
- 格式:doc
- 大小:53.50 KB
- 文档页数:2
第4讲_克拉默法则克拉默法则,又称克拉默法则(Cramer's Rule),是线性代数中一种求解线性方程组的方法。
它是基于行列式的性质推导而来的,可以通过求解方程组的系数矩阵的行列式和一系列的余子式来求解方程组的解。
设线性方程组为:a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3对应的系数矩阵为:A=,a1b1c1a2b2ca3b3c假设A的行列式,A,≠0,即A可逆。
克拉默法则的步骤如下:1.求出系数矩阵A的行列式,A。
2.将线性方程组中的常数项d替换成对应的常量向量i,并构成矩阵Ai,其中Ai的第i列替换为常量向量。
3.求出Ai的行列式,Ai。
4.解方程组的解向量为:x=,Ai,/,Ay=,Ai,/,Az=,Ai,/,A克拉默法则的优点是求解方便,特别适用于方程组的规模较小的情况。
然而,它的缺点是计算量较大,需要求系数矩阵和每个常量向量的行列式,不适用于大规模的方程组求解。
以下是一个数值例子来说明克拉默法则的应用:假设有方程组:2x+y-z=14x-6y=-2-2x+7y+2z=3我们可以转换为系数矩阵和常数向量的形式:A=,21-14-6-27d=,1-首先,计算系数矩阵A的行列式,A。
A,=2(-6)(2)+1(0)(-2)+(-1)(4)(7)=-12+0-28=-40然后,分别计算对应常量向量的行列式。
A1,=1(-6)(2)+1(0)(-2)+(-1)(-2)(7)=12+0+14=26A2,=2(0)(2)+1(4)(-2)+(-1)(-2)(7)=0-8+14=6A3,=2(-6)(-2)+1(4)(7)+(-1)(-2)(0)=24+28+0=52最后,根据克拉默法则的公式,我们可以得出解向量:x=,A1,/,A,=26/-40=-0.65y=,A2,/,A,=6/-40=-0.15z=,A3,/,A,=52/-40=-1.3因此,方程组的解为x=-0.65,y=-0.15,z=-1.3总结来说,克拉默法则是一种通过求解行列式的方法来求解线性方程组的解的方法。
carmer法则
克莱姆法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理,也称作克拉默法则。
这个法则是由瑞士数学家克莱姆(Gabriel Cramer)在他的《线性代数分析导言》中于1750年发表的。
不过值得注意的是,尽管克莱姆是首位发表这个法则的数学家,但莱布尼兹和马克劳林等数学家在此之前也已经知晓这个法则。
克莱姆法则的核心内容是:对于一个有n个方程和n个未知数的线性方程组,如果其系数行列式不等于零,那么方程组有唯一解,且每一个未知数的解可以由对应的行列式求得。
具体来说,每一个未知数的解等于常数项替换该未知数系数后所得到的行列式与原系数行列式之商。
然而,克莱姆法则并不总是计算线性方程组最有效的方法。
实际上,当方程组的规模(即未知数的数量)增加时,使用克莱姆法则进行计算会变得非常低效。
因为计算每一个未知数的解都需要计算n个n阶行列式,而计算一个n阶行列式的时间复杂度是O(n!),这使得克莱姆法则对于大规模线性方程组的求解并不实用。
此外,克莱姆法则还存在数值稳定性的问题。
即使对于规模较小的线性方程组,由于计算过程中涉及大量的乘法和除法运算,可能会导致数值误差的累积,从而影响解的精度。
总的来说,克莱姆法则虽然在线性代数中具有重要的理论意义,但在实际应用中,我们通常会选择更高效、更稳定的算法来求解线性方程组。
克拉默法则通俗解释克拉默法则(CramerRule)是一种解决线性方程组的有效方法,也称作“克拉默求解法”或“互补余子式法”。
#### 一、拉默法则的概念克拉默法则(Cramer Rule)是一种解决线性方程组的有效方法,它可以帮助我们快速解决线性方程组,而无需数值计算,从而节省计算时间。
其原理是:在任意一维线性方程组中,若方程系数矩阵的行列式为不零,则方程的解有一个唯一解,而克拉默法则即是根据此原理求出方程组的解。
#### 二、克拉默法则的具体步骤1.先,根据给定的线性方程组,将其表示为一个矩阵形式,即系数矩阵。
2.后,计算原方程组的行列式,若行列式值不等于0,则方程组有唯一解,否则无解。
3.下来,将原方程组中每个变量所在的列都用变量代替,求出每一个替换后方程组的行列式,即可得到该变量的值。
4.后,根据得到的变量值,即可得出当前方程组的解。
#### 三、克拉默法则的应用实例克拉默法则可以解决多维线性方程组,其中实际应用也很广泛,其中就包括了求未知的系数、求矩阵的逆等问题。
例如,有如下一个四元一次方程组:2x + 5y - 3z + 6w = 153x - 7y - 2z - 4w = -125x + 2y + 6z + 8w = 16-4x + 7y - 5z - 6w = -19要解决这个四元一次方程组,首先将其表示为系数矩阵:A = | 2 5 -3 6 || 3 -7 -2 -4 || 5 2 6 8 || -4 7 -5 -6 |此时,系数矩阵A的行列式为-40,为非0,因此该四元一次方程组有解。
接下来,我们可以将A中的每一列都用方程右侧的常数替换,求出每一替换后的方程的行列式,分别为40、40、40、40,即每一变量的值都为1,从而得出结论:x=1、y=1、z=1、w=1是该四元一次方程组的一组解。
通过上面的实例,我们可以看出,克拉默法则可以有效地解决多维线性方程组,并且不需要使用任何数值计算方法,从而节省计算时间。
§7 克拉默(Cramer)法则
现在应用行列式解决线性方程组的问题.在这里只考虑方程个数与未知量个数相等的情形.
定理4 如果线性方程组
⎪⎪⎩⎪⎪⎨
⎧=+++=+++=+++n
n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112
222212*********,, (1) 的系数矩阵
⎪⎪
⎪⎪
⎪
⎭
⎫
⎝⎛=nn n n n n a a a a a a a a a A 2
1
22221
11211
(2) 的行列式
0||≠=A d
那么线性方程组(1)有解,并且解是唯一的,解可以通过系数表为
d
d x d d
x d d x n n ===
,,,2211 , (3) 其中j d 是把矩阵A 中第j 列换成常数项n b b b ,,,21 所成的矩阵的行列式,即
.,,2,1,1,1
,1
21
,221
,22111,111,111
n j a a b a a a a b a a a a b a a d nn
j n n
j n n n j j n j j j
==
+-+-+- (4)
定理中包含着三个结论:1)方程组有解;2)解是唯一的;3)解由公式(3)给出.这三个结论是有联系的,因此证明的步骤是:
1. 把),,,(
2
1d
d d d d d n 代入方程组,验证它确是解. 2. 假如方程组有解,证明它的解必由公式(3)给出. 定理4通常称为克拉默法则. 例1 解方程组
⎪⎪⎩⎪⎪⎨
⎧=+-+-=+-=--=+-+.
0674,522,963,85243
2143
24214321x x x x x x x x x x x x x x
应该注意,定理4所讨论的只是系数矩阵的行列式不为零的方程组,它只能应用于这种方程组;至于方程组的系数行列式为零的情形,将在下一章的一般情形中一并讨论.
常数项全为零的线性方程组称为齐次线性方程组.显然齐次方程组总是有解的,因为)0,,0,0( 就是一个解,它称为零解.对于齐次线性方程组,我们关心的问题常常是,它除了零解以外,还有没有其它解,或者说,它有没有非零解.对于方程个数与未知量个数相同的齐次线性方程组,应用克拉默法则就有
定理5 如果齐次线性方程组
⎪⎪⎩⎪⎪⎨
⎧=+++=+++=+++0
,0,0221122221211212111n nn n n n
n n n x a x a x a x a x a x a x a x a x a (10) 的系数矩阵的行列式0||≠A ,那么它只有零解.换句话说,如果方程组(10)有非零解,那么必有0||=A .
例2 求λ在什么条件下,方程组
⎩⎨
⎧=+=+0
,
02121x x x x λλ 有非零解.
克拉默法则的意义主要在于它给出了解与系数的明显关系,这一点在以后许多问题的讨论中是重要的.但是用克拉默法则进行计算是不方便的,因为按这一法则解一个n 个未知量n 个方程的线性方程组就要计算1+n 个n 级行列式,这个计算量是很大的.。