第二章 矩阵答案详解
- 格式:pdf
- 大小:196.67 KB
- 文档页数:13
第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y 求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A T B解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x (a 11x 1?a 12x 2?a 13x 3 a 12x 1?a 22x 2?a 23x 3 a 13x 1?a 23x 2?a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫⎝⎛=3121A ⎪⎭⎫ ⎝⎛=2101B 问(1)ABBA 吗 解 ABBA 因为⎪⎭⎫⎝⎛=6443AB ⎪⎭⎫ ⎝⎛=8321BA 所以ABBA(2)(AB )2?A 22ABB 2吗 解 (AB )2?A 22ABB 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610所以(AB )2?A 22ABB 2 (3)(AB )(AB )A 2B 2吗 解 (AB )(AB )A 2B 2 因为⎪⎭⎫ ⎝⎛=+5222B A ⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(AB )(AB )A 2B 26 举反列说明下列命题是错误的(也可参考书上的答案) (1)若A 20 则A 0 解 取⎪⎭⎫⎝⎛=0010A 则A 20 但A 0 (2)若A 2?A 则A 0或AE 解 取⎪⎭⎫⎝⎛=0011A 则A 2?A 但A 0且AE (3)若AXAY 且A 0 则XY 解 取⎪⎭⎫ ⎝⎛=0001A ⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AXAY 且A 0 但XY7 设⎪⎭⎫ ⎝⎛=101λA 求A 2? A 3 A k 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8 设⎪⎪⎭⎫⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫用数学归纳法证明当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121 (也可提取公因式,变成书上的答案)9 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵 证明 因为A T A 所以 (B T AB )T B T (B T A )T B T A T BB T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是ABBA 证明 充分性 因为A T A B T B 且ABBA 所以 (AB )T (BA )T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB )T AB 所以 AB (AB )T B T A T BA11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A |1 故A 1存在 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A |10 故A 1存在 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A |20 故A 1存在 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a O 0021(a 1a 2 a n 0)解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A O 0021由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211O12 解下列矩阵方程 (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x 从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有⎪⎩⎪⎨⎧===305321x x x14 设A k O (k 为正整数) 证明(EA )1EAA 2 A k 1 证明 因为A k O 所以EA k E 又因为 E ?A k (EA )(EAA 2 A k 1) 所以 (EA )(EAA 2 A k 1)E 由定理2推论知(EA )可逆 且 (EA )1EAA 2 A k 1证明 一方面 有E (EA )1(EA ) 另一方面 由A k O 有 E (EA )(AA 2)A 2 A k 1(A k 1A k ) (EAA 2? A k 1)(EA ) 故 (EA )1(EA )(EAA 2 A k 1)(EA ) 两端同时右乘(EA )1 就有(EA )1(EA )EAA 2 A k 115 设方阵A 满足A 2?A 2EO 证明A 及A 2E 都可逆 并求A 1及(A 2E )1 证明 由A 2?A 2EO 得 A 2?A 2E 即A (AE )2E或E E A A =-⋅)(21 由定理2推论知A 可逆 且)(211E A A -=- 由A 2?A 2EO 得A 2?A 6E 4E 即(A 2E )(A 3E )4E 或E A E E A =-⋅+)3(41)2(由定理2推论知(A 2E )可逆 且)3(41)2(1A E E A -=+-证明 由A 2?A 2EO 得A 2?A 2E 两端同时取行列式得 |A 2?A |2 即 |A ||AE |2 故 |A |0所以A 可逆 而A 2EA 2 |A 2E ||A 2||A |20 故A 2E 也可逆 由 A 2?A 2EO A (AE )2E A 1A (AE )2A 1E )(211E A A-=- 又由 A 2?A 2EO (A 2E )A 3(A 2E )4E (A 2E )(A 3E )4 E 所以 (A 2E )1(A 2E )(A 3E )4(A 2 E )1)3(41)2(1A E E A -=+-16 设A 为3阶矩阵 21||=A 求|(2A )15A *|解 因为*||11A A A =- 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A |1821617 设矩阵A 可逆 证明其伴随阵A *也可逆 且(A *)1(A 1)* 证明 由*||11A A A =- 得A *|A |A 1 所以当A 可逆时 有 |A *||A |n |A 1||A |n 10 从而A *也可逆因为A *|A |A 1 所以 (A *)1|A |1A 又*)(||)*(||1111---==A A A A A 所以 (A *)1|A |1A |A |1|A |(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A * 证明 (1)若|A |0 则|A *|0 (2)|A *||A |n 1 证明(1)用反证法证明 假设|A *|0 则有A *(A *)1E 由此得 AA A *(A *)1|A |E (A *)1O所以A *O 这与|A *|0矛盾,故当|A |0时 有|A *|0 (2)由于*||11A A A =- 则AA *|A |E 取行列式得到 |A ||A *||A |n 若|A |0 则|A *||A |n 1若|A |0 由(1)知|A *|0 此时命题也成立 因此|A *||A |n 119 设⎪⎪⎭⎫⎝⎛-=321011330A ABA 2B 求B解 由ABA 2E 可得(A 2E )BA 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且ABEA 2B 求B解 由ABEA 2B 得 (AE )BA 2E 即 (AE )B (AE )(AE )因为01001010100||≠-==-E A 所以(AE )可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A *BA 2BA 8E 求B 解 由A *BA 2BA 8E 得 (A *2E )BA 8E B 8(A *2E )1A 1 8[A (A *2E )]1 8(AA *2A )1 8(|A |E 2A )1 8(2E 2A )1 4(EA )14[diag(2 1 2)]1)21 ,1 ,21(diag 4-= 2diag(12 1)22 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A 且ABA 1BA 13E 求B解 由|A *||A |38 得|A |2 由ABA 1BA 13E 得 ABB 3AB 3(AE )1A 3[A (EA 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫⎝⎛--=1141P ⎪⎭⎫ ⎝⎛-=Λ2001 求A 11解 由P 1AP 得APP 1 所以A 11? A =P 11P 1. |P |3⎪⎭⎫ ⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设APP 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A )A 8(5E 6AA 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)] diag(1158)diag(1200)12diag(100) (A )P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及AB 都可逆 证明A 1B 1也可逆 并求其逆阵 证明 因为A 1(AB )B 1B 1?A 1?A 1B 1而A 1(AB )B 1是三个可逆矩阵的乘积 所以A 1(AB )B 1可逆 即A 1B 1可逆 (A 1B 1)1[A 1(AB )B 1]1B (AB )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121 解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27 取⎪⎭⎫⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠ 解4100120021010*********0021010010110100101==--=--=D C B A 而01111|||||||| ==D C B A 故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4 解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143 由此得⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321 由此得⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D 所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001。
第二章 矩阵及其运算1已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2z 3到x 1 x 2x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x (a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫⎝⎛321x x x 322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B )2A 22AB B 2吗 解 (A B )2A 22AB B 2因为⎪⎭⎫⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B )2A 22AB B 2(3)(A B )(AB )A 2B 2吗解 (A B )(A B )A 2B 2因为⎪⎭⎫⎝⎛=+5222B A ⎪⎭⎫⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A 故(A B )(A B )A 2B 26 举反列说明下列命题是错误的(也可参考书上的答案) (1)若A20 则A 0解 取⎪⎭⎫ ⎝⎛=0010A 则A20 但A 0(2)若A2A 则A 0或A E解 取⎪⎭⎫⎝⎛=0011A 则A2A 但A 0且A E(3)若AX AY 且A 0 则X Y解 取⎪⎭⎫⎝⎛=0001A ⎪⎭⎫ ⎝⎛-=1111X⎪⎭⎫⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求Ak解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA kk kk k k k k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121 (也可提取公因式,变成书上的答案)9 设A B 为n 阶矩阵,且A 为对称矩阵,证明B TAB 也是对称矩阵证明 因为A TA 所以(B TAB )TB T (B T A )T B T A T B B T AB从而B TAB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA证明 充分性 因为A TA B T B 且AB BA 所以(AB )T(BA )TA TB T AB即AB 是对称矩阵 必要性 因为ATA B T B 且(AB )T AB 所以AB (AB )TB T A T BA11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解 ⎪⎭⎫⎝⎛=5221A |A |1 故A 1存在 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225(2)⎪⎭⎫⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A |10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A |20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A AA A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A kO (k 为正整数) 证明(E A )1E A A 2A k1证明 因为AkO 所以E A k E 又因为E Ak(E A )(E A A 2A k 1)所以 (E A )(E A A 2 A k 1)E 由定理2推论知(E A )可逆且(E A )1E A A 2A k1证明 一方面 有E (E A )1(EA )另一方面 由A kO 有E (E A )(A A 2)A 2A k1(Ak 1A k )(EA A 2A k 1)(E A )故 (E A )1(E A )(E A A 2A k 1)(E A ) 两端同时右乘(E A )1就有(E A )1(E A )E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E )1证明 由A 2A 2E O 得A2A 2E 即A (A E )2E或 E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A2A 2E O 得 A2A 6E4E 即(A2E )(A 3E )4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E )可逆且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A2A |2即 |A ||A E |2 故 |A |0所以A 可逆 而A 2E A 2|A 2E ||A 2||A |20 故A 2E 也可逆由 A2A 2E O A (A E )2EA 1A (A E )2A 1E )(211E A A -=-又由 A2A 2E O (A 2E )A 3(A 2E )4E(A 2E )(A 3E )4 E所以 (A 2E )1(A 2E )(A3E )4(A 2 E )1)3(41)2(1A E E A -=+-16 设A 为3阶矩阵 21||=A 求|(2A )15A *|解 因为*||11A A A =- 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A |1821617 设矩阵A 可逆 证明其伴随阵A *也可逆 且(A *)1(A 1)*证明 由*||11A A A =- 得A *|A |A1所以当A 可逆时 有|A *||A |n|A 1||A |n 1从而A *也可逆 因为A *|A |A1所以(A *)1|A |1A又*)(||)*(||1111---==A A A A A 所以(A *)1|A |1A |A |1|A |(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A * 证明 (1)若|A |0 则|A *|(2)|A *||A |n 1证明(1)用反证法证明 假设|A *|0 则有A *(A *)1E 由此得A A A *(A *)1|A |E (A *)1O所以A *O 这与|A *|0矛盾,故当|A |0时 有|A *|0 (2)由于*||11A A A =- 则AA *|A |E取行列式得到|A ||A *||A |n若|A |0 则|A *||A |n 1若|A |0 由(1)知|A *|0 此时命题也成立因此|A *||A |n 119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E )B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB EA 2B 求B解 由AB E A 2B 得 (A E )B A 2E即 (A E )B(AE )(A E )因为01001010100||≠-==-E A 所以(A E )可逆从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A *BA 2BA 8E 求B解 由A *BA 2BA 8E 得(A *2E )BA 8EB 8(A *2E )1A 18[A (A *2E )]18(AA *2A )1 8(|A |E 2A )18(2E2A )14(E A )14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B解 由|A *||A |38 得|A |2由ABA1BA13E 得AB B 3AB 3(A E )1A 3[A (E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A11解 由P 1AP 得A PP 1所以A 11A =P 11P 1.|P |3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫⎝⎛-=Λ511求(A )A 8(5E 6A A 2)解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100)(A )P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B )B1B1A1A1B1而A 1(A B )B 1是三个可逆矩阵的乘积 所以A 1(A B )B 1可逆 即A1B 1可逆(A 1B 1)1[A 1(A B )B 1]1B (A B )1A26 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A OE A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27 取⎪⎭⎫⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠ 解4100120021010*********0021010010110100101==--=--=D C B A 而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求(1)1-⎪⎭⎫ ⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O 则⎪⎭⎫⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====sn E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001。
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10). (3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA . (2)(A +B )2=A 2+2AB +B 2吗?解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2.(3)(A +B )(A -B )=A 2-B 2吗?解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案)(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a O 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A O 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211O .12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A-=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2.由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案) 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
线性代数(同济大学第六版)课后答案第二章 矩阵及其运算1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.2. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故 (A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .6(1). 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 6(2). 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎪⎭⎫⎝⎛=⋅=4342343404064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅, ⎝⎛=kA kk kk k kk k k k λλλλλλ021121----)(⎪⎪⎪⎭⎫ . 用数学归纳法证明略. 7(1). 设⎪⎪⎭⎫⎝⎛-=3113A ,求50A 和51A . 解:⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛-=100010311331132A⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛-=311310311323A A⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-=100110100010103113234A A 归纳得:为奇数)(n A n n ⎪⎪⎭⎫ ⎝⎛-=-31131021,为偶数)(n E A nn 210= 因此, ,E A 255010= .⎪⎪⎭⎫⎝⎛-=3113102551A 用数学归纳法证明略. 7(2).设.,,,100421312A ab A b a T 求=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=解:T T T T T T b a b a ab ab ab ab A 99100100)(...)(===.)(⎪⎪⎪⎭⎫⎝⎛---=-=1263421842889999T ab8(1). 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵. 8(2). 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵. 必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA . 9. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 10. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知: ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .11. 设J 是元素全为1的n 阶方阵. 证明E-J 是可逆矩阵,且J n E J E 111--=--)(,这里E 是与J 同阶的单位矩阵.解:因为0≠-)(J E , 所以)(J E -可逆. 由于22111111J n J J n E J n E J E -+---=---))(( 又nJ J =2因此 上式=.E nJ n J J n E =-+---1111 12. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.13. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)()(A E E A -=+-34121.14. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ;解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.15. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有⎪⎩⎪⎨⎧===001321x x x . (2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有⎪⎩⎪⎨⎧===305321x x x . 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.18. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .19. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1). 20. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由AA *=|A |E 可得:|A |.|A *|=|A |4.即:|A *|=|A |3=8, 得|A |=2.由ABA -1=BA -1+3E 得 AB =B +3A , B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.21. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 22. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.23. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A .又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 24. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 25. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 26. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 27. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413BC OC O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 28. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.。
第二部分 矩阵及其运算作业(一)选择题(15分)1.设A ,B 均为n 阶矩阵,且22()()A B A B A B +-=-,则必有( ) (A) A B = (B) A E = (C) AB BA = (D) B E =2.设A ,B 均为n 阶矩阵,且AB O =,则A 和B ( )(A)至多一个等于零 (B)都不等于零(C) 只有一个等于零 (D) 都等于零3.设A ,B 均为n 阶对称矩阵,AB 仍为对称矩阵的充分必要条件是() (A) A 可逆 (B)B 可逆 (C) 0AB ≠ (D) AB BA=4.设A 为n 阶矩阵,A *是A 的伴随矩阵,则A *=( ) (A) 1n A - (B) 2n A - (C) n A (D) A5.设A ,B 均为n 阶可逆矩阵,则下列公式成立的是( )(A) ()T T T AB A B = (B) ()T T T A B A B +=+(C) 111()AB A B ---= (D) 111()A B A B ---+=+(二)填空题(15分)1.设A ,B 均为3阶矩阵,且1,32A B ==,则2T B A = 。
2.设矩阵1123A -⎛⎫= ⎪⎝⎭,232B A A E =-+,则1B -= 。
3.设A 为4阶矩阵,A *是A 的伴随矩阵,若2A =-,则A *= 。
4.设A ,B 均为n 阶矩阵,2,3A B ==-,则12A B *-= 。
5.设101020101A ⎛⎫⎪= ⎪ ⎪⎝⎭,2n ≥为整数,则12n n A A --= 。
(三)计算题(50分)1. 设010111101A ⎛⎫ ⎪=- ⎪ ⎪--⎝⎭,112053B -⎛⎫⎪= ⎪ ⎪⎝⎭,且X AX B =+,求矩阵X 。
2.设101110012A 骣÷ç÷ç÷ç÷=-ç÷ç÷ç÷÷ç桫,301110014B 骣÷ç÷ç÷ç÷=ç÷ç÷ç÷÷ç桫,X 为未知矩阵,且满足:AX B =, 求逆矩阵1A -;并解矩阵方程AX B =。
线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第一节 矩阵及其运算一.选择题1.有矩阵23⨯A ,32⨯B ,33⨯C ,下列运算正确的是 [ B ] (A )AC (B )ABC (C )AB -BC (D )AC +BC 2.设)21,0,0,21(=C ,C C E A T -=,C C E B T 2+=,则=AB [ B ] (A )C C E T+ (B )E (C )E - (D )03.设A 为任意n 阶矩阵,下列为反对称矩阵的是 [ B ] (A )TA A + (B )TA A - (C )TAA (D )A A T二、填空题: 1.⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫⎝⎛-1212561432102824461 2.设⎪⎪⎪⎭⎫ ⎝⎛=432112122121A ,⎪⎪⎪⎭⎫ ⎝⎛----=101012121234B ,则=+B A 32⎪⎪⎪⎭⎫⎝⎛--561252527813143.=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫⎝⎛496354.=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎪⎭⎫ ⎝⎛---6520876三、计算题:设⎪⎪⎪⎭⎫ ⎝⎛--=111111111A ,4⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求A AB 23-及B A T线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第二节 逆 矩 阵一.选择题1.设*A 是n 阶矩阵A 的伴随矩阵,则 [ B ] (A )1-*=A A A (B )1-*=n AA (C )**=A A nλλ)( (D )0)(=**A2.设A ,B 都是n 阶可逆矩阵,则 [ C ] (A )A +B 是n 阶可逆矩阵 (B )A +B 是n 阶不可逆矩阵 (C )AB 是n 阶可逆矩阵 (D )|A +B | = |A |+|B |3.设A 是n 阶方阵,λ为实数,下列各式成立的是 [ C ] (A )A A λλ= (B )A A λλ= (C )A A n λλ= (D )A A n λλ=4.设A ,B ,C 是n 阶矩阵,且ABC = E ,则必有 [ B ] (A )CBA = E (B )BCA = E (C )BAC = E (D )ACB = E 5.设n 阶矩阵A ,B ,C ,满足ABAC = E ,则 [ A ] (A )E C A B A TTTT= (B )E C A B A =2222 (C )E C BA =2 (D )E B CA =2二、填空题:1.已知A B AB =-,其中⎪⎪⎭⎫⎝⎛-=1221B ,则⎪⎪⎪⎪⎭⎫⎝⎛-=121211A 2.设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫⎝⎛12643152X ,则X = ⎪⎪⎭⎫⎝⎛-40132 3.设A ,B 均是n 阶矩阵,2=A ,3-=B ,则6421nBA -=-*4.设矩阵A 满足042=-+E A A ,则)2(21)(1E A E A +=--三、计算与证明题:1. 设方阵A 满足022=--E A A ,证明A 及E A 2+都可逆,并求1-A 和12-+)(E A2. 设⎪⎪⎪⎭⎫ ⎝⎛---=145243121A ,求A 的逆矩阵1-A 解:设3)(ij a A =,则从而⎪⎪⎪⎭⎫ ⎝⎛-----=214321613024*A .又由则⎪⎪⎪⎭⎫ ⎝⎛-----==-1716213213012*1A A A3. 设⎪⎪⎪⎭⎫ ⎝⎛-=321011330A 且满足B A AB 2+=,求 B 则⎪⎪⎪⎭⎫ ⎝⎛-=-=-011321330)2(1A E A B线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号第三节(一) 矩阵的初等变换一、把下列矩阵化为行最简形矩阵: 二、把下列矩阵化为标准形:三、用矩阵的初等变换,求矩阵的逆矩阵四、已知111101022110110014X -⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,求X故15326111262013X ⎡⎤⎢⎥⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎣⎦线性代数练习题 第二章 矩 阵系 专业 班 姓名 学号 第三节(二) 矩 阵 的 秩一.选择题1.设A ,B 都是n 阶非零矩阵,且AB = 0,则A 和B 的秩 [ D ] (A )必有一个等于零 (B )都等于n (C )一个小于n ,一个等于n (D )都不等于n 2.设n m ⨯矩阵A 的秩为s ,则 [ C ] (A )A 的所有s -1阶子式不为零 (B )A 的所有s 阶子式不为零 (C )A 的所有s +1阶子式为零 (D )对A 施行初等行变换变成⎪⎪⎭⎫⎝⎛000sE 3.欲使矩阵⎪⎪⎪⎭⎫⎝⎛12554621231211t s 的秩为2,则s ,t 满足 [ C ](A )s = 3或t = 4 (B )s = 2或t = 4 (C )s = 3且t = 4 (D )s = 2且t = 4 4.设A 是n m ⨯矩阵,B 是m n ⨯矩阵,则 [ B ] (A )当n m >时,必有行列式0≠||AB (B )当n m >时,必有行列式0=||AB (C )当m n >时,必有行列式0≠||AB (D )当m n >时,必有行列式0=||AB5.设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B ,⎪⎪⎪⎭⎫⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有=B [ C ](A )21P AP (B )12P AP (C )A P P 21 (D )A P P 12二.填空题:1.设⎪⎪⎪⎭⎫ ⎝⎛---=443112112013A ,则=)(A R 22.已知⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-+=12221232121a a a A 的秩为2,则a 应满足 a =-1或3 三、计算题:1. 设⎪⎪⎪⎪⎪⎭⎫⎝⎛---=02301085235703273812A ,求)(A R 。
线性代数练习题第二章矩阵系专业班姓名学号第一节矩阵及其运算一.选择题1.有矩阵A3 2,B23, C 3 3,下列运算正确的是[B]( A) AC( B) ABC( C) AB- BC( D) AC+BC2.设C (1, 0 ,0 ,1),A E C T C , B E 2C T C ,则AB[ B ] 22( A)E C T C( B)E(C)E( D)03.设 A 为任意 n 阶矩阵,下列为反对称矩阵的是[ B]( A)A A T(B)A A T( C)AA T( D)A T A二、填空题:1642011651.282342112412124321141387 2.设A 2 1 2 1, B 2 1 2 1,则 2A 3B2525 123401012165 4317353.1232657014913121400126784.13413120561402三、计算题:111设 A111,4111123B124,求 3AB2A 及 A T B0511111231113AB 2 A 3 111124 2 1111110511110582223 0562222902222132221720 ;4292111123058由 A对称,A T A,则 A TB AB11112405 6 .111051290线性代数练习题第二章矩阵系专业班姓名学号第二节逆矩阵一.选择题1.设A是 n 阶矩阵A的伴随矩阵,则[B]( A)AA A 1( B)An 1( C)( A)n A( D)( A )0 A2.设 A,B 都是 n 阶可逆矩阵,则[C]( A) A+B 是 n 阶可逆矩阵( B)A+B 是 n 阶不可逆矩阵( C)AB 是 n 阶可逆矩阵( D)| A+B| = | A|+| B|3.设 A 是 n 阶方阵,λ为实数,下列各式成立的是( A)A A(B)A A(C)A n A(D)A [ C] n A4.设 A, B, C 是 n 阶矩阵,且ABC = E ,则必有[ B]( A) CBA = E(B)BCA = E(C)BAC = E(D)ACB = E5.设 n 阶矩阵 A,B, C,满足 ABAC = E,则[ A]( A ) A T B T A T C T E (B ) A 2 B 2 A 2 C 2E(C ) BA 2CE ( D ) CA 2 B E二、填空题:1121A ,其中 B21.已知 ABB,则 A2 11122.设2 54 6,则 X =2 13 1 X21 0433.设 A , B 均是 n 阶矩阵, A2 , B3 ,则 2 A B14n64.设矩阵 A 满足 A 2A4E0 ,则 ( A E) 11 ( A 2E)2三、计算与证明题:1. 设方阵 A 满足 A 2A 2E 0 ,证明 A 及 A2E 都可逆,并求 A 1和 ( A 2E ) 1A 2A 2 E 0A( A E ) 2 E A(A2 E ) EA 可逆,且 A 1AE ;2A 2 A 2E 0A( A 2E) 3A 2E 0A( A 2E) 3( A 2E) 4E 0( A 3E )( A 2E) 4E ( A3E)( A 2E)E4A可逆,且 (A 2E)1A 3E41 2 12. 设 A3 4 2 ,求 A 的逆矩阵 A 1541解:设 A(a ij )3 ,则A 114 2 4,A 12( 1)1232 13, A 13( 1)133432,4 15154A21( 1)1221 2, A 22 ( 1)2211 6, A 23 ( 1)2312 14,41 5154A 31( 1) 13210, A 32 ( 1) 3211 1, A 33( 1) 3312 2,4232344 2 0 从而 A *1361 .32 142又由1 212c 11 00 2 1A3 4c 23 212254 1 c 3c1514 614 6A * 21 0则 A 113 31A27216 10 3 33. 设 A1 1 0 且满足 ABA2B ,求 B12 3AB A2B( A 2E) B A2 3 3 0 3 3 11 0 B 1 1 012 11 232 3 3 0 3 311 0 1 1 0 1 1 0 1 1 0 r 1r 22 3 3 03 3 12 11 2 31 2 1 1 2 31 1 0 1 1 0 1 1 01 1 0 r 22r 10 1 3 2 5 3 r 3 r 2 0 13 25 3 r 3 r 11 13 32 2 211 0 11 0110 1 10 r 3 ( 1) 0 1 3 2 5 3 r 23r 3 0 1 01 2 32 0 0 1 1 1 00 011 11 0 0 0 3 3 r 1 r2 0 1 01 2 30 0 111 00 3 3 则 B ( A 2E) 1 A1 2 31 1线性代数练习题第二章矩 阵系专业 班姓名学号第三节(一)矩阵的初等变换一、把下列矩阵化为行最简形矩阵:1 1 3 4 3 r2 3r 1 1 134 3r 2 4 1 1 3 4 3 3 3 5 4 1 0 0 4 8 8 0 0 1 2 222 3 2 0 r 3 2r 1 00 366 r 33 0 0 1 2 233 4 2 1r43r 1 0 0 5 10 10r45 012 211 34 3 11 023 r 3 r 2 0 0 1 2 2 00 1 2 2 r 4r 2 00 0 0 0 r 1 3r20 0 0 0二、把下列矩阵化为标准形:2 3 1 3 7 1 2 0 2 4 r 2 2r 1 1 2 0 2 4 1 2 0 2 4 23 1 3 7 0 1 1 1 132 83 0 r 1 r232 83 0 r 33r18 8 9 12 13 74 313 74 3 r 4 r 1 05 767122 4 122 4 r3 8r 2 0 1 1 1 1 01 1 1 1 r 45r 2 00 0 1 4 r 3 r40 2 1 20 212 00 0 14r 3 r 4 1 20 0 4120 040 1 1 0 31r 3 01 0 0 2r 2 r 4 r 20 0 2 0 20 0 2 0 2 r 1 2r 420 00 140 141 0 0 0 0 r 21 0 0 0 0 1 0 0 0 0 01 0 0 20 1 0 0 2 0 1 0 0 0r 12r20 2 0 2 1r 3 0 0 1 0 1c52c 2c34c40 1 0 00 00 14 20 0 0 140 0 0 1 0三、用矩阵的初等变换,求矩阵的逆矩阵3 2 0 1 0 2 2 1A2 3 211 213 2 0 1 1 0 0 0 1 2 3 2 0 0 1 0 0 2 2 1 0 1 0 0 0 2 2 1 0 1 0 01 2 3 2 0 0 1 r 1 r 32 0 1 1 0 0 0 03 012 1 0 0 0 1 012 1 0 0 0 11 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 02 2 1 0 1 0 0 01 2 1 0 0 0 1 r 33r14 95 1 0 3 0 r 2 r44 95 1 0 3 0 01210 00 12210 10 01 2 3 2 0 0 1 0 1 2 3 2 0 0 1 0 r 3 4r 2 0 12 1 0 0 0 1 012 1 0 0 0 1 r 42r 2 0 01 1 1 0 3 4 r 42r30 01 1 1 0 3 40 0210 10 2 0 00 12 1 6 10123 0 42 11 20120 0 1 1 2 2 r 12r4012 0 2 16 11 r 1 3r 3 0 1 00 01 0 1 r2 r 4 0 0 1 0 1 1 36 r 2 2r 3 0 0 1 0 1 1 36 r 3 r 40 00 1 2 1 6100 12 16101 0 0 0 1 1 24 r 1 2r 2 0 10 0 0 1 0 1 0 01 0 1 1 360 00 12 1 6101 12 4 A10 1 0 1 1 1 3 62 1 6 101 1 1 1 0 1 四、已知0 2 2 X 1 1 0 ,求 X110 1 41 1 1 1 0 11 1 1 10 11 1 1 1 0 1 0 22 1 1 0 r3 r 1 0 2 2 11 0 r 3r 2 0 2 2 1 1 0uuuuuruuuuur11 01 40 2 1 1 1 30 03 0 231 1 0 12 21 111 0 13r 22r3 0 20 1r 310 2 2 1 1 0 123r r30 012 1 uuuuuuur20 1 0 1331 1 01221 01 5 33 26r 210 1 0111 r 1 r2 0 1 0 111226uuuuur26uuuuur220 0 1 010 0 1 013 31 5 32 6故 X1 1 12 62 13线性代数练习题第二章矩 阵系专业班姓名学号第三节(二)矩 阵 的 秩一.选择题1.设 A , B 都是 n 阶非零矩阵,且 AB = 0,则 A 和 B 的秩[ D]( A )必有一个等于零 ( B )都等于 n(C )一个小于 n ,一个等于 n( D )都不等于 n2.设 mn 矩阵 A 的秩为 s ,则[ C]( A ) A 的所有 s( B )A 的所有 s阶子式不为零- 1 阶子式不为零( C )A 的所有 s +1 阶子式为零(D )对 A 施行初等行变换变成E s0 0112133.欲使矩阵2s126的秩为2,则s,t满足[ C ] 455t12( A)s = 3 或t = 4(B)s= 2 或t = 4( C)s = 3 且t = 4(D)s = 2 且t = 44.设A是m n 矩阵,B是 n m 矩阵,则( A)当m n 时,必有行列式| AB |0( B)当( C)当n m 时,必有行列式| AB |0( D)当[ B ] m n 时,必有行列式| AB |0n m 时,必有行列式| AB |0a11a12a13a21a22a230105.设Aa21a22a23, Ba11a12a13, P1100,a31a32a33a31a11a32a12a33a13001100P2010,则必有 B[ C ] 101( A)AP1P2(B)AP2P1( C)P1P2A( D)P2P1A二.填空题:31021.设A1 1 2 1 ,则 R( A)213441212.已知A 23a2应满足a=-1 或 3 1a的秩为 2,则 a22a21三、计算题:218371.设A230753258,求 R( A) 。
第二章 矩 阵教学基本要求: 1. 理解矩阵的概念.2. 了解基本矩阵(单位矩阵、数量矩阵、对角矩阵、上(下)三角矩阵、对称矩阵等)及其基本性质.3. 掌握矩阵的各种运算(加法、数乘、乘法和转置运算)及其运算规律.4. 理解逆矩阵的概念,掌握可逆矩阵的性质,掌握矩阵可逆的充要条件.5. 了解分块矩阵的概念.6. 了解矩阵的初等变换概念,了解初等矩阵,掌握用初等变换求逆矩阵的方法.7. 了解矩阵等价的概念.8. 理解矩阵秩的概念,掌握求秩的方法.线性代数是“矩阵”的代数,矩阵有着广泛的应用.一、矩阵的概念及其运算 1. 矩阵的概念长方形数表:111212122212n n m m mn a a a a a a a a a ⎛⎫ ⎪⎪⎪ ⎪⎝⎭称为m n ⨯矩阵,常记作()ij A a =或()⨯=ij m n A a 或m n A ⨯等.行数相同、列数也相同的矩阵称为同型矩阵. 元素全是实数的矩阵称为实矩阵.以下只讨论实矩阵. 2. 基本矩阵行矩阵——只有一行的矩阵,即()12n a a a .列矩阵——只有一列的矩阵,即12m a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭.零矩阵——元素皆为零的矩阵,即000000000⎛⎫ ⎪⎪ ⎪ ⎪ ⎪⎝⎭. 负矩阵——111212122212n n m m mn a a a a a a A a a a ∆---⎛⎫⎪---⎪=- ⎪ ⎪ ⎪---⎝⎭. n 阶矩阵(n 阶方阵)——行数与列数相等的矩阵,简记作n ij a A )(=或n A .0()0()0()() 1()(=∀>=∀<=∀≠⊃=∀⊃⊃=∀=∀ij ij ij ii ii ij ji a i j a i j a i j a a i a i a a 上三角矩阵下三角矩阵对角矩阵数量矩阵方阵单位矩阵对称矩阵,) (,)⎧⎪⎪⎪⎪⎨⎪⎪⎪=-∀⎪⎩ij ji i j a a i j 反对称矩阵3. 矩阵运算及运算规律 (1)相等 (,)ij ij A Ba b i j =⇔=∀(2)加法(减法) 设p n ij n m ij b B a A ⨯⨯==)(,)(,则=+B A ()ij ij m n a b ⨯+ (n m ij ij b a B A B A ⨯-=-+=-)()().运算规律:A B B A +=+; (交换律);()()A B C A B C ++=++; (结合律).)(O A A A O A =-+=+;(零矩阵的加法作用)(3)数乘 设n m ij a A ⨯=)(,则=kA n m ij ka ⨯)(. 运算规律:1A A =;()()()().kl A k lA k l A kA lA k A B kA kB =+=++=+;;(分配律)(4)乘法 设(),()ij m n ij n p A a B b ⨯⨯==,则()ij m p C AB c ⨯==,其中1pij ik kjk c a b==∑.运算规律:()()AB C A BC =(结合律)()()()k AB kA B A kB ==(结合律) ()A B C AB AC +=+(左分配律)()A B C AC BC +=+(右分配律)m n n m m n m n A E E A A ⨯⨯⨯==(单位矩阵的乘法作用) m n n p m p p m m n p nA O O O A O ⨯⨯⨯⨯⨯⨯== (零矩阵的乘法作用).)(,,)(,,1k k k kl l k l k l k k k B A AB BA AB A A A A A A A A =====+-则若 其中k 与l 皆为正整数. (方阵的幂)注意:乘法没有交换律、幂零律和消去律. 例如,01121034A B AB BA ⎛⎫⎛⎫==⇒≠⎪ ⎪⎝⎭⎝⎭,; 21111A A O ⎛⎫=⇒= ⎪--⎝⎭;,⎪⎪⎭⎫ ⎝⎛--=1111A ,⎪⎪⎭⎫ ⎝⎛=1102B 1120C AB AC ⎛⎫=⇒= ⎪⎝⎭.(5)转置 n m ij a A ⨯=)(,112111222212n n Tmmnm n ma a a a a a A a a a ⨯⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭.A 为对称矩阵,即A =A T ;A 为反对称矩阵,即A =-A T .运算性质:A A TT =)(, TTTB A B A +=+)(,T T kA kA =)(, T T T A B AB =)(.4. 矩阵应用设111111212122222212,,,n n m m mn m n m y x b a a a a a a y x b A Y X B a a a y x b ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎪==== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.(1)矩阵表示线性映射⎪⎪⎩⎪⎪⎨⎧+++=+++=+++=.,,22112222121212121111n mn m m m nn n n x a x a x a y x a x a x a y x a x a x a y⇔=Y AX . (2)矩阵表示线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++.,,22112222212*********m n mn m m n n n n b x a x a x a b x a x a x a b x a x a x a⇔=AX B . 二、逆矩阵(P 36)逆矩阵在矩阵理论和应用中起着重要作用. 1. 方阵的行列式(P 36)设()ij n A a =,则行列式ij na 称为A 的行列式,记作det A 或A .运算性质:设A ,B 均为n 阶方阵,则det det =T A A ,det()det =⋅n kA k A ,det()det()det()det()==⋅AB BA A B .(证明见第一章例1.7)例2.1(1)设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=43210110B A ,,计算,4,,+,,,+nA AA AB A B A BB A. (2)设A 为3阶矩阵,且2A =-,求2TA A A .(3)设四阶矩阵234234(),()A B αγγγβγγγ==,且|A |=2, |B | =3,求|A +B |.例2.2 设矩阵210320004⎛⎫ ⎪= ⎪ ⎪⎝⎭A ,矩阵B 满足23=+AB B E ,求det B .2. 伴随矩阵(P 37)由方阵()=ij n A a 的行列式的每一个元素的代数余子式(1,2,,,1,2,,)ij A i n j n ==构成的矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛nn n nn n A A A A A A A A A 212221212111称为A 的伴随矩阵,记作*A .事实上,Tnn n n n n A A A A A A A A A A ⎪⎪⎪⎪⎪⎭⎫⎝⎛= 212222111211*.运算性质:**AA A A A E ==, 1*n A A-=, *1*()n kA k A -=,2**()n A AA -=, **()()T T A A =, ***()AB B A =.例2.3 (1)设1234⎛⎫= ⎪⎝⎭A ,求*A .(2)设120311041-⎛⎫ ⎪=- ⎪ ⎪⎝⎭B ,求*B .解总结:*a b c d ⎛⎫=⎪⎝⎭.3. 逆矩阵设A 为n 阶方阵,若存在矩阵B 使AB =BA =E ,则称矩阵A 是可逆矩阵(或可逆的),称B 为A 的逆矩阵,记为1-=A B (读作A 的逆);否则,称A 是不可逆矩阵(或不可逆的).可逆矩阵又叫非奇异矩阵,不可逆矩阵又叫奇异矩阵.性质:(1)逆矩阵是惟一的.(2)矩阵A 可逆的充分必要条件是det A ≠0.且当det A ≠0时,A -1=(1/det A ) A *. 推论 设A 是方阵,若存在矩阵B 使AB =E (或BA =E ),则A 可逆,且A -1=B .(3)若,A B 可逆,数0k ≠,则1*,,,,-T A A kA A AB 皆可逆,且11()--=A A ,111()--=kA A k,11()()--=T T A A , *11*1()()det A A A A--==,111()---=AB B A .规定:若A 可逆,则A 0 =E ,A -k =( A -1) k =(A k ) -1,k 为整数.4. 矩阵可逆的判定(1)矩阵A 可逆的充分必要条件是det A ≠0.(2)矩阵A 可逆的充分必要条件是存在矩阵B 使AB =E (或BA =E ).5. 逆矩阵的计算(1)伴随矩阵法 当det A ≠0时,A -1=(1/det A ) A *.(2)初等行变换法 (A | B ) → (E | A -1). (原理见下面的四) (3)定义法 令AX =E ,求出X ,即为A -1.例2.4 1-⎛⎫=⎪⎝⎭a b c d .例2.5(例2.7 P 38) 设矩阵A 满足3222+-=A A E O ,证明矩阵+A E 可逆.证 因为3222+-=A A E O ,所以322A A E E +-=,2()()A E A A E E ++-=.故+A E 可逆,且12()A E A A E -+=+-.以后还会陆续给出新的判定矩阵可逆的条件,并给出计算逆矩阵的常用方法——初等变换法.三、分块矩阵 1. 定义用横线与竖线将矩阵分成若干“小矩阵”块,称为子块或子矩阵,以子块为元素的形式上的矩阵称为分块矩阵.2. 分块矩阵的运算相等、加法、数乘、乘法、转置、逆.注意:(1)做分块矩阵相等和加法运算,要求矩阵同型且分块形式相同;(2)做分块矩阵乘法运算时,前面矩阵的列数不仅要与后面矩阵的行数相等,且前面矩阵的列块分法要与后面矩阵的行块分法相同;(3)分块矩阵的转置运算须进行“两转”. (4)用拟矩阵定义求分块矩阵的逆.3. 分块对角矩阵对角线上的子块均是方阵,而其它子块皆为零矩阵的分块矩阵称为分块对角阵.即12n A A A A ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭(其中(1,2,,)iA i n =是方阵).运算性质: (1) 12n A A A A =⋅; (2) 若0(1,2,,)i A i n ≠=,则111121n A A A A ----⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭. (3) 设1122,n n A B A B A B A B ⎛⎫⎛⎫⎪ ⎪⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭是分块完全一致的分块对角阵,则1122n n A B A B AB A B ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭.四、矩阵的初等变换 1. 矩阵的初等变换以下三种变换: (1)交换矩阵的两行;(2)矩阵的某行元素乘以同一个不为零的数;(3)矩阵的某行元素乘以同一个数后加到另一行对应元素上, 分别称为矩阵的第一、二、三种初等行变换.若把“行”换成“列”,则是矩阵的三种初等列变换.矩阵的初等行变换与初等列变换统称为矩阵的初等变换.初等变换是可逆变换.如果矩阵A 可以经过有限次的初等变换化为矩阵B ,则称A 与B 等价,记为A ~B .矩阵等价的性质: (1)反身性:A ~A ;(2)对称性:若A ~B ,则B ~A ; (3)传递性:若A ~B ,B ~C ,则A ~C .2. 行阶梯形矩阵和行最简形矩阵(P 45-46)行阶梯形矩阵和行最简形矩阵在矩阵秩的理论和线性方程组的求解理论中有着重要的作用.每一行的第一个不为零元素的下方及左下方的所有元素都是0的矩阵称为行阶梯形矩阵.第i 个元素不为零但其以下元素全为零的列称为第i 阶梯列.若第i 阶梯列的第i 个元素为1其余元素都为0,则称为第i 标准列.各阶梯中都有标准列的行阶梯形矩阵称为行最简形矩阵.例如,⎪⎪⎪⎭⎫ ⎝⎛-0000002100015302,⎪⎪⎪⎪⎪⎭⎫⎝⎛-00000000000410083521是行阶梯形矩阵.⎪⎪⎪⎭⎫ ⎝⎛000000210015002,⎪⎪⎪⎪⎪⎭⎫⎝⎛00000010000010080021 是行最简形矩阵.定理2.1(定理2.4 P 46) 任何矩阵都可以经过初等行变换化为行阶梯形矩阵和行最简形矩阵.例2.6(例2.10 P 46) 用初等行变换把矩阵360613142220-⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A变化为行阶梯形矩阵和行最简形矩阵.定理2.2(定理2.5 P 46) 任意矩阵A 都与形为rE O O O ⎛⎫⎪⎝⎭的矩阵等价,其中r E 为r 阶单位矩阵(r 为A 的秩,由A 唯一决定). rE O O O ⎛⎫⎪⎝⎭称为A 的等价标准形.例如,⎪⎪⎭⎫ ⎝⎛=654321A 的等价标准形为100010⎛⎫⎪⎝⎭.矩阵的初等变换可以推广到分块矩阵上(P 47).五、初等矩阵 1. 初等矩阵初等矩阵——对单位矩阵作一次初等变换所得到的矩阵.初等矩阵有如下三种类型:[,]E i j ——单位矩阵的第i , j 两行(列)互换所得到的矩阵; [()]E i k ——单位矩阵的第i 行(列)乘以非零常数k 所得到的矩阵;[()]+E i j k ——单位矩阵的第j 行(第i 列)的k 倍加到第i 行(第j 列)所得到的矩阵.定理2.3(定理2.6 P 49) 初等矩阵是可逆的,其逆矩阵是同类型的初等矩阵.111[,][,],[()][()](0),---==≠E i j E i j E i k E i k k1[()][()]-+=+-E i j k E i j k .定理2.4(定理2.6 P 49) 对m n ⨯矩阵A 作一次初等行变换,等同于在A 的左侧乘以相应于该变换的m 阶初等行矩阵;对m n ⨯矩阵A 作一次初等列变换,等同于在A 的右侧乘以相应于该变换的n 阶初等列矩阵.该定理的数学语言为[,]↔→⇔=i j r r A B E i j A B ([,]↔→⇔=i jc c A B AE i j B )⇔→⨯B A k r i [()]=E i k A B (⇔→⨯B A kc i [()]=AE i k B )⇔→+B A j i kr r E[()]+=i j k A B (⇔→+B A ij kc c [()]+=AE i j k B )例如,120103100101001001001214100010010013A B --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪⎪ ⎪-= ⎪ ⎪⎪⎪ ⎪-- ⎪⎝⎭ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭表示的变换过程为2313221211()32423r c c c c r r c c A B ⨯-----→→→→→.例2.7 设A 是3阶方阵,将A 的第1列与第2列交换得B ,再把B 的第2列加到第3列得C ,求满足AQ =C 的可逆矩阵Q .解 C B B A c c c c 2321,+↔→→,即010100100011001001A C ⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪⎝⎭⎝⎭. 所以010100011100011100001001001Q ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.定理2.5(定理2.7 P 49) 矩阵A ,B 等价的充分必要条件是存在有限个初等矩阵P 1, P 2,… ,P l 与Q 1, Q 2,…, Q t ,使A=P l P 2…P 1B Q 1Q 2…Q t .定理 2.6(定理 2.8 P 49) 可逆矩阵的等价标准形是单位矩阵.可逆矩阵等于有限个初等矩阵的乘积.推论(推论 P 50) 矩阵A ,B 等价的充分必要条件是存在可逆矩阵P ,Q ,使PAQ =B .2. 初等变换求逆矩阵设A 可逆,那么1-A 存在,并且111,.A A E A E A ---⎧=⎨=⎩根据定理2.6,设111k k A P P P --=,代入上式即得11111,.k k k k P P P A E P P PE A ---=⎧⎨=⎩上式表明:如果对矩阵A 做某些初等行变换,就对同阶的单位矩阵E 做完全相同的初等行变换,那么当这些初等行变换把A 变为E 时,就会把E 变为1-A ,即()()1AE E A -→.例2.8 试用初等变换法求矩阵⎪⎪⎪⎭⎫ ⎝⎛=100112110A 的逆矩阵.解 (1)⎪⎪⎪⎭⎫⎝⎛→⎪⎪⎪⎭⎫ ⎝⎛↔10000101010011011210001000110011211021 r r⎪⎪⎪⎭⎫ ⎝⎛--→--1001010111000100023132 r r r r ⎪⎪⎪⎭⎫ ⎝⎛--→⨯10010102121100010001211 r . ⎪⎪⎪⎭⎫ ⎝⎛--=-100101021211A .初等矩阵及其性质,可以推广到分块矩阵上(P 50-52).3. 逆矩阵的应用(1)利用逆矩阵解线性方程组1A AX B X A B ≠-==.()()1A B E A B -→.例2.9 解矩阵方程⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛12643152X .解 因为03152≠,所以⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-126431521X.8023212642153⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--= 例2.10 解矩阵方程⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--521234311111012111X . 解 TT T X ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--521234311111012111 121141111132101325⎛⎫⎪-→ ⎪ ⎪-⎝⎭→100549010457001224---⎛⎫⎪⎪ ⎪---⎝⎭. 所以⎪⎪⎪⎭⎫⎝⎛------=479254245X .(2)利用逆矩阵求线性映射的逆映射1A Y AXX A Y ≠-==.例2.11 求线性映射121111101Y X ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭的逆映射.解 由上例可知,1121549111457101224----⎛⎫⎛⎫⎪ ⎪-= ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭,故所求逆映射为549457224X Y ---⎛⎫⎪= ⎪ ⎪---⎝⎭.类似地,初等矩阵及其性质也可以推广到分块矩阵上(P 50).六、矩阵应用实例[实例2-1] 利用矩阵的基本运算解决实际问题 [实例2-2] 人口迁移问题 [实例2-3] 密码问题七、习题(P 57) 选择题:1. 提示:|A|=2,|B|=3⇒ *1234A,B O A O A O A A (1)B 66E B O B O B O +++⎧⎪⎨⎛⎫⎛⎫=⋅-=⇒= ⎪⎪⎪⎝⎭⎝⎭⎩可逆显然,可以排除C 、D 选项.而**2A EO O A 4E O O 3B O 3B E B O O 9E 2A O ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以选B .2. 提示: 2312r r c c A B E ↔+→→111121E(2,3)AE(21(1))EA E (2,3)E (21(1))E(2,3)E (21(1))P P----⇔+=⇔=+=+=3. 选D .4. 选C .5. 选D .6. 提示:A 2=O ⇒ E –A 2= E –O ⇒ (E –A)(E+A)=E ⇒ 选D. 填空题:2. 提示:A ≠O ,A ij +a ij =0(i,j=1,2,3) ⇒ A *=A T , |A|≠0⇒ AA T =–AA *=–|A|E ⇒ |A|2=–|A|3 ⇒ |A|= –1 .3. 提示:B 2004=(P -1AP)(P -1AP)…(P -1AP)=P -1A 2004PA 2=111-⎛⎫ ⎪- ⎪ ⎪⎝⎭, A 4=E ⇒ B 2004–2A 2=P -1A 2004P –2A 2=P -1P –2A 2=E –2A 2=331⎛⎫⎪⎪ ⎪-⎝⎭.4. 提示:A –3B=(–2α1, –2α2, –2α3, α–3β)⇒ |A –3B|=|–2α1, –2α2, –2α3, α–3β|=(–2)3|α1, α2, α3, α–3β|=–8(|α1, α2, α3, α|+|α1, α2, α3, –3β|)=–8(|A|–3|B|)= 565. 提示:令X=e i (i=1,2,…,n), 依次带入AX=O 中,即可得A=O. 解答题:1. 本题的意义:矩阵乘法不具有交换律,所以矩阵一般不具有数的平方差、立方差……等公式,但可交换矩阵是具有平方差、立方差……等公式的. 方阵与单位矩阵可交换.2.3. 提示: 2T3A A ,A E =-=-61152T A E,A A A A ⇒===-==4. 提示:若AP PB =,即1A PBP -=,则n 1nn1n m PB P B a A A a -⎧⎪⎛⎫⎪=⎨⎪⎪⎪ ⎪⎪⎝⎭⎩,如果是对角阵,,如果是对角阵. 设B=P -1AP ,则B=72⎛⎫⎪-⎝⎭,n1n1n n 233371(P AP)P A P 13129(2)---⎛⎫⎛⎫⎛⎫===⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭5.(1)提示:分块对角阵(2)提示:方法一 2A 4E = ⇒ 11AA 4-=方法二 初等变换法 略.6. 提示:解矩阵方程 (E –A)X=B ⇒ (E –A | B) → (E | A -1B)7. 证 ∵ *,0AA A E A =≠∴ *nA A A =1*1n n A Aa --==8. 证 设()ijn nA a ⨯=. 假设0A =,则*TA A A A A E O ===,于是210,1,,nijj ai n ===∑. 由于A 为实数矩阵,因此0,,ij a i j =∀,即A O =,这与已知条件矛盾,所以必有0A ≠.9. 提示:A m =E ⇒ A 可逆 ⇒ A *=|A|A -1 ⇒ (A *)m =|A|m (A -1)m =|A|m (A m )-1 =E10. 提示:B(A –E)=2E ⇒ |B||A –E|=4|E| ⇒ |B|=4|E|/|A –E|11. det(A+B -1)=det[A(A -1+B)B -1] =det(A)det(A -1+B)det(B -1)=3×2×0.5=3.12. 证 ∵ (E –A)(E+A+…+A k-1)=E+A+…+A k-1–(A+…+A k )=E∴ E –A 可逆,且(E –A)-1=E+A+…+A k-1.13. 提示:∵ (E+BA)(E –B(E+AB)-1A)=E –B(E+AB)-1A+BA –BAB(E+AB)-1A =E+BA –B[(E+AB)-1+AB(E+AB)-1]A =E+BA –B(E+AB)E+AB)-1A= E+BA-BA=E∴ E+BA 可逆,且(E+BA)-1=E –B(E+AB)-1A.14. 提示:2A -1B=B-4E ⇒ 2B= AB-4A ⇒ AB-2B=4A⇒ (A-2E)B=4A ⇒ (A-2E)B-4(A-2E)=8E ⇒ (A-2E)(B-4E)=8E⇒ (A-2E)可逆,且(A-2E)-1=(B-4E)/815. 提示:C=A+CA ,B=E+AB⇒ CB=AB+CAB ,CB=C+CAB ⇒ AB=C ⇒ B=E+C ⇒ B-C=E16. 提示:A 2+A-3E=O⇒ (A-E)(A+2E)=E⇒ (A-E)、(A+2E)可逆,且(A-E)-1=(A+2E)17. 提示:运用初等变换与初等矩阵的关系(1)E (2,3)A=B ⇒ P=E (2,3); (2) E(3+2(-2))A=B ⇒ P=E(3+2(-2));(3) E(1,2)E(3+1(2))A=B 或 E(3+2(2))E(1,2)A=B⇒ P=E(1,2)E(3+1(2))A 或 P=E(3+2(2))E(1,2).18. 提示:3212c c c c A B C AE(1,2)E(2,3(1))C +↔→→⇔= ⇒ Q=E[1,2]E[2+3(1)].19. (1)5232214583415262AB ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭ ⎪= ⎪⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭23201095014329⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭(4)1115212212523835852A ---⎛⎫⎛⎫-⎛⎫ ⎪ ⎪ ⎪- ⎪⎝⎭ ⎪== ⎪ ⎪-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭ (5)88852*******A A ⎛⎫⎛⎫⎛⎫==⋅= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭21. 解 设第i (i =0,1,2,3)年后各年龄组的动物只数分别为x i ,y i ,z i ,则x 0=y 0=z 0=1000,1110430.50000.250i i i i i i x x y y z z +++⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,2200200200330303004320.75027500.50002 1.53500,00.2500.125001250430.50000.2500.37586 1x x x y y y z z z x x y y z z ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎪ ⎪=== ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=000143750.37501375.00.50.375875x y z ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪= ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭八、计算实践实践指导:(1)注意矩阵与行列式在含义上、形式上以及运算性质上的区别; (2)注意矩阵进行运算的条件与规则,熟知矩阵运算的运算规律及注意事项; (3)了解方阵的行列式、伴随矩阵的概念及其性质;(4)理解逆矩阵的概念,掌握逆矩阵的性质及矩阵可逆的条件; (5)掌握矩阵的初等变换及用其求逆矩阵的方法; (6)了解分块矩阵、尤其是分块对角阵及其运算规律; (7)会矩阵、逆矩阵以及分块矩阵的简单应用. 例2.1 已知()11123,123⎛⎫α=β= ⎪⎝⎭,设TA =αβ,求n A . 解 注意到行矩阵乘以同维列矩阵的积的结果是数,而列矩阵乘以同维行矩阵的积一般是矩阵,所以nA 的n 次幂计算并不可怕. 根据矩阵与矩阵乘法的结合律,有()()nn 1n T T T n 1T n 1A 1121333212.3321---=αβ=αβαβ⎛⎫ ⎪=αβ= ⎪ ⎪⎝⎭例2.2 已知212A 023002⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,求nA .解 将A 表示为A 2E B =+,其中012B 003000⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦.而23003B 000,B 0.000⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦由于B 与E 可交换,所以可以应用二项式定理,有()()()()n n 3nn 1n 2122n 3n 3n 3n n 1n 323A 2E B 2E C 2E B C 2E B B 2E 2nB 2n(n 1)B .----=+=++++=++-n n 1n 3n n 1n 212023,n 100222n 2n(n 1)0232n ,n 2002---⎧⎡⎤⎪⎢⎥=⎪⎢⎥⎪⎢⎥⎣⎦⎪=⎨⎡⎤-⎪⎢⎥⎪⋅≥⎢⎥⎪⎢⎥⎪⎣⎦⎩ 这是求矩阵高次幂的一种技巧法,成立的前提是因为B, E 3可交换.其实只要矩阵A,B 可交换,关于数的和平方公式、和立方公式、平方差公式、立方差公式……一系列公式对于A,B 也成立.本题还可以采用归纳法及相似矩阵法.例 2.3 设123,,ααα均为3维列向量,记矩阵()123A ,,=ααα,()123123123B ,24,39=α+α+αα+α+αα+α+α.如果A 1=,求B .解 123123123B ,24,39=α+α+αα+α+αα+α+α123232312323312323123123,3,5,3,2,,2,,22,,2A 2.=α+α+αα+αα+α=α+α+αα+αα=α+α+ααα=ααα=ααα==注意:方阵与方阵行列式的关系,矩阵运算与行列式运算的区别.例2.4 设A,B,C 均为n 阶矩阵,A 2,B 3==-,求*12A B -.解 2n 1n 1*1n *1n122A B 2A B2AB 3----=⋅=⋅=-.例2.5 已知n 阶矩阵A,B 满足1B (E A)(E A)-=+-, 证明:E B +可逆, 并求其逆. 若10002300A 04500067⎛⎫⎪-⎪= ⎪-⎪-⎝⎭, 求1(E B)-+. 证 方法一 1B (E A)(E A)-=+-,()E A B E A ⇒+=- ()E A B E A 2E ⇒+++= ()()E A E B 2E ⇒++=故E B +可逆, 且()()11E B E A 2-+=+. 方法二 1B (E A)(E A)-=+-,()111B (E A)(2E E A )B 2(E A)E B E 2(E A)---⇒=+-+⇒=+-⇒+=+故E B +可逆, 且()()11E B E A 2-+=+. 例2.6 试求一个方阵Q ,使得m 4A Q ⨯等于对m 4A ⨯经过下面的初等变换所得到的矩阵:首先用-2乘矩阵A 的第三列,然后将第一列的(-1)倍加到第二列,最后交换矩阵的第一、第三列.解 ∵ 321132c c c m 4m 4c c A A Q --⨯⨯↔→∴ m 4m 4A E[3(2)]E[12(1)]E[1,3]A Q ⨯⨯-+-= Q E[3(2)]E[12(1)]E[1,3]=-+-111111121111111121-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦例2.7 设3阶矩阵A 满足100000A 01,A 10,A 00000110⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,求A . 解 100000A 01,A 10,A 00000110⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦,即 000AE 100010⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,故000A 100010⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. 例2.8 设矩阵m n ij A (a )⨯=的每列元素之和均为常数a ,矩阵n k ij B (b )⨯=的每列元素之和为常数b ,证明:矩阵AB 的每列元素之和也必为常数.证 矩阵m n ij A (a )⨯=的每列元素之和均为常数a ,矩阵n k ij B (b )⨯=的每列元素之和为常数b ,即11121n 21222n m1m2mn a a a a a a (111)A (111)a a a (a aa)a(111),⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦==11121j 21222j n1n2nj b b b b b b (111)B (111)b b b (b bb)b(111).⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦== 所以矩阵AB 的每列元素之和为(111)AB a(111)B ab(111)(ab ab ab)===,即AB 的每列元素之和都为常数ab.九、知识扩展1. 设101020101A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 而(2)n ≥为正整数, 求12n n A A --. (1999 数三 四) (答案:O )(可试着推测结果)提示:22020402202A A ⎛⎫⎪== ⎪ ⎪⎝⎭()12222n n n A A A A A O --⇒-=-=2. 已知12,αα均为2维列向量, 矩阵()()1212122,,A B αααααα=+-=,. 若6A =, 求B . (2006 四) (答案: -2)3. 设矩阵210120001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,矩阵B 满足**2ABA BA E =+,其中*A 为A 的伴随矩阵,E是单位矩阵,则B = . (2004 数一 答案: 9)提示:***2*2(2)21,2119ABA BA E A E BA EA EB A A E B A B =+∴-=-⋅⋅=-⋅⋅==4. 设A 是任一(3)n n ≥阶方阵, k 为常数, 求()*kA . (1998 数二)提示: 方法一 因为kA 的余子式1n ij ij A k A -=, 故()*1*n kA k A -=.方法二 加强条件法 如果是选择题, 可设A 可逆, 0k ≠, 则()()*111*1n n kA kA kA k A A k A k---==⋅=. 5. 设矩阵211,3223A B A A E -⎡⎤==-+⎢⎥⎣⎦,求1B -. (2002 数四) 提示: 方法一 先求出B , 再计算1B -方法二 由232B A A E =-+()()()()11122B A E A E B A E A E ---⇒=--⇒=--6. 设A 为n 阶非零矩阵,E 为n 阶单位矩阵,若A 3=O ,则[ ].(A )A -E 不可逆,A +E 不可逆;(B ) A -E 不可逆,A +E 可逆; (C ) A -E 可逆,A +E 可逆; (D ) A -E 可逆,A +E 不可逆.7. 已知n 阶矩阵,A B 满足1()()B E A E A -=+-,证明: E B +可逆,并求其逆. 若1000230004500067A ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,求1()E B -+. (2000 数二) 提示: 方法一 1()()B E A E A -=+-,()()()22B AB E A E A B E A E E A E B E⇒+=-⇒+++=⇒++= 故E B +可逆, 且()()112E B E A -+=+. 方法二 1()()B E A E A -=+-,()111()(2)2()2()B E A E E A B E A E B E E A ---⇒=+-+⇒=+-⇒+=+故E B +可逆, 且()()112E B E A -+=+. 8. 设矩阵X 满足*12A X A X -=+,求矩阵X . (1999 数二) 提示: 由*12,A X A X -=+()()1222A X E AX A E A X E X A E A -⇒=+⇒-=⇒=- 9. 设矩阵A 的伴随矩阵*100001001010038A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥-⎣⎦,且113--=+ABA BA E ,求矩阵B . (2000 数一)提示: 113,ABA BA E --=+()()()()1*11**33333()n AB B A A E B A E A B E A E A B A E B A A E AA A---⇒-=⇒-=⇒-=⇒-=⇒=-=10. 矩阵X 满足AXA BXB AXB BXA E +=++,矩阵100011110,101111110A B ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,求X . (2001数二)11. 已知n 阶矩阵,A B 满足条件AB B A -=,求A . (若120210002B -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦) (1999 数四)提示: 由AB B A -=()()()1A EB E E A E B E -⇒--⇒=+-=12. 设矩阵,A B 满足关系式2AB A B =+,求矩阵B . (若423110123A ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,求B ) (1987 数三 四)13. 设矩阵,A B 满足*28A BA BA E =-,求B .(若100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,求B ) (1998 数三 四)提示: 方法一*28A BA BA E =-,()()()**128(2,)2882A E BA E A E A B A E A BA A B A E A -⇒-=--⇒-=-⇒=--故,可逆方法二 若A 已知, 则A 必是可逆矩阵(方法一), 则()()*11128282882A BA BA E A A B B A A E A B E B A E A ---=-⇒=-⇒-=-⇒=--14. 设A 为3阶矩阵,将A 第2行加到第1行得B ,再将B 的第1列的-1倍加到第2列得到C ,记110010001P ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则(A )1C P AP -=; (B)1C PAP -=; (C)T C P AP =; (D)TC PAP =. (2006 数一)(答案: B)提示:11211121,r r c c r r c c A B B C A C +-+-→→⇒→1C PAP -∴=15. 设A 为()2n n ≥阶可逆矩阵,交换A 的第1行与第2行得矩阵B ,**,A B 分别为,A B 的伴随矩阵,证明: 交换*A 的第1列与第2列得矩阵*B -. (2005 数一 二) 16. 设A 为实对称矩阵,且2A O =,证明A O =.提示:由于A 为对称矩阵,且2A O =,所以TA A AA O ==.17. 设方阵A 可逆,并且每列元素之和都等于常数a ,证明:a 0≠,且1A -的每列元素之和都等于常数1a .证 A 的每列元素之和都等于常数a ,即(111)A (a a a)a(111).==因A 可逆,所以a 0≠,且1(111)A -=1(111),所以1A -的每列元素之和都等于常数1a .。
第二章 矩阵一、矩阵的概念1.要弄清矩阵与行列式的区别2.两个矩阵相等的概念3.几种特殊矩阵(0矩阵,单位阵,三角阵,对角阵,数量阵) 二、矩阵的运算1. 矩阵,A B 的加、减、乘有意义的充分必要条件例1设矩阵(1,2)A =,1234B ⎛⎫= ⎪⎝⎭, 123456C ⎛⎫= ⎪⎝⎭,则下列矩阵运算中有意义的是( ) A .ACB B .ABC C .BACD .CAB测试点: 矩阵相乘有意义的充分必要条件 答案: B例2设矩阵120210001A ⎛⎫ ⎪= ⎪ ⎪⎝⎭, 100021013B ⎛⎫⎪= ⎪ ⎪⎝⎭,则2A B + =_____________.测试点: 矩阵运算的定义解 1202003202210042252001026027A B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.例3设矩阵12A ⎛⎫= ⎪⎝⎭, 23B ⎛⎫= ⎪⎝⎭,则TA B =____________.测试点: 矩阵运算的定义 解 2(1,2)8.3T A B ⎛⎫== ⎪⎝⎭2.矩阵运算的性质比较矩阵运算(包括加、减、数乘、乘法等)的性质与数的运算性质的相同点和不同点(加法的交换律和结合律;乘法关于加法的分配律;)重点是矩阵乘法没有交换律(由此产生了矩阵运算公式与数的运算的公式的不同点.(+ ;+;A B A AB BA B A B A B A BA AB B ±=+++=22222()()(-)--22(); ()2k k k AB ABAB AB A B A E A A E =≠±=±+如果AB O =,可能,.A O B O ≠≠例如1122,1122A B ⎡⎤⎡⎤==⎢⎥⎢⎥----⎣⎦⎣⎦都不为零,但AB O =. 3.转置 对称阵和反对称阵 1)转置的性质(); () ;()T T T T T T T T T A B A B A A ABC C B A λλ±=±==2)若()TTA A A A ==-,则称A 为对称(反对称)阵 例4矩阵,,ABC 为同阶方阵,则()TABC =( ) A .T T T A B C B .T T T C B A C .T T T C A B D .T T T A C B答案: B例5设(1,2,3),(1,1,1),αβ==-令T A αβ=,试求5A .测试点 矩阵乘法的一个常用技巧解 因为111222333TA αβ⎛-⎫⎛⎫ ⎪ ⎪==- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭,所以5()()()()T T T T T T T T T T A αβαβαβαβαβαβαβαβαβαβ==55511111111()[(1,1,1)2]2(1,1,1)222232222.33333333T T βααβ--⎛⎫⎛⎫⎡⎤⎡⎤ ⎪ ⎪⎢⎥⎢⎥==--=-=- ⎪ ⎪⎢⎥⎢⎥⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦答案 11132222.333-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦例6A 为任意n 阶矩阵,下列矩阵中为反对称矩阵的是( )A .T A A +B .T A A -C .TAAD .T A A解析 ()()T TTT TTTA A A A A A A A +=+=+=+.故T A A +为对称阵. ()()T TTTA A A A A A -=-=--.故T A A -为反对称阵. ().T TTAA AA =故T AA 为对称阵.同理T A A 也为对称阵. 答案 B例7已知矩阵1123A -⎡⎤=⎢⎥⎣⎦,E 为2阶单位矩阵,令232,B A A E =-+求B 测试点 方阵多项式的概念;211111110323223232301B A A E ---⎡⎤⎡⎤⎡⎤⎡⎤=-+=-+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦ 1433202187690220-----⎡⎤⎡⎤⎡⎤⎡⎤=-+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦4. 方阵的行列式的性质; ; ; T n A A A A AB A B λλ===111 ; ;.kn k A A A A A A--*=== 例7设A 为n 阶方阵,λ为实数,则A λ=( )A .A λB .A λC .nA λ D .nA λ答案: C 例8矩阵1212,3445A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,则行列式1T A B -=___________.解析 11112(2).(3)3T T A BA B AB --===-⋅=-答案 2.35.逆矩阵1)方阵A 可逆(也称非异,A 满秩)的充分必要条件是0A ≠.当A 可逆时,11A A A-*=. 其中方阵A 的伴随阵A *的定义112111222212n n nnnn A A A A A A A A A A *⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦。
第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA . 因为⎪⎭⎫⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2. 因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2. 因为⎪⎭⎫⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(也可参考书上的答案) (1)若A 2=0, 则A =0; 解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y . 7. 设⎪⎭⎫⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k kk k k k λλλλλλ02)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. (也可提取公因式,变成书上的答案)9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵: (1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 .12. 解下列矩阵方程: (1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛12643152X ;解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X ;解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1. 证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1. |P |=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. (最后一行的-9也可除以-1变成9,从而变成书上的答案)27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则⎪⎭⎫ ⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.第五章 相似矩阵及二次型1. 试用施密特法把下列向量组正交化:(1)⎪⎪⎭⎫⎝⎛=931421111) , ,(321a a a ;解 根据施密特正交化方法,⎪⎪⎭⎫ ⎝⎛==11111a b , ⎪⎪⎭⎫ ⎝⎛-=-=101],[],[1112122b b b a b a b ,⎪⎪⎭⎫ ⎝⎛-=--=12131],[],[],[],[222321113133b b b a b b b b a b a b .(2)⎪⎪⎪⎭⎫ ⎝⎛---=011101110111) , ,(321a a a .解 根据施密特正交化方法,⎪⎪⎪⎭⎫ ⎝⎛-==110111a b ,⎪⎪⎪⎭⎫ ⎝⎛-=-=123131],[],[1112122b b b a b a b ,⎪⎪⎪⎭⎫ ⎝⎛-=--=433151],[],[],[],[222321113133b b b a b b b b a b a b . 2. 下列矩阵是不是正交阵:(1)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---121312112131211;解 此矩阵的第一个行向量非单位向量, 故不是正交阵.(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------979494949198949891.解 该方阵每一个行向量均是单位向量, 且两两正交, 故为正交阵.3. 设x 为n 维列向量, x T x =1, 令H =E -2xx T , 证明H 是对称的正交阵. 证明 因为H T =(E -2xx T )T =E -2(xx T )T =E -2(xx T )T =E -2(x T )T x T =E -2xx T , 所以H 是对称矩阵. 因为H T H =HH =(E -2xx T )(E -2xx T ) =E -2xx T -2xx T +(2xx T )(2xx T ) =E -4xx T +4x (x T x )x T =E -4xx T +4xx T =E , 所以H 是正交矩阵.4. 设A 与B 都是n 阶正交阵, 证明AB 也是正交阵. 证明 因为A , B 是n 阶正交阵, 故A -1=A T , B -1=B T ,(AB )T (AB )=B T A T AB =B -1A -1AB =E ,故AB 也是正交阵.5. 求下列矩阵的特征值和特征向量:(1)⎪⎪⎭⎫ ⎝⎛----201335212;解 3)1(201335212||+-=-------=-λλλλλE A ,故A 的特征值为λ=-1(三重). 对于特征值λ=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=+000110101101325213~E A ,得方程(A +E )x =0的基础解系p 1=(1, 1, -1)T , 向量p 1就是对应于特征值λ=-1的特征值向量.(2)⎪⎪⎭⎫⎝⎛633312321;解 )9)(1(633312321||-+-=---=-λλλλλλλE A ,故A 的特征值为λ1=0, λ2=-1, λ3=9. 对于特征值λ1=0, 由⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=000110321633312321~A ,得方程A x =0的基础解系p 1=(-1, -1, 1)T , 向量p 1是对应于特征值λ1=0的特征值向量. 对于特征值λ2=-1, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=+000100322733322322~E A ,得方程(A +E )x =0的基础解系p 2=(-1, 1, 0)T , 向量p 2就是对应于特征值λ2=-1的特征值向量. 对于特征值λ3=9, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-00021101113333823289~E A , 得方程(A -9E )x =0的基础解系p 3=(1/2, 1/2, 1)T , 向量p 3就是对应于特征值λ3=9的特征值向量.(3)⎪⎪⎪⎭⎫⎝⎛0001001001001000.(和书后答案不同,以书后为主,但解题步骤可以参考) 解 22)1()1(01010010100||+-=----=-λλλλλλλE A , 故A 的特征值为λ1=λ2=-1, λ3=λ4=1. 对于特征值λ1=λ2=-1, 由⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=+00000000011010011001011001101001~E A , 得方程(A +E )x =0的基础解系p 1=(1, 0, 0, -1)T , p 2=(0, 1, -1, 0)T , 向量p 1和p 2是对应于特征值λ1=λ2=-1的线性无关特征值向量.对于特征值λ3=λ4=1, 由⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛----=-00000000011010011001011001101001~E A , 得方程(A -E )x =0的基础解系p 3=(1, 0, 0, 1)T , p 4=(0, 1, 1, 0)T , 向量p 3和p 4是对应于特征值λ3=λ4=1的线性无关特征值向量.6. 设A 为n 阶矩阵, 证明A T 与A 的特征值相同. 证明 因为|A T -λE |=|(A -λE )T |=|A -λE |T =|A -λE |,所以A T 与A 的特征多项式相同, 从而A T 与A 的特征值相同.7. 设n 阶矩阵A 、B 满足R (A )+R (B )<n , 证明A 与B 有公共的特征值, 有公共的特征向量.证明 设R (A )=r , R (B )=t , 则r +t <n .若a 1, a 2, ⋅⋅⋅, a n -r 是齐次方程组A x =0的基础解系, 显然它们是A 的对应于特征值λ=0的线性无关的特征向量.类似地, 设b 1, b 2, ⋅⋅⋅, b n -t 是齐次方程组B x =0的基础解系, 则它们是B 的对应于特征值λ=0的线性无关的特征向量.由于(n -r )+(n -t )=n +(n -r -t )>n , 故a 1, a 2, ⋅⋅⋅, a n -r , b 1, b 2, ⋅⋅⋅, b n -t 必线性相关. 于是有不全为0的数k 1, k 2, ⋅⋅⋅, k n -r , l 1, l 2, ⋅⋅⋅, l n -t , 使k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r +l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0.记 γ=k 1a 1+k 2a 2+ ⋅⋅⋅ +k n -r a n -r =-(l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r ), 则k 1, k 2, ⋅⋅⋅, k n -r 不全为0, 否则l 1, l 2, ⋅⋅⋅, l n -t 不全为0, 而l 1b 1+l 2b 2+ ⋅⋅⋅ +l n -r b n -r =0,与b 1, b 2, ⋅⋅⋅, b n -t 线性无关相矛盾.因此, γ≠0, γ是A 的也是B 的关于λ=0的特征向量, 所以A 与B 有公共的特征值, 有公共的特征向量.8. 设A 2-3A +2E =O , 证明A 的特征值只能取1或2.证明设λ是A的任意一个特征值,x是A的对应于λ的特征向量,则(A2-3A+2E)x=λ2x-3λx+2x=(λ2-3λ+2)x=0.因为x≠0,所以λ2-3λ+2=0,即λ是方程λ2-3λ+2=0的根,也就是说λ=1或λ=2.9.设A为正交阵,且|A|=-1,证明λ=-1是A的特征值.证明因为A为正交矩阵,所以A的特征值为-1或1.(需要说明)因为|A|等于所有特征值之积,又|A|=-1,所以必有奇数个特征值为-1,即λ=-1是A的特征值.10.设λ≠0是m阶矩阵A m⨯n B n⨯m的特征值,证明λ也是n阶矩阵BA的特征值.证明设x是AB的对应于λ≠0的特征向量,则有(AB)x=λx,于是B(AB)x=B(λx),或BA(B x)=λ(B x),从而λ是BA的特征值,且B x是BA的对应于λ的特征向量.11.已知3阶矩阵A的特征值为1, 2, 3,求|A3-5A2+7A|.解令ϕ(λ)=λ3-5λ2+7λ,则ϕ(1)=3,ϕ(2)=2,ϕ(3)=3是ϕ(A)的特征值,故|A3-5A2+7A|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(3)=3⨯2⨯3=18.12.已知3阶矩阵A的特征值为1, 2,-3,求|A*+3A+2E|.解因为|A|=1⨯2⨯(-3)=-6≠0,所以A可逆,故A*=|A|A-1=-6A-1,A*+3A+2E=-6A-1+3A+2E.令ϕ(λ)=-6λ-1+3λ+2,则ϕ(1)=-1,ϕ(2)=5,ϕ(-3)=-5是ϕ(A)的特征值,故|A*+3A+2E|=|-6A-1+3A+2E|=|ϕ(A)|=ϕ(1)⋅ϕ(2)⋅ϕ(-3)=-1⨯5⨯(-5)=25.13.设A、B都是n阶矩阵,且A可逆,证明AB与BA相似.证明 取P =A , 则P -1ABP =A -1ABA =BA ,即AB 与BA 相似.14. 设矩阵⎪⎪⎭⎫⎝⎛=50413102x A 可相似对角化, 求x .解 由)6()1(50413102||2---=---=-λλλλλλx E A ,得A 的特征值为λ1=6, λ2=λ3=1.因为A 可相似对角化, 所以对于λ2=λ3=1, 齐次线性方程组(A -E )x =0有两个线性无关的解, 因此R (A -E )=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=-00030010140403101)(~x x E A r知当x =3时R (A -E )=1, 即x =3为所求.15. 已知p =(1, 1, -1)T 是矩阵⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量.(1)求参数a , b 及特征向量p 所对应的特征值; 解 设λ是特征向量p 所对应的特征值, 则(A -λE )p =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛------0001112135212λλλb a ,解之得λ=-1, a =-3, b =0.(2)问A 能不能相似对角化?并说明理由. 解 由3)1(201335212||--=-------=-λλλλλE A ,得A 的特征值为λ1=λ2=λ3=1. 由⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛----=-00011010111325211~r b E A知R (A -E )=2, 所以齐次线性方程组(A -E )x =0的基础解系只有一个解向量. 因此A 不能相似对角化.16. 试求一个正交的相似变换矩阵, 将下列对称阵化为对角阵:(1)⎪⎪⎭⎫⎝⎛----020212022;解 将所给矩阵记为A . 由λλλλ-------=-20212022E A =(1-λ)(λ-4)(λ+2),得矩阵A 的特征值为λ1=-2, λ2=1, λ3=4. 对于λ1=-2, 解方程(A +2E )x =0, 即0220232024321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----x x x , 得特征向量(1, 2, 2)T , 单位化得T)32 ,32 ,31(1=p .对于λ2=1, 解方程(A -E )x =0, 即0120202021321=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----x x x ,得特征向量(2, 1, -2)T , 单位化得T )32 ,31 ,32(2-=p .对于λ3=4, 解方程(A -4E )x =0, 即0420232022321=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------x x x , 得特征向量(2, -2, 1)T , 单位化得T )31 ,32 ,32(3-=p . 于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(-2, 1, 4).(2)⎪⎪⎭⎫ ⎝⎛----542452222. (和书后答案不同,以书后答案为准,解题步骤可以参考)解 将所给矩阵记为A . 由λλλλ-------=-542452222E A =-(λ-1)2(λ-10),得矩阵A 的特征值为λ1=λ2=1, λ3=10. 对于λ1=λ2=1, 解方程(A -E )x =0, 即⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----000442442221321x x x , 得线性无关特征向量(-2, 1, 0)T 和(2, 0, 1)T , 将它们正交化、单位化得T 0) 1, ,2(511-=p , T 5) ,4 ,2(5312=p .对于λ3=10, 解方程(A -10E )x =0, 即⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-------000542452228321x x x , 得特征向量(-1, -2, 2)T , 单位化得T )2 ,2 ,1(313--=p .于是有正交阵P =(p 1, p 2, p 3), 使P -1AP =diag(1, 1, 10).17. 设矩阵⎪⎪⎭⎫⎝⎛------=12422421x A 与⎪⎪⎭⎫ ⎝⎛-=Λy 45相似, 求x , y ; 并求一个正交阵P , 使P -1AP =Λ.解 已知相似矩阵有相同的特征值, 显然λ=5, λ=-4, λ=y 是Λ的特征值, 故它们也是A 的特征值. 因为λ=-4是A 的特征值, 所以0)4(9524242425|4|=-=---+---=+x x E A ,解之得x =4.已知相似矩阵的行列式相同, 因为100124242421||-=-------=A , y y2045||-=-=Λ,所以-20y =-100, y =5.对于λ=5, 解方程(A -5E )x =0, 得两个线性无关的特征向量(1, 0, -1)T , (1, -2, 0)T . 将它们正交化、单位化得T )1 ,0 ,1(211-=p , T )1 ,4 ,1(2312-=p .对于λ=-4, 解方程(A +4E )x =0, 得特征向量(2, 1, 2)T , 单位化得T )2 ,1 ,2(313=p .于是有正交矩阵⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=23132212343102313221P , 使P -1AP =Λ. 18. 设3阶方阵A 的特征值为λ1=2, λ2=-2, λ3=1; 对应的特征向量依次为p 1=(0, 1, 1)T ,p 2=(1, 1, 1)T , p 3=(1, 1, 0)T , 求A .解 令P =(p 1, p 2, p 3), 则P -1AP =diag(2, -2, 1)=Λ, A =P ΛP -1. 因为⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛=--11011101101111111011P ,所以⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=Λ=-1101110111000200020111111101P P A ⎪⎪⎪⎭⎫⎝⎛------=244354332. 19. 设3阶对称阵A 的特征值为λ1=1, λ2=-1, λ3=0; 对应λ1、λ2的特征向量依次为p 1=(1, 2, 2)T , p 2=(2, 1, -2)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A , 则A p 1=2p 1, A p 2=-2p 2, 即 ⎪⎩⎪⎨⎧=++=++=++222222122653542321x x x x x x x x x , ---① ⎪⎩⎪⎨⎧=-+-=-+-=-+222122222653542321x x x x x x x x x . ---② 再由特征值的性质, 有x 1+x 4+x 6=λ1+λ2+λ3=0. ---③由①②③解得612131x x --=, 6221x x =, 634132x x -=,642131x x -=, 654132x x +=. 令x 6=0, 得311-=x , x 2=0, 323=x , 314=x , 325=x .因此⎪⎪⎭⎫ ⎝⎛-=022********A . 20. 设3阶对称矩阵A 的特征值λ1=6, λ2=3, λ3=3, 与特征值λ1=6对应的特征向量为p 1=(1, 1, 1)T , 求A .解 设⎪⎪⎭⎫⎝⎛=653542321x x x x x x x x x A .因为λ1=6对应的特征向量为p 1=(1, 1, 1)T , 所以有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛1116111A , 即⎪⎩⎪⎨⎧=++=++=++666653542321x x x x x x x x x ---①. λ2=λ3=3是A 的二重特征值, 根据实对称矩阵的性质定理知R (A -3E )=1. 利用①可推出⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---=-331113333653542653542321~x x x x x x x x x x x x x x x E A .因为R (A -3E )=1, 所以x 2=x 4-3=x 5且x 3=x 5=x 6-3, 解之得x 2=x 3=x 5=1, x 1=x 4=x 6=4.因此⎪⎪⎭⎫⎝⎛=411141114A .21. 设a =(a 1, a 2, ⋅⋅⋅, a n )T , a 1≠0, A =aa T .(1)证明λ=0是A 的n -1重特征值;证明 设λ是A 的任意一个特征值, x 是A 的对应于λ的特征向量, 则有 A x =λx ,λ2x =A 2x =aa T aa T x =a T a A x =λa T ax , 于是可得λ2=λa T a , 从而λ=0或λ=a T a .设λ1, λ2, ⋅ ⋅ ⋅, λn 是A 的所有特征值, 因为A =aa T 的主对角线性上的元素为a 12, a 22, ⋅ ⋅ ⋅, a n 2, 所以a 12+a 22+ ⋅ ⋅ ⋅ +a n 2=a T a =λ1+λ2+ ⋅ ⋅ ⋅ +λn ,这说明在λ1, λ2, ⋅ ⋅ ⋅, λn 中有且只有一个等于a T a , 而其余n -1个全为0, 即λ=0是A 的n -1重特征值.(2)求A 的非零特征值及n 个线性无关的特征向量. 解 设λ1=a T a , λ2= ⋅ ⋅ ⋅ =λn =0.因为A a =aa T a =(a T a )a =λ1a , 所以p 1=a 是对应于λ1=a T a 的特征向量.对于λ2= ⋅ ⋅ ⋅ =λn =0, 解方程A x =0, 即aa T x =0. 因为a ≠0, 所以a T x =0, 即a 1x 1+a 2x 2+ ⋅ ⋅ ⋅ +a n x n =0, 其线性无关解为p 2=(-a 2, a 1, 0, ⋅⋅⋅, 0)T , p 3=(-a 3, 0, a 1, ⋅⋅⋅, 0)T ,⋅ ⋅ ⋅,p n =(-a n , 0, 0, ⋅⋅⋅, a 1)T . 因此n 个线性无关特征向量构成的矩阵为⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-=⋅⋅⋅112212100), , ,(a a a aa a a nn n p p p . 22. 设⎪⎪⎭⎫⎝⎛-=340430241A , 求A 100. 解 由)5)(5)(1(340430241||+---=----=-λλλλλλλE A ,得A 的特征值为λ1=1, λ2=5, λ3=-5.对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(1, 0, 0)T . 对于λ1=5, 解方程(A -5E )x =0, 得特征向量p 2=(2, 1, 2)T . 对于λ1=-5, 解方程(A +5E )x =0, 得特征向量p 3=(1, -2, 1)T . 令P =(p 1, p 2, p 3), 则P -1AP =diag(1, 5, -5)=Λ,A =P ΛP -1, A 100=P Λ100P -1. 因为Λ100=diag(1, 5100, 5100),⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛-=--1202105055112021012111P ,所以⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=12021050555112021012151100100100A ⎪⎪⎭⎫⎝⎛-=1001001005000501501.23. 在某国, 每年有比例为p 的农村居民移居城镇, 有比例为q 的城镇居民移居农村, 假设该国总人口数不变, 且上述人口迁移的规律也不变. 把n 年后农村人口和城镇人口占总人口的比例依次记为x n 和y n (x n +y n =1).(1)求关系式⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11中的矩阵A ;解 由题意知x n +1=x n +qy n -px n =(1-p )x n +qy n , y n +1=y n +px n -qy n = px n +(1-q )y n , 可用矩阵表示为⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛++n n n n y x q p q p y x 1111,因此⎪⎭⎫⎝⎛--=q p q p A 11.(2)设目前农村人口与城镇人口相等, 即⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛5.05.000y x , 求⎪⎭⎫ ⎝⎛n n y x .解 由⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++n n n n y x A y x 11可知⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛00y x A y x n n n . 由)1)(1(11||q p q p qp E A ++--=----=-λλλλλ,得A 的特征值为λ1=1, λ2=r , 其中r =1-p -q .对于λ1=1, 解方程(A -E )x =0, 得特征向量p 1=(q , p )T . 对于λ1=r , 解方程(A -rE )x =0, 得特征向量p 2=(-1, 1)T . 令⎪⎭⎫⎝⎛-==11) ,(21p q P p p , 则 P -1AP =diag(1, r )=Λ, A =P ΛP -1, A n =P Λn P -1. 于是11100111-⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=p q r p q A n n⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-+=q p r p q q p n 11001111 ⎪⎭⎫ ⎝⎛+--++=n n n n qr p pr p qr q pr q q p 1, ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+--++=⎪⎭⎫ ⎝⎛5.05.01n n n n n n qr p pr p qr q pr q q p y x ⎪⎭⎫ ⎝⎛-+-++=n n r p q p r q p q q p )(2)(2)(21.24. (1)设⎪⎭⎫ ⎝⎛--=3223A , 求ϕ(A )=A 10-5A 9; 解 由)5)(1(3223||--=----=-λλλλλE A ,得A 的特征值为λ1=1, λ2=5.对于λ1=1, 解方程(A -E )x =0, 得单位特征向量T )1 ,1(21. 对于λ1=5, 解方程(A -5E )x =0, 得单位特征向量T )1 ,1(21-.于是有正交矩阵⎪⎭⎫ ⎝⎛-=111121P , 使得P -1AP =diag(1, 5)=Λ,从而A =P ΛP -1, A k =P Λk P -1. 因此 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-5Λ9)P -1 =P [diag(1, 510)-5diag(1, 59)]P -1 =P diag(-4, 0)P -1⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=1111210004111121⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛----=111122222. (2)设⎪⎪⎭⎫⎝⎛=122221212A , 求ϕ(A )=A 10-6A 9+5A 8.解 求得正交矩阵为⎪⎪⎪⎭⎫ ⎝⎛---=20223123161P , 使得P -1AP =diag(-1, 1, 5)=Λ, A =P ΛP -1. 于是 ϕ(A )=P ϕ(Λ)P -1=P (Λ10-6Λ9+5Λ8)P -1 =P [Λ8(Λ-E )(Λ-5E )]P -1=P diag(1, 1, 58)diag(-2, 0, 4)diag(-6, -4, 0)P -1 =P diag(12, 0, 0)P -1⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---=222033211001220223123161⎪⎪⎭⎫⎝⎛----=4222112112.25. 用矩阵记号表示下列二次型: (1) f =x 2+4xy +4y 2+2xz +z 2+4yz ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=z y x z y x f 121242121) , ,(.(2) f =x 2+y 2-7z 2-2xy -4xz -4yz ; 解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-------=z y x z y x f 722211211) , ,(.(3) f =x 12+x 22+x 32+x 42-2x 1x 2+4x 1x 3-2x 1x 4+6x 2x 3-4x 2x 4.解⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛------=432143211021013223111211) , , ,(x x x x x x x x f . 26. 写出下列二次型的矩阵: (1)x x x ⎪⎭⎫ ⎝⎛=1312)(T f ;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=1222A . (2)x x x ⎪⎪⎭⎫⎝⎛=987654321)(Tf .解 二次型的矩阵为⎪⎪⎪⎭⎫⎝⎛=975753531A .27. 求一个正交变换将下列二次型化成标准形: (1) f =2x 12+3x 22+3x 33+4x 2x 3;解 二次型的矩阵为⎪⎪⎭⎫⎝⎛=320230002A . 由)1)(5)(2(320230002λλλλλλλ---=---=-E A ,得A 的特征值为λ1=2, λ2=5, λ3=1. 当λ1=2时, 解方程(A -2E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-0001002101202100002~E A ,得特征向量(1, 0, 0)T . 取p 1=(1, 0, 0)T . 当λ2=5时, 解方程(A -5E )x =0, 由⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-0001100012202200035~E A ,得特征向量(0, 1, 1)T . 取T )21 ,21,0(2=p .当λ3=1时, 解方程(A -E )x =0, 由⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=-000110001220220001~E A ,得特征向量(0, -1, 1)T . 取T )21 ,21 ,0(3-=p .于是有正交矩阵T =(p 1, p 2, p 3)和正交变换x =T y , 使f =2y 12+5y 22+y 32.(2) f =x 12+x 22+x 32+x 42+2x 1x 2-2x 1x 4-2x 2x 3+2x 3x 4.解 二次型矩阵为⎪⎪⎪⎭⎫⎝⎛----=1101111001111011A . 由2)1)(3)(1(1101111001111011--+=--------=-λλλλλλλλE A ,得A 的特征值为λ1=-1, λ2=3, λ3=λ4=1.当λ1=-1时, 可得单位特征向量T )21 ,21 ,21 ,21(1--=p .当λ2=3时, 可得单位特征向量T )21 ,21 ,21 ,21(2--=p . 当λ3=λ4=1时, 可得线性无关的单位特征向量T )0 ,21 ,0 ,21(3=p , T )21 ,0 ,21 ,0(4=p .于是有正交矩阵T =( p 1, p 2, p 3, p 4)和正交变换x =T y , 使f =-y 12+3y 22+y 32+y 42.28. 求一个正交变换把二次曲面的方程3x 2+5y 2+5z 2+4xy -4xz -10yz =1化成标准方程.解 二次型的矩阵为⎪⎪⎭⎫⎝⎛----=552552223A .由)11)(2(552552223||---=-------=-λλλλλλλE A , 得A 的特征值为λ1=2,λ2=11, λ3=0, .对于λ1=2, 解方程(A -2E )x =0, 得特征向量(4, -1, 1)T , 单位化得)231 ,231 ,234(1-=p .对于λ2=11, 解方程(A -11E )x =0, 得特征向量(1, 2, -2)T , 单位化得)32 ,32 ,31(2-=p .对于λ3=0, 解方程A x =0, 得特征向量(0, 1, 1)T , 单位化得)21 ,21,0(3=p . 于是有正交矩阵P =(p 1, p 2, p 3), 使P -1AP =diag(2, 11, 0), 从而有正交变换⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛w v u z y x 21322312132231031234,使原二次方程变为标准方程2u 2+11v 2=1.29. 明: 二次型f =x T A x 在||x ||=1时的最大值为矩阵A 的最大特征值. 证明 A 为实对称矩阵, 则有一正交矩阵T , 使得TAT -1=diag(λ1, λ2, ⋅ ⋅ ⋅, λn )=Λ成立, 其中λ1, λ2, ⋅ ⋅ ⋅, λn 为A 的特征值, 不妨设λ1最大. 作正交变换y =T x , 即x =T T y , 注意到T -1=T T , 有 f =x T A x =y T TAT T y =y T Λy =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2. 因为y =T x 正交变换, 所以当||x ||=1时, 有||y ||=||x ||=1, 即y 12+y 22+ ⋅ ⋅ ⋅ +y n 2=1.因此f =λ1y 12+λ2y 22+ ⋅ ⋅ ⋅ +λn y n 2≤λ1,又当y 1=1, y 2=y 3=⋅ ⋅ ⋅=y n =0时f =λ1, 所以f max =λ1.30. 用配方法化下列二次形成规范形, 并写出所用变换的矩阵. (1) f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3; 解 f (x 1, x 2, x 3)=x 12+3x 22+5x 32+2x 1x 2-4x 1x 3 =(x 1+x 2-2x 3)2+4x 2x 3+2x 22+x 32 =(x 1+x 2-2x 3)2-2x 22+(2x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==-+=323223211222x x y x y x x x y , 即⎪⎪⎩⎪⎪⎨⎧+-==+-=323223211221225y y x y x y y y x , 二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛--=12002102251C .(2) f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3; 解 f (x 1, x 2, x 3)=x 12+2x 32+2x 1x 3+2x 2x 3 =(x 1+x 3)2+x 32+2x 2x 3; =(x 1+x 3)2-x 22+(x 2+x 3)2.令 ⎪⎩⎪⎨⎧+==+=32322311x x y x y x x y , 即⎪⎩⎪⎨⎧+-==-+=323223211y y x y x y y y x ,二次型化为规范形f =y 12-y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫⎝⎛--=110010111C .(3) f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3. 解 f (x 1, x 2, x 3)=2x 12+x 22+4x 32+2x 1x 2-2x 2x 3.3223222212421)21(2x x x x x x -+++= 232322212)2(21)21(2x x x x x +-++=. 令 ⎪⎪⎩⎪⎪⎨⎧=-=+=333222112)2(21)21(2x y x x y x x y , 即⎪⎪⎩⎪⎪⎨⎧=+=--=33322321121222212121y x y y x y y y x , 二次型化为规范形f =y 12+y 22+y 32,所用的变换矩阵为⎪⎪⎭⎫ ⎝⎛--=10022011121C . 31. 设f =x 12+x 22+5x 32+2ax 1x 2-2x 1x 3+4x 2x 3为正定二次型, 求a .解 二次型的矩阵为⎪⎪⎭⎫⎝⎛--=5212111a a A , 其主子式为 a 11=1, 2111a a a -=, )45(5212111+-=--a a a a . 因为f 为正主二次型, 所以必有1-a 2>0且-a (5a +4)>0, 解之得054<<-a .32. 判别下列二次型的正定性:(1) f =-2x 12-6x 22-4x 32+2x 1x 2+2x 1x 3;。
第二章 矩 阵1、与矩阵乘积有关题目1)矩阵乘法一般不满足交换律2)与任何同阶矩阵可交换的矩阵是数量矩阵例1.设),,(),,(2121nnb b b a a a ==βα 求KTTA B A 及βαβα==,解⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==n n n n n n n n Tb a b a b a b a b a b a b a b a b a b b b a a a A 2122212121112121),,(βαnn n n T b a b a b a a a a b b b B +++=⎪⎪⎪⎪⎪⎭⎫⎝⎛== 22112121),,(βα⎪⎪⎪⎭⎫ ⎝⎛+=++=∂==--n n n k n n K n n T T T T T T T T T K b a b a b a b a b a b a b a b a A 11111111111)()()())(()()())(( βαββαβαβαβαβαβαβα例2.设⎪⎪⎪⎭⎫⎝⎛=321a a a α,Tα是α的转置,若⎪⎪⎪⎭⎫ ⎝⎛=111111111----T αα,则=ααT3解:⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛232313322212312121111111111a a a a a a a a a a a a a a a =----故3=Tαα练习:1.1 (1999数三)设⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,而2≥n 为正整数,则=--12n nA A 0解:022222=-时,故当A A n AA == 00)2(2222=⋅=->--n n A A A A n 时当 2、(1995数四)设n 维行向量⎪⎭⎫⎝⎛=21,0,,0,21 α,矩阵ααTI A -=,ααTI B 2+=,I 为n 阶单位矩阵,则AB = I2、与初等变换或初等矩阵相关的题目 重要引理:1)矩阵A 经过若干次初等变换化为B ,则称A 与B 等价2)A 与B 等价充要条件是⇔A 、B 同型且秩A =秩B ∃⇔可逆矩阵p,Q 使PAQ =B 3)初等矩阵均可逆,且),(),(1j i P j i P =- ))(())((11--=c i P c i P))(,())(,(1K j i P K j i P -=-.例3.(2001数三、四)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=44344241343332312423222114131211a a a a a a a a a a a a a a a a A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=41324344313233342122232411121314a a a a a a a a a a a a a a a a B⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,其中A 可逆,则=-1B C(A )211P P A - (B )211P A P - (C )121-A P P (D )112P A P -解:)(2112P AP B P AP B ==)(111121112111--------==A P P B A P P B 或 121-=A P P 112-=A P P例4.(1995数)设⎪⎪⎪⎭⎫ ⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a aa a a a a a a B ,⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有 (C )(A )BPAP =21 (B )B P AP =12 (C )B A P P =21 (D )B AP P =12解:B A r r r r e −−→−−−→−↔+122练习:2.1 (2001数三)设n 阶矩阵A 与B 等价,则必有 D (A )当.0A B A =时,≠ (B )当.-0A B A =时,≠ (C )当.00=时,B A ≠ (D )当.00=时,B A = 2.2.(2009数三)设A,P 均为3阶矩阵,且⎪⎪⎪⎭⎫ ⎝⎛=200010001AP P T,若),,(),,,(3221321ααααααα+==Q P ,则AQQT为A . (A )⎪⎪⎪⎭⎫⎝⎛200011012 (B )⎪⎪⎪⎭⎫⎝⎛200021011 (C )⎪⎪⎪⎭⎫⎝⎛200010002 (D )⎪⎪⎪⎭⎫⎝⎛200020001提示:⎪⎪⎪⎭⎫⎝⎛=100011001P Q2.3 (2011数三)设A 为3阶矩阵,将A的第二列加到第一列得矩阵B ,再交换B 的第二行与第三行得单位矩阵,记⎪⎪⎪⎭⎫⎝⎛=1000110011P ,⎪⎪⎪⎭⎫⎝⎛=010*******P ,则A = D .(A )21P P (B )211P P - (C )12P P (D )112-P P解:==⇒=--111212P P A E AP P 112-P P3、矩阵秩的运算或利用秩来求矩阵的参数 1)秩与行列式关系2)利用初等行(列)变换求秩 3)几个重要公式秩(A )=秩(A T )=秩(AA T ) 秩(A ±B )≤秩(A )+秩(B ) 秩(AB )≤min{秩A ,秩(B )}4)设A mxn ,B nxs ,若AB =0,则秩(A )+秩(B )≤n.5)矩阵左乘或右乘一个逆矩阵,其秩不变. 6)只有零矩阵的秩为零例5.求A 的秩,其中⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=1101001100001100001100101A解:⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-→⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-→10000100000100001100010111000100000100001100010111100011000020000110001011101001100001100011000101A∴秩A =3例6.(2001数三、四)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=K K K K A 111111111111,且秩(A )=3,则K = -3 .解:(舍去)或13)1)(3(3=-=⇒-+=K K K K A 练习:3.1.(1994数三)设A mxn ,C nxn 可逆,秩A =r ,则B =AC 的秩为r 1,则 C(A )r>r 1 (B )r<r 1 (C )r=r 1 (D )r 与r 1的关系依C 而定3.2(2007数)设矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=0000100001000010A ,则A 3为秩为 13.3.(2004数四)设⎪⎪⎪⎭⎫ ⎝⎛--=100001010A ,APPB 1-=,其中P 为三阶可逆矩阵,则B 2004-2A 2= 提示:EA A =⇒⎪⎪⎪⎭⎫ ⎝⎛=4211-1-解:故⎪⎪⎪⎭⎫⎝⎛-=-=-=-=---133222222122004122004A E A P P A P A P A B4、证明矩阵可逆n阶矩阵A可逆一般用以下充要条件1)∃n阶矩阵B,使AB=E或BA=E2)0≠A(最常用,最好用)3)秩(A)=n4)A的行或列向量组线性无关5)方程组AX=0只有零解6)A没有零特征值例7.设A、B均为n阶方阵,证明(1)若A+B=AB,则A-E可逆.(2)若E-AB可逆,则E-BA可逆,并求其逆.证:(1)由A+B=AB⇒A=(A-E)B⇒A -E+E=(A-E)B⇒E=(A-E)B-(A-E)=(A-E)(B-E)故A-E可逆,且它的逆矩阵为B-E (2)设C是E-AB的逆矩阵,即C(E-AB)=E 及(E-AB)C =E从而C-E=CAB 及C-E=ABCB (ABC )A =B (C -E )A即 BABCA =BCA -BA ⇒BCA (E -BA )=BA -E+E ⇒(E -BA )(E+BCA )=E⇒(E -BA )-1=E+BCA例8.(2008)设A 为n 阶非零矩阵,若A 3=0,则 C .(A )E -A 不可逆,E+A 不可逆 (B )E -A 不可逆,E+A 可逆(C )E -A 可逆,E+A 可逆 (D )E -A 可逆,E+A 不可逆练习4.1(2001数一)设矩阵 A 满足A 2+A-4E=0,其中E 为单位矩阵,则(A-E)-1= (A+2E)/24.2(1997数三、四)设A 是n 阶非奇异矩阵,α为维列向量,b 为常数,记分块矩阵⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-=b A Q A A I P TT ααα,||0*,其中*A 是矩阵A 的伴随矩阵,I 为阶单位矩阵(1)计算并简化PQ(2)证明:矩阵Q 可逆的充分必要条件是b A T≠-αα1.4.3(2003数四)设A,B 均为三阶方阵,E 为三阶单位矩阵,已知AB=2A+B ,1)(,202040202--⎪⎪⎪⎭⎫ ⎝⎛=E A B 求.5、求矩阵的逆及相关题目一般用初等变换求矩阵的逆,即)|()|(1-−−−→−A E E A 初等行变换,有时也用伴随矩阵和分块矩阵来求逆。
第二章 矩阵 习题精解1.设1)311212123A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111210101B -⎛⎫ ⎪=- ⎪ ⎪⎝⎭2)111a b c A c b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭,111a c B b b c a ⎛⎫ ⎪= ⎪ ⎪⎝⎭计算AB ,AB BA -.解 1)622610812AB -⎛⎫ ⎪= ⎪ ⎪-⎝⎭ 400410434BA ⎛⎫ ⎪= ⎪ ⎪⎝⎭222200442AB BA -⎛⎫⎪-= ⎪ ⎪--⎝⎭2)22222222223a b c a b c ac b AB a b c ac b a b c a b c a b c ⎛⎫+++++⎪=+++++ ⎪ ⎪++++⎝⎭222222a ac c b ab c c a BA a ac c b b c ab b a c b bc c c ac a ⎛⎫+++++ ⎪=+++++ ⎪ ⎪+++++⎝⎭33()ij AB BA a ⨯-= 其中11a b ac =-, 22212a a b c b ab c =++---,221322a b ac a c =+--21a c bc =-, 2222a ac b =-, 32223a a b c ab b c =++---23132a c a =--, 32a c bc =-, 33a b ab =-2.计算22111)310012⎛⎫ ⎪⎪ ⎪⎝⎭5322)42⎛⎫ ⎪--⎝⎭113)01n⎛⎫ ⎪⎝⎭ cos sin 4)sin cos nϕϕϕϕ-⎛⎫⎪⎝⎭()15)2,3,111⎛⎫⎪-- ⎪⎪-⎝⎭,()112,3,11⎛⎫ ⎪-- ⎪ ⎪-⎝⎭()1112132122313132336),,11a a a x x y a a a y a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭2111111117)11111111---⎛⎫ ⎪---⎪ ⎪--- ⎪ ⎪---⎝⎭,1111111111111111n---⎛⎫⎪--- ⎪ ⎪--- ⎪ ⎪---⎝⎭108)0100nλλλ⎛⎫ ⎪ ⎪ ⎪⎝⎭解 22117441)310943012334⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭532322)4248-⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭3)采用数学归纳法,可证1110101nn ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭事实上,当2n =时,有211120101⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭结论成立.当1n k =-时,归纳假设结论成立,即111110101k k --⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭于是当n k =时,有111111111111010101010101k k k k --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭即证1110101nn ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭成立.4)采用数学归纳法,可证cos sin cos sin sin cos sin cos nn n n n ϕϕϕϕϕϕϕϕ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭事实上,当2n =时,有22222cos sin cos sin cos sin sin cos 2cos sin cos sin ϕϕϕϕϕϕϕϕϕϕϕϕ-⎛⎫--⎛⎫=⎪⎪-⎝⎭⎝⎭cos 2sin 2sin 2cos 2ϕϕϕϕ-⎛⎫=⎪⎝⎭结论成立.当1n k =-时,归纳假设结论成立,即1cos sin cos(1)sin(1)sin cos sin(1)cos(1)k k k k k ϕϕϕϕϕϕϕϕ-----⎛⎫⎛⎫=⎪⎪--⎝⎭⎝⎭于是当n k =时,有1cos sin cos sin cos sin sin cos sin cos sin cos kk ϕϕϕϕϕϕϕϕϕϕϕϕ----⎛⎫⎛⎫⎛⎫=⎪⎪⎪⎝⎭⎝⎭⎝⎭cos(1)sin(1)cos sin sin(1)cos(1)sin cos k k k k ϕϕϕϕϕϕϕϕ----⎛⎫⎛⎫= ⎪ ⎪--⎝⎭⎝⎭1234x x x x ⎛⎫= ⎪⎝⎭其中1cos(1)cos sin(1)sin cos x k k k ϕϕϕϕϕ=---=同理可得2sin x k ϕ=-, 3sin x k ϕ=, 4cos x k ϕ=因而有cos sin cos sin sin cos sin cos nn n n n ϕϕϕϕϕϕϕϕ--⎛⎫⎛⎫=⎪⎪⎝⎭⎝⎭5)()12,3,1101⎛⎫ ⎪--= ⎪ ⎪-⎝⎭()123112,3,12311231-⎛⎫⎛⎫ ⎪ ⎪--=-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭6)()111211222212,,1a a b x y a a b b b c ⎛⎫ ⎪ ⎪ ⎪⎝⎭111211222212(,,)1x a x a y b a x a y b b x b y c y ⎛⎫ ⎪=++++++ ⎪ ⎪⎝⎭2211122212222a x a xy a y b x b y c =+++++7)注意到221111400010001111040001002111100400010111100040001---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪--- ⎪ ⎪⎪== ⎪ ⎪ ⎪--- ⎪ ⎪ ⎪⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭这意味着,若令1111111111111111A ---⎛⎫⎪---⎪= ⎪--- ⎪ ⎪---⎝⎭则222A E =.下面对1111111111111111nn A ---⎛⎫ ⎪---⎪= ⎪--- ⎪ ⎪---⎝⎭分两种情形讨论①n 为偶数,即2n k =,于是222()22n k k k n A A A E E ====②n 为奇数,即21n k =+,于是2122()22n k k k n A A A A EA A +====故12,22,21n nn E n kA A n k -⎧==⎨=+⎩8)采用数学归纳法,可证121(1)1020100000nn n nnn nn n n n λλλλλλλλλ----⎛⎫⎪⎛⎫ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭事实上,当1n =时,结论显然成立,现在归纳假设1231121(1)(2)(1)102010(1)0000n n n n n n n n n n n λλλλλλλλλ---------⎛⎫- ⎪⎛⎫ ⎪⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭⎪⎝⎭于是123121(1)(2)(1)10102010(1)01000000n n n nn n n n n n n λλλλλλλλλλλλ--------⎛⎫- ⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭121(1)2000n n n nn nn n n n λλλλλλ----⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭即证结论成立.3.设1011()m m m m f a a a a λλλλ--=++++,A 是一个n n ⨯矩阵,定义1011()m m m m f A a A a A a A a E --=++++1)2()1f λλλ=--,211312110A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭2)2()53f λλλ=-+,2133A -⎛⎫= ⎪-⎝⎭试求()f A . 解 1)2211211100()312312010110110001f A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭8242111001125312010101110001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭ 513803212⎛⎫ ⎪= ⎪ ⎪--⎝⎭2)212110()53333301f A --⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭75105301512151503--⎛⎫⎛⎫⎛⎫=-+ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ 0000⎛⎫= ⎪⎝⎭4.如果AB BA =,矩阵B 就称为A 与可交换,设1)1101A ⎛⎫= ⎪⎝⎭ 2)100012312A ⎛⎫⎪= ⎪ ⎪⎝⎭3)010001000A ⎛⎫⎪= ⎪ ⎪⎝⎭求所有与A 可交换的矩阵.解 1)若记0100A E ⎛⎫=+⎪⎝⎭,并设a b B c d ⎛⎫= ⎪⎝⎭与A 可交换,即01010000a b a b E E c d c d ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭于是01010000a b a b c d c d ⎛⎫⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭所以00000c d a ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭故0,,c a d b ==任意,从而所有与A 可交换的矩阵为0a b B a ⎛⎫= ⎪⎝⎭其中,a b 为任意常数.2)同理,记000002321A E ⎛⎫ ⎪=+ ⎪ ⎪⎝⎭并设111222a b c B a b c a b c ⎛⎫ ⎪= ⎪ ⎪⎝⎭ 与A 可交换,即111111222222000000002002311311a b c ab c E a b c a b c E a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+=+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭于是111111222222000000002002311311a b c ab c a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭所以22211111212122222000322223233332cc b c a b c c c b c a a ab b bc c c c c b c +⎛⎫⎛⎫⎪ ⎪=+⎪ ⎪ ⎪ ⎪+++++++⎝⎭⎝⎭比较对应的(,)i j 元,可得1113a b a =-, 0b =, 0c =2123a c =,2112b c =,21112c b c =+于是所有与A 可交换的矩阵为1111111111003311222b a B a b c c c b c ⎛⎫- ⎪⎪= ⎪ ⎪+ ⎪⎝⎭ 其中111,,a b c 为任意常数.3)设111222a b c B a b c a b c ⎛⎫⎪= ⎪ ⎪⎝⎭与A 可交换,即 111111222222010010001001000000ab c ab c a b c a b c a b c a b c ⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪⎪= ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭于是11111122222200000a b c a b c a b c a b c ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭故得1220a a b ===,12a b c ==,1b c =所以所有与A 可交换的矩阵为000a b c B a b a ⎛⎫ ⎪= ⎪ ⎪⎝⎭其中,,a b c 为任意常数. 5.设12000000n a a A a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭其中i j a a ≠(当i j ≠时)(,1,2,,i j n =),证明:与A 可交换的矩阵只能是对角矩阵.证 设111212122212n n n n nn x x x x x x B x x x ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭与A 可交换,于是由 111112111111121122122222221222221212n n n n n n n n n nn n n n n n nn a x a x a x a x a x a x a x a x a x a x a x a x AB BA a xa x a x a x a x a x ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪===⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭有(,1,,)i j j ij a x a x i j n ==即()0i j ij a a x -=(当i j a a ≠时).有因为i j a a ≠,所以0()ij x i j =≠.于是,与A 可交换的矩阵B 只能是对角矩阵1122nn a a a ⎛⎫⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ 6.设1122r r a E a E A a E ⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭其中i j a a ≠(当i j ≠时)(,1,2,,i j r =),i E 是i n 阶单位矩阵,证明:与A 可交换的矩阵只能是准对角矩阵12r A A A ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中i A 是i n 阶矩阵(,1,2,,i j r =). 证 设111212122212r r r r rr B B B B B B B B B B ⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭与A 可交换(其中ij B 是i j n n ⨯阶矩阵),则由AB BA =,可得(,1,)i i ij ij i i a E B B a E i j r ==当i j ≠时,由i ij ij i a B B a =及i j a a ≠,因而必有0ij B =.于是,与A 可交换的矩阵B 只能是准对角矩阵1122rr B B B ⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭其中ii B 是i n 阶矩阵(,1,2,,i j r =). 7.用ij E 表示i 行j 列的元素(即(,)i j 元)为1,而其余元素全为零的n n ⨯矩阵,而()ij n n A a ⨯=.证明:1)如果1212AE E A =,那么当1k ≠时10k a =,当2k ≠时20k a =; 2)如果ij ij AE E A =,那么当k i ≠时0ki a =,当k j ≠时0jk a =,且ii jj a a =;3)如果A 与所有的n 阶矩阵可交换,那么A 一定是数量矩阵,即A aE =.证 1)因为12212222112121000000000000n n a a a a a AE E A a⎛⎫⎛⎫⎪ ⎪⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭所以212320n a a a ====,213110n a a a ====即当1k ≠时10k a =,当2k ≠时20k a =.2)因为j 列1212000000000000000i i ij ij j j jn nia a AE E A i a a a a ⎛⎫⎛⎫ ⎪⎪ ⎪⎪⎪=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭行所以当k i ≠时0ki a =,当k j ≠时0jk a =且ii jj a a =.3)A 与任何矩阵相乘可交换,必与ij E 相乘可交换,于是由ij ij AE E A =得ii jj a a =(,1,2,,i j n =),0()ij a i j =≠ 因此A 是数量矩阵.8.如果,AB BA AC CA ==,证明:()(),A B C B C A +=+()()A BC BC A =.证 ()()A B C AB AC BA CA B C A +=+=+=+()()()()()()A BC AB C BA C B AC B CA BC A =====9.如果1()2A B E =+,证明:2A A =当且仅当2B E =. 证 充分性.若2B E =,因为22211[()](2)24A B E B B E =+=++11(22)()42B E B E =+=+ A =所以2A A =必要性.若2A A =,则11(22)()42B E B E +=+ 即2111442B E E += 即证2B E =.10.矩阵称A 为对称的,如果A A '=.证明:如果A 是实对称矩阵,且20A =,那么0A =.证 设111211222212n n n n nn a a a a a a A aa a ⎛⎫⎪ ⎪= ⎪ ⎪ ⎪⎝⎭则2221112122221222222212******nnn n nn a a a a a a A a a a ⎛⎫+++⎪+++⎪= ⎪ ⎪ ⎪+++⎝⎭由20A =有2222212,10(1,2,,)i i ii i i in a a a a a i n +++++++==因而必有12,10(1,2,,)i i ii i i in a a a a a i n +++++++==即证0A =11.设,A B 都是n n ⨯对称矩阵,证明:AB 也对称当且仅当,A B 可交换.证 当AB BA =时,有()()AB A B BA AB ''''===所以AB 是对称矩阵反之,当()AB AB '=时,有()AB AB B A BA '''===12.矩阵A 称为反对称的,如果A A '=-,证明:任一n n ⨯矩阵都可表为一对称矩阵与一反对称矩阵之和.证 设A 是任一n n ⨯矩阵,因为111111()()222222A A A A A A A A A ''''=++-=++-且1()2A A '+是对称矩阵,1()2A A '-是反对称矩阵,所以结论成立. 13.设12(0,1,2)k k k k n s x x x k =+++=2ij i j a s +-=(,1,2,)i j n =.证明:证 由题设知01112122n n ij n n n s s s s s s a s s s ---=11112211111222111n n nnn n nnnn n n n n n n nnnn x x x x x x x x x x x x x x x x ------++++++++++=++++++11111222111112111111n n n n n n n n nnx x x x x x x x x x x x ------=2()()()j i j i i j i ji ji jx x x x x x <<<=--=-∏∏∏14.设A 是n n ⨯矩阵,证明:存在一个n n ⨯非零矩阵B 使0AB =的充分必要条件是0A =.证 充分性.若0A =,则齐次方程组0AX =有非零解12(,,,)n X b b b '=只要取120000000nb b B b ⎛⎫ ⎪ ⎪=≠ ⎪ ⎪ ⎪⎝⎭即可.必要性.设12(,,,)0n B B B B =≠,使0AB =,这里12,,,n B B B 是B的列向量.不失一般性,设10B ≠,则由0AB =,得12(,,,)0n AB AB AB =因此,10AB =,即0AX =有非零解,从而0A =15.设A 是n n ⨯矩阵,如果对任一n 维向量12(,,,)n X x x x '=都有0AX =,那么0A =.证 证法 1 由题设知,n 维向量空间中的所有向量都是齐次线性方程组0AX =的解,故方程组的基础解系含有n 个线性无关的解向量,所以()0rank A =,即证0A =16设B 为一r r ⨯矩阵,C 为r n ⨯矩阵,且()rank C r =.证明: 1) 如果0BC =,那么0B =;2) 如果BC C =,那么B E =证 1)若0BC =,设()ij r r B b ⨯=,()ij r n C c ⨯=,因()rank C r =,不失一般性,可设11110rr rrc c c c ≠ 由0BC =,得11122111122222112200(1,2,,)i i ir r i i ir r i r i r ir rr b c b c b c b c b c b c i r b c b c b c +++=⎧⎪+++=⎪⎨=⎪⎪+++=⎩因为该齐次方程组的系数行列式不等于零,故它只有惟一零解,即120(1,2,)i i ir b b b i r =====因而0B =.2) 若BC C =,则()0BC EC B E C -=-=由1)知0B E -=,因此B E =. 17.证明:()()()rank A B rank A rank B +≤+证 设12(,,,)n A A A A =,12(,,,)n B B B B =,则 1122()(,,,)n n A B A B A B A B +=+++若121,,,r i i i A A A 与122,,,r j j j B B B 分别是A 与B 的列向量组的极大线性无关组,则有112211112222r rr rt t i t i t i t t j t j t j A k A k A k A B l B l B l B =+++=+++ (1,2,,)t n =于是11111122r r r r t t t i t i t j t j A B k A k A l B l B +=+++++(,1,2,,)i j n =即A B +的列向量组可由1112,,,,,r r i i j j A A B B 线性表出,故()()()rank A B rank A rank B +≤+18.设,A B 为n n ⨯矩阵,证明:如果0AB =,那么()()rank A rank B n +≤证 设B 的列向量组为12,,,n B B B ,则1212(,,,)(,,,)0n n AB A B B B AB AB AB ===故有120n AB AB AB ====即方程组0AX =有n 组解12,,,n B B B .若()rank A r =,则12,,,n B B B 可由n r -个线性无关的解向量线性表出,于是()rank B n r =-.因此()()()rank A rank B r n r n +≤+-=.19.证明:如果0kA =,那么121()k E A E A A A ---=++++证21()()k E A A A E A -++++-212k k E A A A A A A -=++++----2211()()()k k k E A A A A A A A --=+-+-++--E =即证121()k E A E A A A ---=++++20.求1A -,设1)a b A c d ⎛⎫= ⎪⎝⎭,1ad bc -= 1112)210110A -⎛⎫⎪= ⎪ ⎪-⎝⎭2233)110121A ⎛⎫ ⎪=- ⎪ ⎪-⎝⎭ 123423124)11111026A ⎛⎫⎪⎪= ⎪- ⎪⎪--⎝⎭ 111111115)11111111A ⎛⎫ ⎪-- ⎪= ⎪-- ⎪ ⎪--⎝⎭ 334306116)54212332A --⎛⎫⎪⎪= ⎪⎪⎪⎝⎭135701237)0012001A -⎛⎫ ⎪-⎪= ⎪⎪ ⎪⎝⎭ 2120032008)57181316A ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪----⎝⎭001103149)27611221A -⎛⎫ ⎪⎪= ⎪- ⎪ ⎪-⎝⎭ 210000210010)002100002100002A ⎛⎫⎪⎪ ⎪=⎪⎪ ⎪⎝⎭解 1)1d b A c a --⎛⎫=⎪-⎝⎭2)对(|)A E 作行初等变换,有111100111100210010012210110001021101--⎛⎫⎛⎫⎪ ⎪→-- ⎪ ⎪ ⎪ ⎪---⎝⎭⎝⎭111000331011101101221001003300332121001133⎛⎫ ⎪-⎛⎫ ⎪ ⎪⎪→--→- ⎪⎪ ⎪-- ⎪⎝⎭⎪-- ⎪⎝⎭所以1110331103321133A -⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪-- ⎪⎝⎭3)对(|)A E 作行初等变换,可得223100043120110010110010121001011011-⎛⎫⎛⎫ ⎪ ⎪-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ 101021100143011011010153001164001164--⎛⎫⎛⎫ ⎪ ⎪→→-- ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭所以1143153164A ---⎛⎫⎪=-- ⎪ ⎪-⎝⎭4)对(|)A E 作行初等变换,可得12341000231201001111001010260001⎛⎫⎪⎪⎪- ⎪⎪--⎝⎭11110010012510100114012001350011-⎛⎫⎪-⎪→ ⎪-- ⎪⎪----⎝⎭10161020012510100031111000101021---⎛⎫ ⎪- ⎪→ ⎪---- ⎪⎪--⎝⎭1062441010535520001455300101021---⎛⎫⎪-- ⎪→ ⎪--- ⎪⎪--⎝⎭10002261617010017520130010102100014153--⎛⎫ ⎪-- ⎪→ ⎪-- ⎪ ⎪--⎝⎭所以12261617175201310214153A ---⎛⎫⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭5)对(|)A E 作行初等变换,有11111000111101001111001011110001⎛⎫⎪-- ⎪⎪-- ⎪⎪--⎝⎭11111000002211000202101002201001⎛⎫⎪--- ⎪→⎪--- ⎪⎪---⎝⎭1110100022110101002211001100221100110022⎛⎫ ⎪ ⎪ ⎪- ⎪→ ⎪ ⎪- ⎪ ⎪ --⎪⎝⎭111001002211010100221100110022111100022222⎛⎫- ⎪ ⎪ ⎪ ⎪→ ⎪ ⎪ ⎪ ⎪ ---⎪⎝⎭ 111110004444111101004444111100104444111100014444⎛⎫ ⎪ ⎪ ⎪-- ⎪→ ⎪ ⎪-- ⎪ ⎪ --⎪⎝⎭所以11111444411114444A 1111444411114444-⎛⎫ ⎪ ⎪ ⎪-- ⎪=⎪ ⎪-- ⎪ ⎪--⎪ ⎝⎭6)对(|)A E 作行初等变换,有3443100010007512190611010001003258542100100010413069111233200010001594399158----⎛⎫⎛⎫⎪⎪-- ⎪ ⎪→⎪ ⎪-- ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭所以17512193258413069111594399159A ---⎛⎫ ⎪--⎪= ⎪-- ⎪ ⎪--⎝⎭7)因为1A =,所以1*13338012700120001A A ----⎛⎫⎪-⎪== ⎪- ⎪ ⎪⎝⎭8)对(|)A E 作行初等变换,有100021002100100001003200320001000010573457180010111316000100012222-⎛⎫⎛⎫⎪-⎪⎪ ⎪→ ⎪--- ⎪ ⎪ ⎪⎪⎪----- ⎪⎝⎭⎝⎭1210032005734112222A --⎛⎫ ⎪- ⎪= ⎪--- ⎪⎪- ⎪⎝⎭9)因为11213141122232421323334314243444137207351093363336A A A A A A A A A A A A A A A A ==-==-===-==-=-==-=-=-==-且6A =-,所以11171062637155626331112221111222A -⎛⎫---⎪ ⎪ ⎪---⎪=⎪ ⎪- ⎪ ⎪ ⎪-⎝⎭10)因为21000100000210001000002100010000021000100000200001⎛⎫⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭1111110000248163211110100002481611100100002481100010000241000012⎛⎫-- ⎪ ⎪ ⎪-- ⎪⎪ ⎪→- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭所以111111248163211110248161110024811000241002A -⎛⎫--⎪ ⎪ ⎪-- ⎪ ⎪ ⎪=- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪⎝⎭21.设00A X C⎛⎫=⎪⎝⎭已知11,A C --存在,求1X -.解 设111212122B B XB B -⎛⎫= ⎪⎝⎭,则 11122122212211120000B B AB AB A EB B CB CB CE ⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 因此21AB E =, 220AB =左乘1A -,得121B A -=, 220B =又由于110CB =, 12CB E =左乘1C -得110B =, 112B C -=故11100C XA ---⎛⎫= ⎪⎝⎭22.设1210000000000n na a X a a -⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪⎝⎭其中0(1,2,,)i a i n ≠=,求1A -.解 记00n A X a ⎛⎫=⎪⎝⎭,其中 121000000n a a A a -⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭则11100n a XA---⎛⎫= ⎪⎝⎭而1111211000000n a a A a -----⎛⎫⎪⎪= ⎪ ⎪ ⎪⎝⎭故111100010000001000n n a a X a --⎛⎫ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭23.求矩阵X ,设25461)1321X -⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭1111112)022*********X --⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭210001111121000111012003)001100021000100012X ⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎝⎭1111114)022*********X --⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭解 1)12546354613211221X ----⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭22308-⎛⎫= ⎪⎝⎭2)1111111022110110211X ---⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭112363111111110363211111333⎛⎫⎪-⎛⎫ ⎪ ⎪ ⎪=- ⎪ ⎪⎪ ⎪⎝⎭ ⎪- ⎪⎝⎭1111621110622103⎛⎫⎪ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪⎝⎭3)121000111112100011101200001100021000100012X -⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎪⎝⎭ 210001100012100011000120011000010002100012⎛⎫⎪-⎛⎫ ⎪⎪ ⎪- ⎪= ⎪ ⎪- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭111000111100000011000012--⎛⎫⎪-- ⎪⎪=⎪- ⎪ ⎪⎝⎭4)1111111110022211110X ---⎛⎫⎛⎫ ⎪⎪= ⎪⎪ ⎪⎪-⎝⎭⎝⎭11211121100012111012⎛⎫ ⎪-⎛⎫⎪ ⎪=- ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪⎝⎭11411123242⎛⎫ ⎪ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭24.证明:1)如果A 可逆对称(反对称),那么1A -也对称(反对称); 2)不存在奇数阶的可逆反对称矩阵。