2016-2017年山东济南一中高一(上)数学期末试卷及答案
- 格式:doc
- 大小:1.35 MB
- 文档页数:16
山东省济南市2016—2017学年高一上学期期末考试数学试题第I 卷(选择题 共60分)一、选择题(本大题共12小题,每小题5 分,共 60分. ) 1. 已知{}{}|10,2,1,0,1A x x B =+>=--,则()R A B = ð( ) A .{}0,1B .{}2-C .{}1,0,1-D .{}2,1--2. 已知□ABCD 的三个顶点(1,2),(3,1),(0,2)A B C --,则顶点D 的坐标为( ) A .()3,2-B .()0,1-C .()5,4D .()1,4--3. 函数()()1lg 11f x x x=++-的定义域 ( ) A. (),1-∞-B. ()1,+∞C. ()()1,11,-+∞D.(),-∞+∞4. 平面α截球O 的球面所得圆的半径为1, 球心O 到平面α的距离为2,则此球的体积为( ) A .6πB .43πC .46πD .63π5. 函数2()ln f x x x=-的零点所在大致区间是 ( ) A .()2,3B .()1,2C . 11,e ⎛⎫ ⎪⎝⎭D .(),e +∞6. 设l 是直线,βα,是两个不同的平面( ) A. 若l ∥α,l ∥β,则α∥β B. 若l ∥α,l ⊥β,则α⊥β C. 若α⊥β,l ⊥α,则l ⊥βD. 若α⊥β,l ∥α,则l ⊥β7. 直线70x ay +-=与直线(1)2140a x y ++-=互相平行,则a 的值是 ( ) A. 1B. -2C. 1或-2D. -1或28. 下列函数是偶函数且在),0(∞+上是增函数的是( )A.32x y = B.x y )21(= C. x y ln = D. 21y x =-+9.已知ABC ∆,5,3,4===AC BC AB ,现以AB 为轴旋转一周,则所得几何体的表面积( )A .24πB .21π C .33πD .39π10.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34xe +11.已知,,若0)2()1(<⋅g f ,那么与在同一坐标系内的图像可能是( )12. 若函数()221(01xx ax x f x a ax ⎧+-≤⎪=>⎨->⎪⎩,且1)a ≠在()0,+∞上是增函数,则a 的取值范围是( )A .1(0,)2B .(0,1)C .1(0,]2D .1[,1)2二、填空题(本大题共6小题,每小题5分,共30分) 13. 已知函数()f x x α=的图像过点(2,则(9)f =14.计算20211()log (2)24-++-= 15. 半径为R 的半圆卷成一个圆锥,则它的体积为 .16. 如图是一个柱体的三视图,它的体积等于其底面积乘以高,该柱体的体积等于 .17. ()()=+=+--k m y kx m 对称,则关于和点03,12,1()xf x a =()log (01)a g x x a a =≠>且()f x ()gx18. 已知R 上的偶函数)(x f 在),0[+∞单调递增,若)13()1(-<+m f m f ,则实数m 的取值范围是 .三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤)19. 已知全集U R =,1|242x A x ⎧⎫=<<⎨⎬⎩⎭,{}3|log 2B x x =≤. (Ⅰ)求A B ; (Ⅱ)求()U C A B .20. 已知正方形的中心为()1,0-,其中一条边所在的直线方程为320x y +-=.求其他三条边所在的直线方程.21. 已知定义在R 上的奇函数)(x f ,当0>x 时,x x x f 2)(2+-=(1)求函数)(x f 在R 上的解析式; (2)写出单调区间(不必证明))(x f22. 在三棱柱ABC -111A B C 中,侧棱与底面垂直,090BAC ∠=,1AB AA =,点,M N 分别为1A B 和11B C 的中点.(1) 证明:1A M ⊥平面MAC ; (2) 证明://MN 平面11A ACC .23. 已知函数过点. (1)求实数a ;(2)若函数,求函数的解析式;(3)在(2)的条件下,若函数,求在的最小值()m h.()1,(01)x af x aa a -=+>≠且1,22()1()()12g x f x =+-()g x ()(2)(1)F x g x mg x =--()F x []-1,0x ∈参考答案一、选择题二、填空题 13. 3 14. 3 15.3243R π 16. 33 17. 518. 01<>m m 或 三、解答题19.解:(Ⅰ){}|12A x x =-<< -----------------------------------2分{}|09B x x =<≤ -----------------------------------4分 {}|02A B x x =<< ---------------------------------6分(Ⅱ){}|19A B x x =-<≤ ---------------------------------9分{}9()|1U x C A B x x >=≤- 或 ----------------------------------12分20.解:设其中一条边为03=++D y x 则=++-2231|1|D 2231|21|+--,解得D=4或-2(舍)043=++∴y x 5分设另外两边为03=+-E y x=++2231|3|E 2231|21|+--,解得E =0或-606303=--=-∴y x y x 或∴其他三边所在直线方程分别为043=++y x ,03=-y x ,063=--y x 12分21.解(1)设x <0,则-x >0, x x x x x f 2)(2)()(22--=-+--=-. 3分 又f (x )为奇函数,所以f (-x )=-f (x ). 于是x <0时x x x f 2)(2+= 5分所以⎪⎩⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f 6分(2)由⎪⎩⎪⎨⎧<+=>+-=)0(2)0(0)0(2)(22x x x x x x x x f可知()f x 在[1,1]-上单调递增,在(,1)-∞-、(1,)+∞上单调递减 12分 22.(1) 证明:由题设知,11ABC AC ABC AC A A A A ⊥⊂∴⊥ 面面, 又 090BAC ∠=AC AB ∴⊥1AA ⊂平面11AA BB ,AB ⊂平面11AA BB ,1AA ⋂AB A =AC ∴⊥平面11AA BB ,1A M ⊂平面11AA BB∴1AM AC ⊥. 又 四边形11AA BB 为正方形,M 为1A B 的中点,∴1A M ⊥MAAC MA A ⋂=,AC ⊂平面MAC ,MA ⊂平面MAC1A M ∴⊥平面MAC …………6分(2)证明: 连接11,,AB AC 由题意知,点,M N 分别为1AB 和11B C 的中点,1//MN AC ∴.又MN ⊄平面11A ACC ,1AC ⊂平面11A ACC ,//MN ∴平面11A ACC . …………12分 23.解:(1)由已知得:-------3分121122a aa -+==,解得,11()22111(2)()()1()11=()5222x x g x f x +-=+-=-+ 分2122221111()()()()2()22221()[1,2]2()72x x x x x F x m m t t y t mt t m m -=-=-∴=∈∴=-=-- (3),令,, ,分[]2min 1211128m y t mt t y m ≤=-∴==- ①当时,在,2单调递增,时,,分2min 129m t m y m <<==- ②当时,当时,;分[]2min 221,224410m y t mt t y m ≥=-∴==- ③当时,在单调递减,当时,;分2121()[1,0]()121244 2.m m F x x h m m m m m -≤⎧⎪∈-=-<<⎨⎪-≥⎩,,综上所述,在最小值,,,分,。
2015-2016学年山东省济南一中、济南外国语、济钢高中、济南中学联考高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4.00分)已知全集U={0,1,2,3},A={1,3},则集合∁U A=()A.{0}B.{1,2}C.{0,2}D.{0,1,2}2.(4.00分)空间中,垂直于同一条直线的两条直线()A.平行B.相交C.异面D.以上均有可能3.(4.00分)已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.164.(4.00分)函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1]C.[﹣2,1)D.[﹣2,﹣1]5.(4.00分)点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.26.(4.00分)已知圆,圆,则两圆位置关系是()A.相交B.内切C.外切D.相离7.(4.00分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.﹣3 B.﹣1 C.1 D.38.(4.00分)函数y=的值域是()A.R B.[,+∞)C.(2,+∞)D.(0,+∞)9.(4.00分)若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是()A.cm3B.cm3C.cm3D.cm310.(4.00分)已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是()A.(3,5) B.(3,+∞)C.(2,+∞)D.(2,4]二、填空题:本大题共5小题,每小题4分,共20分.11.(4.00分)计算lg25+lg2lg5+lg2=.12.(4.00分)已知直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,则实数a=.13.(4.00分)设g(x)=2x+3,g(x+2)=f(x),则f(x)=.14.(4.00分)已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为.15.(4.00分)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤.16.(8.00分)设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.17.(8.00分)已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;18.(10.00分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(Ⅰ)求函数f(x)的零点;(Ⅱ)若函数f(x)的最小值为﹣4,求a的值.19.(10.00分)已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.20.(12.00分)三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.(1)求证:平面C1CD⊥平面ABC;(2)求证:AC1∥平面CDB1;(3)求三棱锥D﹣CAB1的体积.21.(12.00分)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.2015-2016学年山东省济南一中、济南外国语、济钢高中、济南中学联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4.00分)已知全集U={0,1,2,3},A={1,3},则集合∁U A=()A.{0}B.{1,2}C.{0,2}D.{0,1,2}【解答】解:∵全集U={0,1,2,3},A={1,3},∴集合∁U A={0,2},故选:C.2.(4.00分)空间中,垂直于同一条直线的两条直线()A.平行B.相交C.异面D.以上均有可能【解答】解:在空间,垂直于同一条直线的两条直线,有可能平行,相交或者异面;如图长方体中直线a,b都与c垂直,a,b相交;直线a,d都与c垂直,a,d异面;直线d,b都与c垂直,b,d平行.故选:D.3.(4.00分)已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.16【解答】解:函数f(x)=xα 的图象经过点,故有2α=,∴α=﹣.∴f(4)===,故选:B.4.(4.00分)函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1]C.[﹣2,1)D.[﹣2,﹣1]【解答】解:根据题意可得解得﹣2<x≤1所以函数的定义域为(﹣2,1]故选:B.5.(4.00分)点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.2【解答】解:由题意可知:过O作已知直线的垂线,垂足为P,此时|OP|最小,则原点(0,0)到直线x+y﹣4=0的距离d==2,即|OP|的最小值为2.故选:B.6.(4.00分)已知圆,圆,则两圆位置关系是()A.相交B.内切C.外切D.相离【解答】解:由于圆C1:x2+y2﹣4x﹣6y+9=0,即(x﹣2)2+(y﹣3)2=16,表示以C1(2,3)为圆心,半径等于2的圆.圆C2:x2+y2+12x+6y﹣19=0,即(x+6)2+(y+3)2=64,表示以C2(﹣6,﹣3)为圆心,半径等于8的圆.由于两圆的圆心距等于=10=8+2,故两个圆外切.7.(4.00分)设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.﹣3 B.﹣1 C.1 D.3【解答】解:∵当x≤0时,f(x)=2x2﹣x,∴f(﹣1)=2(﹣1)2﹣(﹣1)=3,又∵f(x)是定义在R上的奇函数∴f(1)=﹣f(﹣1)=﹣3故选:A.8.(4.00分)函数y=的值域是()A.R B.[,+∞)C.(2,+∞)D.(0,+∞)【解答】解:令t=﹣x2+2x=﹣(x﹣1)2+1,则y=.由于t≤1,∴y≥=,故选:B.9.(4.00分)若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是()A.cm3B.cm3C.cm3D.cm3【解答】解:由三视图可知该几何体为正方体去掉一个三棱柱得到的几何体.正方体的边长为1,去掉的三棱柱底面为等腰直角三角形,直角边为,∴剩余几何体的体积为13﹣=.故选:A.10.(4.00分)已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是()A.(3,5) B.(3,+∞)C.(2,+∞)D.(2,4]【解答】解:∵y=f(x+2)是偶函数,∴f(﹣x+2)=f(x+2),则函数f(x)关于x=2对称,则f(x)=f(4﹣x).若x>2,则4﹣x<2,∵当x<2时,f(x)=|2x﹣1|,∴当x>2时,f(x)=f(4﹣x)=|24﹣x﹣1|,则当x≥4时,4﹣x≤0,24﹣x﹣1≤0,此时f(x)=|24﹣x﹣1|=1﹣24﹣x=1﹣16•,此时函数递增,当2<x≤4时,4﹣x>0,24﹣x﹣1>0,此时f(x)=|24﹣x﹣1|=24﹣x﹣1=16•﹣1,此时函数递减,所以函数的递减区间为(2,4],故选:D.二、填空题:本大题共5小题,每小题4分,共20分.11.(4.00分)计算lg25+lg2lg5+lg2=1.【解答】解:lg25+lg2lg5+lg2=(lg5+lg2)lg5+lg2=lg5+lg2=lg10=1,故答案为:112.(4.00分)已知直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,则实数a=.【解答】解:∵直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,∴斜率之积等于﹣1,他们的斜率分别为和,∴×=﹣1,∴a=,故答案为.13.(4.00分)设g(x)=2x+3,g(x+2)=f(x),则f(x)=2x+7.【解答】解:∵g(x)=2x+3,g(x+2)=f(x),∴f(x)=g(x+2)=2(x+2)+3=2x+7故答案为:2x+714.(4.00分)已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为4π.【解答】解:因为一个正方体的顶点都在球面上,它的棱长为2,所以正方体的外接球的直径就是正方体的对角线的长度:2.所以球的半径为:.所求球的体积为:=4π.故答案为:4π.15.(4.00分)圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是x2+(y﹣5)2=25.【解答】解:圆心在y轴上且过点(3,1)的圆与x轴相切,设圆的圆心(0,r),半径为r.则:.解得r=5.所求圆的方程为:x2+(y﹣5)2=25.故答案为:x2+(y﹣5)2=25.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤.16.(8.00分)设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.【解答】解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…(2分)所以A∩B={x|2≤x<3}…(4分)(2)因为B∪C=C,所以B⊆C…(6分)所以a﹣1≤2,即a≤3…(8分)17.(8.00分)已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.【解答】解:(Ⅰ)因为,…(2分)所以由点斜式得直线l的方程4x+3y+1=0…(4分)(Ⅱ)因为AB的中点坐标为(5,﹣2),AB的垂直平分线斜率为…(6分)所以由点斜式得AB的中垂线方程为3x﹣4y﹣23=0…(8分)18.(10.00分)已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(Ⅰ)求函数f(x)的零点;(Ⅱ)若函数f(x)的最小值为﹣4,求a的值.【解答】解:(Ⅰ)要使函数有意义:则有,解之得:﹣3<x<1…(2分)函数可化为由f(x)=0,得﹣x2﹣2x+3=1即x2+2x﹣2=0,∵,∴f(x)的零点是…(5∵﹣3<x<1,∴0<﹣(x+1)2+4≤4…(7分)∵0<a<1,∴即f(x)min=log a4由log a4=﹣4,得a﹣4=4,∴…(10分)19.(10.00分)已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.【解答】解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有.解得.(2)联立方程并消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.设此方程的两根分别为x1、x2,所以x1+x2=﹣,x1x2=则AB===2两边平方并代入解得:a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.另解:圆心到直线的距离为d=,AB=2=2,可得d=,解方程可得a=﹣7或a=﹣1,20.(12.00分)三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.(1)求证:平面C 1CD⊥平面ABC;(2)求证:AC1∥平面CDB1;(3)求三棱锥D﹣CAB1的体积.【解答】(1)证明:∵CC1⊥平面ABC,又CC1⊂平面C1CD,∴平面C1CD⊥平面ABC;(2)证明:连结BC1,交B1C于点O,连结DO.则O是BC1的中点,DO是△BAC1的中位线.∴DO∥AC1.∵DO⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1;(3)解:∵CC1⊥平面ABC,BB1∥CC1,∴BB1⊥平面ABC.∴BB1为三棱锥D﹣CBB1的高.=.∴三棱锥D﹣CAB1的体积为.21.(12.00分)已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.【解答】解:(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,则﹣x2∈[﹣1,1],∵f (x)为奇函数,∴f(x1)﹣f(x2)=f(x1)+f(﹣x2)=•(x1﹣x2),…(2分)由已知得>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f (x2).∴f(x)在[﹣1,1]上单调递增.…(4分)(Ⅱ)∵f(x)在[﹣1,1]上单调递增,∴…(6分)∴不等式的解集为.…(7分)(Ⅲ)∵f(1)=1,f(x)在[﹣1,1]上单调递增.∴在[﹣1,1]上,f(x)≤1.问题转化为m2﹣2am+1≥1,即m2﹣2am≥0,对a∈[﹣1,1]恒成立.…(9分)下面来求m的取值范围.设g(a)=﹣2m•a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[﹣1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[﹣1,1]恒成立,必须g(﹣1)≥0且g(1)≥0,∴m≤﹣2或m≥2.综上,m=0 或m≤﹣2或m≥2…(12分)。
山东省济南市第一中学2016-2017学年高一数学9月月考试题一、选择题(每小题4分)1.二次函数247y x x =--的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把多项式)2()2(2a m a m -+-分解因式等于 ( )(A )))(2(2m m a +- (B )))(2(2m m a --(C )m(a-2)(m-1) (D )m(a-2)(m+1)3.已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )24.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则()U C A B ⋃=( )A {}0,1,8,10 B {}1,2,4,6 C {}0,8,10 D Φ5.多项式22215x xy y --的一个因式为 ( )(A )25x y - (B )3x y - (C )3x y + (D )5x y -6. 把抛物线22y x =-向上平移1个单位,得到的抛物线是( )A. 22(1)y x =-+B. 22(1)y x =--C. 221y x =-+D. 221y x =--7.函数2y kx k =-和(0)ky k x =≠在同一直角坐标系中图象可能是图中的( )8. 若函数2()2(1)2f x x a x =+-+在区间(,4)-∞上是减函数,那么实数a 的取值范围是()A.3a ≥B. 3a ≥-C. 3a ≤-D. 5a ≤9.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为 ( )(A )-3 (B )-6 (C )±3 (D )±610.不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数11.下列说法正确的是 ( )A.{}1,2,{}2,1是两个集合B.{}(0,2)中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}02|2=++∈x x Q x 是空集 12.函数xy 1=定义域是 ( ) A 、R B 、{}0 C 、{}0,≠∈x R x x 且 D 、{}1≠x x13.下列函数中值域为(0,)+∞的是 ( )A.y =B.y=2x+1C.y=x 2+x+1D.21y x = 14.设)1()(,11)(xf x f x x x f ++-=则等于( ) A 、x x +-11 B 、x 1 C 、1 D 、0 15.下列函数中,在区间(0,1)上为增函数的是( )(A )y x = (B )2x y -= (C )1y x = (D )12log y x = 16.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数x 的值为 ( )A 1或0 B 1,0,或2 C 0,2或-2 D 1或217.设集合{}{}|32,|13M x Z x N n Z n =∈-<<=∈-≤≤,则M N ⋂= ( )A {}0,1- B {}1,0,1-C {}0,1,2 D {}1,0,1,2- 18.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是( )(A )m <14 (B )m >-14 (C )m <14,且m ≠0 (D )m >-14,且m ≠0 19.设U={1,2,3,4,5},A ,B 为U 的子集,若A ⋂B={2},(C U A )⋂B={4},(C U A )⋂(C U B )={1,5},则正确的是( )A.3B A ∉∉3,B.3B A ∈∉3,C.3B A ∉∈3,D.3B A ∈∈3,20.若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为 ( )(A )1,或-1 (B )1 (C )-1 (D )0二、填空题(每小题4分)21.分解因式33a b -= 22.方程组25x y x y +=⎧⎨-=⎩的解集用列举法表示为____________. 23.方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .24.已知一次函数图象过点()1,2A -和()1,2B -,则该函数解析式是_______________ 25. 已知函数22(1)()(12)2(2)x x f x x x x x +≤⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值为三、解答题(每题10分)26. 已知集合{}21,3,A m =,{}3,4B =(1) 若B A ⊆,求实数m 的值;(2)若{}1,2,3,4AB =,求实数m 的值.27.已知二次函数c bx x x f ++=2)(,满足(0)(2)5f f ==(1)求函数)(x f y =解析式;(2)求函数)(x f y =当]5,0[∈x 的值域.。
济南一中2017年3月阶段性考试高一数学试题一、选择题(每小题5分,共75分)1.半径为3cm 的圆中,7π的圆心角所对的弧长为( )A cm 73π B cm 21πC cm 73 D cm 79π2.3-=α,则α的终边在( )A 。
第一象限 B.第二象限 C.第三象限 D 。
第四象限3。
已知圆C 的方程是22650x y x +-+=,则圆C 的圆心和半径分别为( )(A)(-3,0),2 (B )(3,0),2 (C )(-3,0),2(D )(3,0),24.)A .cos160︒B. cos160-︒C .cos160±︒D 。
cos160±︒5。
两圆22222060xy y x y +-=+--=与的位置关系是()(A )外离 (B )外切 (C )相交 (D )内切6。
已知33tan ,(,2),cos()422ππααπα=-∈+且则的值是( )A .-35B .35C .45D .-457.设角α是第二象限角,且2cos2cos αα-=,则2α角的终边在( )A 第一象限B 第二象限C 第三象限D 第四象限8。
直线x +2y -5+错误!=0被圆x 2+y 2-2x -4y =0截得的弦长为( ). A .1 B .2C .4D .469.已知tan 2α=,sin 4cos 5sin 2cos αααα-=+A .16-B .16C .79D .79-10。
为得到函数cos 2y x =的图象,只需将cos(2)6y x π=+函数的图象A .向左平移12π个单位 B .向右平移12π个单位C .向左平移6π个单位 D .向右平移6π个单位11。
下列函数中,周期为2π的偶函数为A 。
x y 4sin =B 。
x y 2cos =C 。
x y 2tan = D.)42sin(x y -=π12.圆(x +2)2+y 2=5关于直线y =x 对称的圆的方程为( ).A .(x -2)2+y 2=5B .x 2+(y -2)2=5C .(x +2)2+(y +2)2=5D .x 2+(y +2)2=513.函数)23sin(2x y -=π的单调递增区间是( )A .[1252,122ππππ--k k ]()k z ∈ B .[12,127ππππ--k k ]()k z ∈C .[122,1272ππππ--k k ]()k z ∈D .[125,12ππππ+-k k ]()k z ∈14.点M 是直线3x +4y -2=0上的动点,点N 为圆(x +1)2+(y +1)2=1上的动点,则|MN |的最小值是( )A .错误!B .1C .错误!D .错误!15.方程51cos()22xx π⎛⎫+= ⎪⎝⎭在区间(0,100)π内解的个数是A.98B.100 C 。
绝密★启用并使用完毕前济南市高一数学第一学期期末考试试卷(必修1与必修2)(2018.1.10)说明:本试卷为发展卷,采用长卷出题、自主选择、分层计分的方式,试卷满分150分,考生每一大题的题目都要有所选择,至少选作120分的题目,多选不限。
试题分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
考试时间120分钟。
温馨提示:生命的意义在于不断迎接挑战,做完120分基础题再挑战一下发展题吧,你一定能够成功!第I卷(选择题,共60分)一、选择题(本题包括15个小题,每题4分,其中基础题48分,发展题12分。
每题只有一个选项符合题意)1.若全集{}1,2,3,4U=,集合{}{}Μ=1,2,Ν=2,3,则()UC M N =()A.{}1,2,3B.{}2C.{}1,3,4D.{}42.有以下六个关系式:①{}a⊆φ②{}aa⊆③{}{}aa⊆④{}{}b aa,∈⑤{}c b aa,,∈⑥{}b a,∈φ,其中正确的是()A.①②③④B.③⑤⑥C.①④⑤D.①③⑤3.下列函数中,定义域为R的是()A.y B.2logy x=C.3y x= D.1yx=4.,下列各组函数中表示同一个函数的是()A.1,y y x== B.2,xy x yx==C.,ln xy x y e==D.2,y x y==5.下列函数中,既是奇函数又是增函数的是()A.3y x= B.1yx=C.3logy x=D.1()2xy=6.函数()23f x x =-的零点为 ( )A.3(,0)2B.3(0,)2 C.32 D.23 7.在同一坐标系中,函数1()f x ax a =+与2()g x ax =的图象可能是 ( )A. B. C. D.8.2132)),a a a +-<11若((则实数的取值范围是22( )A.12a <B. 12a >C. 1a <D.1a >9.若f x x (ln )=+34,则f x ()的表达式为( )A .3ln xB .3ln 4x +C .3x eD .34x e + 10.设20.320.3,2,log 0.3a b c ===,则,,a b c 的大小关系为( )A .c a b << B..c b a << C .a b c << D .a c b << 11.已知平面α和直线,,a b c ,具备下列哪一个条件时//a b ( ) A.//,//a b αα B.,a c b c ⊥⊥ C. ,,//a c c b αα⊥⊥ D .,a b αα⊥⊥12.某长方体的主视图、左视图如图所示,则该长方体的俯视图的面积是( ) A.6 B.8C. 12D .1613.若过原点的直线l 的倾斜角为3π,则直线l 的方程是( )0y +=B. 0x =0y -= D.0x =14.若一个棱长为a 的正方体的各顶点都在半径为R 的球面上,则a 与R 的关系是( )A.R a =B.2R a=C. 2R a = D.R =15.某几何体中的线段AB,在其三视图中对应线段的长分别为2、4、4,则在原几何体中线段AB 的长度为( )A.B.主视图 左视图第Ⅱ卷(非选择题,共90分)注意事项:1.第Ⅱ卷所有题目的答案考生须用黑色签字笔、钢笔或圆珠笔在试题卷上答题,考试结束后将答题卡和第Ⅱ卷一并上交。
2016-2017学年山东省济南一中高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.)1.(5.00分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.A={0,1,2}B.{﹣2}C.{﹣1,0,1}D.{﹣2,﹣1}2.(5.00分)已知□ABCD的三个顶点A(﹣1,﹣2),B(3,1),C(0,2),则顶点D的坐标为()A.(2,﹣3)B.(﹣1,0)C.(4,5) D.(﹣4,﹣1)3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)4.(5.00分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.π B.4πC.4πD.6π5.(5.00分)函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,)D.(e,+∞)6.(5.00分)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β7.(5.00分)直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行,则a的值是()A.1 B.﹣2 C.1或﹣2 D.﹣1或28.(5.00分)下列函数是偶函数且在(0,+∞)上是增函数的是()A.B.C.y=lnx D.y=﹣x2+19.(5.00分)已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积()A.24πB.21 π C.33πD.39 π10.(5.00分)若f(lnx)=3x+4,则f(x)的表达式为()A.3lnx B.3lnx+4 C.3e x D.3e x+411.(5.00分)已知f(x)=a x,g(x)=log a x(a>0且a≠1),若f(1)•g(2)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A.B.C.D.12.(5.00分)若函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,则a的范围是()A.(0,)B.(0,1) C.(0,]D.[,1)二、填空题(本大题共6小题,每小题5分,共30分)13.(5.00分)已知函数f(x)=xα的图象过点(2,),则f(9)=.14.(5.00分)计算()﹣2+log2+(﹣2)0=.15.(5.00分)半径为R的半圆卷成一个圆锥,则它的体积为.16.(5.00分)如图是一个柱体的三视图,它的体积等于底面积乘以高,该柱体的体积等于.17.(5.00分)点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则m+k=.18.(5.00分)已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f (3m﹣1),则实数m的取值范围是.三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤)19.(12.00分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).20.(12.00分)已知正方形的中心为(0,﹣1),其中一条边所在的直线方程为3x+y﹣2=0.求其他三条边所在的直线方程.21.(12.00分)已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (1)求函数f(x)在R上的解析式;(2)写出f(x)单调区间(不必证明)22.(12.00分)在三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.(1)证明:A1M⊥平面MAC;(2)证明:MN∥平面A1ACC1.23.(12.00分)已知函数f(x)=a x﹣a+1,(a>0且a≠1)恒过定点(,2),(Ⅰ)求实数a;(Ⅱ)若函数g(x)=f(x+)﹣1,求:函数g(x)的解析式;(Ⅲ)在(Ⅱ)的条件下,若函数F(x)=g(2x)﹣mg(x﹣1),求F(x)在[﹣1,0]的最小值h(m).2016-2017学年山东省济南一中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.)1.(5.00分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.A={0,1,2}B.{﹣2}C.{﹣1,0,1}D.{﹣2,﹣1}【解答】解:A={x|x+1>0}={x|x>﹣1},B={﹣2,﹣1,0,1},则∁R A={x|x≤﹣1},(∁R A)∩B={﹣2,﹣1}.故选:D.2.(5.00分)已知□ABCD的三个顶点A(﹣1,﹣2),B(3,1),C(0,2),则顶点D的坐标为()A.(2,﹣3)B.(﹣1,0)C.(4,5) D.(﹣4,﹣1)【解答】解:∵四边形ABCD是平行四边形,∴,∴=+=(﹣4,﹣1),故选:D.3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.4.(5.00分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.π B.4πC.4πD.6π【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.5.(5.00分)函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,)D.(e,+∞)【解答】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0∴f(2)•f(3)<0,∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).故选:B.6.(5.00分)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β【解答】解:A,若l∥α,l∥β,则满足题意的两平面可能相交,排除A;B,若l∥α,l⊥β,则在平面α内存在一条直线垂直于平面β,从而两平面垂直,故B正确;C,若α⊥β,l⊥α,则l可能在平面β内,排除C;D,若α⊥β,l∥α,则l可能与β平行,相交,排除D故选:B.7.(5.00分)直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行,则a的值是()A.1 B.﹣2 C.1或﹣2 D.﹣1或2【解答】解:∵直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行∴1×2﹣a(a+1)=0∴a2+a﹣2=0∴a=﹣2或a=1当a=﹣2时,直线x﹣2y﹣7=0与直线﹣x+2y﹣14=0互相平行;当a=1时,直线x+y﹣7=0与直线2x+2y﹣14=0重合,不满足题意;故a=﹣2故选:B.8.(5.00分)下列函数是偶函数且在(0,+∞)上是增函数的是()A.B.C.y=lnx D.y=﹣x2+1【解答】解:选项A,是偶函数,指数大于0,则在(0,+∞)上是增函数,故正确;选项B,的底数小于1,故在(0,+∞)上是减函数,故不正确;选项C,y=lnx的定义域不对称,故是非奇非偶函数,故不正确;选项D,y=﹣x2+1是偶数函数,但在(0,+∞)上是减函数,故不正确;故选:A.9.(5.00分)已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积()A.24πB.21 π C.33πD.39 π【解答】解:∵在△ABC中,AB=4,BC=3,AC=5,∴△ABC为直角三角形,∴底面周长=6π,侧面积=6π×5=15π,∴几何体的表面积=15π+π•32=24π.故选:A.10.(5.00分)若f(lnx)=3x+4,则f(x)的表达式为()A.3lnx B.3lnx+4 C.3e x D.3e x+4【解答】解:设t=lnx,则x=e t,所以f(t)=3e t+4,所以f(x)=3e x+4.故选:D.11.(5.00分)已知f(x)=a x,g(x)=log a x(a>0且a≠1),若f(1)•g(2)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A.B.C.D.【解答】解:由指数函数和对数函数的单调性知,函数f(x)=a x和g(x)=log a x (a>0,且a≠1)在(0,+∞)上单调性相同,故可排除选项A、D.而指数函数f(x)=a x的图象过定点(0,1),对数函数g(x)=log a x的图象过定点(1,0),再由关系式f(1)•g(2)<0,故可排除选项B.故选:C.12.(5.00分)若函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,则a的范围是()A.(0,)B.(0,1) C.(0,]D.[,1)【解答】解:∵函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,∴,∴0<a≤,故选:C.二、填空题(本大题共6小题,每小题5分,共30分)13.(5.00分)已知函数f(x)=xα的图象过点(2,),则f(9)=3.【解答】解:∵f(x)=xα的图象过点(2,),∴2α=,∴α=,∴f(x)=,∴f(9)==3.故答案为:3.14.(5.00分)计算()﹣2+log2+(﹣2)0=3.【解答】解:()﹣2+log2+(﹣2)0==4﹣2+1=3.故答案为:3.15.(5.00分)半径为R的半圆卷成一个圆锥,则它的体积为.【解答】解:设圆锥底面圆的半径为r,高为h,则2πr=πR,∴∵R2=r2+h2,∴∴V=×π××=故答案为:16.(5.00分)如图是一个柱体的三视图,它的体积等于底面积乘以高,该柱体的体积等于3.【解答】解:由已知中的三视图,可知该几何体是一个以左视图为底面的三棱柱,其底面面积S==,高h=3,故该柱体的体积V=Sh=3,故答案为:317.(5.00分)点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则m+k=5.【解答】解:由题意,点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则点(,)在直线kx﹣y+3=0上,可得:,解得m=4.那么:点(1,2)和(﹣1,4)确定的直线的斜率为﹣1与kx﹣y+3=0垂直,故得:k=1则m+k=4+1=5,故答案为:5.18.(5.00分)已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f (3m﹣1),则实数m的取值范围是m>1或m<0.【解答】解:根据题意,由于函数f(x)是偶函数,则f(m+1)=f(|m+1|),f (3m﹣1)=f(|3m﹣1|),又由f(x)在[0,+∞)单调递增,则f(m+1)<f(3m﹣1)⇔|m+1|<|3m﹣1|;解可得:m>1或m<0,即m的取值范围是:m>1或m<0;故答案为:m>1或m<0三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤)19.(12.00分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).【解答】解:(Ⅰ)={x|﹣1<x<2},B={x|log3x≤2}={x|0<x≤9,所以A∩B={x|0<x<2};(Ⅱ)A∪B={x|﹣1<x≤9},C U(A∪B)={x|x≤﹣1或x>9.20.(12.00分)已知正方形的中心为(0,﹣1),其中一条边所在的直线方程为3x+y﹣2=0.求其他三条边所在的直线方程.【解答】解:设其中一条边为3x+y+D=0,则=,解得D=4或﹣2(舍)∴3x+y+4=0,设另外两边为x﹣3y+E=0,则=,解得E=0或﹣6,∴x﹣3y=0或x﹣3y﹣6=0∴其他三边所在直线方程分别为;3x+y+4=0,x﹣3y=0,x﹣3y﹣6=0.21.(12.00分)已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (1)求函数f(x)在R上的解析式;(2)写出f(x)单调区间(不必证明)【解答】解:(1)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x.(3分)又f(x)为奇函数,所以f(﹣x)=﹣f(x).于是x<0时f(x)=x2+2x(5分)所以f(x)=(6分)(2)由f(x)=可知f(x)在[﹣1,1]上单调递增,在(﹣∞,﹣1)、(1,+∞)上单调递减(12分)22.(12.00分)在三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.(1)证明:A1M⊥平面MAC;(2)证明:MN∥平面A1ACC1.【解答】证明:(1)由题设知,∵A1A⊥面ABC,AC⊂面ABC,∴AC⊥A1A,又∵∠BAC=90°,∴AC⊥AB,∵AA1⊂平面AA1BB1,AB⊂平面AA1BB1,AA1∩AB=A,∴AC⊥平面AA1BB1,A1M⊂平面AA1BB1∴A1M⊥AC.又∵四边形AA1BB1为正方形,M为A1B的中点,∴A1M⊥MA,∵AC∩MA=A,AC⊂平面MAC,MA⊂平面MAC,∴A1M⊥平面MAC…(6分)(2)连接AB1,AC1,由题意知,点M,N分别为AB1和B1C1的中点,∴MN∥AC1.又MN⊄平面A1ACC1,AC1⊂平面A1ACC1,∴MN∥平面A1ACC1.…(12分)23.(12.00分)已知函数f(x)=a x﹣a+1,(a>0且a≠1)恒过定点(,2),(Ⅰ)求实数a;(Ⅱ)若函数g(x)=f(x+)﹣1,求:函数g(x)的解析式;(Ⅲ)在(Ⅱ)的条件下,若函数F(x)=g(2x)﹣mg(x﹣1),求F(x)在[﹣1,0]的最小值h(m).【解答】解:(Ⅰ)由+1=2,解得a=,(Ⅱ)∵g(x)=f(x+)﹣1,∴g(x)=﹣1+1=((Ⅲ)∵F(x)=g(2x)﹣mg(x﹣1),∴F(x)=﹣2m,令t=,t∈[1,2],∴y=t2﹣2mt=(t﹣m)2﹣m2,①当m≤1时,y=t2﹣2mt在[1,2]单调递增,∴t=1时,y min=1﹣2m,②当1<m<2时,∴当t=m时,y min=﹣m2,③①当m≥2时,y=t2﹣2mt在[1,2]单调递减,∴t=2时,y min=4﹣4m,综上所述h(m)=.。
山东省济南市第一中学2016—2017学年度上学期9月月考高一数学试题一、选择题(每小题4分)1.二次函数的顶点坐标是( )A.(2,-11)B.(-2,7)C.(2,11)D. (2,-3)2.把多项式分解因式等于 ( )(A ) (B )(C )m(a-2)(m-1) (D )m(a-2)(m+1)3.已知关于x 的方程x 2+kx -2=0的一个根是1,则它的另一个根是( )(A )-3 (B )3 (C )-2 (D )24.已知全集{}{}{}0,1,2,4,6,8,10,2,4,6,1U A B ===,则 ( )A B C D5.多项式的一个因式为 ( )(A ) (B ) (C ) (D )6. 把抛物线向上平移1个单位,得到的抛物线是( )A. B. C. D.7.函数和在同一直角坐标系中图象可能是图中的( )8. 若函数2()2(1)2f x x a x =+-+在区间上是减函数,那么实数的取值范围是( )A. B. C. D.9.如果多项式x 2-mx+9是一个完全平方式,那么m 的值为 ( )(A )-3 (B )-6 (C )±3 (D )±610.不论,为何实数,的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数11.下列说法正确的是 ( )A.,是两个集合B.中有两个元素C.6|x Q N x ⎧⎫∈∈⎨⎬⎩⎭是有限集 D.{}02|2=++∈x x Q x 是空集12.函数定义域是 ( )A 、RB 、C 、D 、13.下列函数中值域为的是 ( )A. B.y=2x+1 C.y=x 2+x+1 D.14.设)1()(,11)(xf x f x x x f ++-=则等于( ) A 、 B 、 C 、1D 、0 15.下列函数中,在区间上为增函数的是( )(A ) (B ) (C ) (D )16.集合{}{}21,4,,,1A x B x A B B ==⋂=且,则满足条件的实数的值为 ( )A 1或0 B 1,0,或2 C 0,2或-2 D 1或217.设集合{}{}|32,|13M x Z x N n Z n =∈-<<=∈-≤≤,则 ( )A B C D18.若关于x 的方程mx 2+ (2m +1)x +m =0有两个不相等的实数根,则实数m 的取值范围是 ( )(A )m < (B )m >- (C )m <,且m ≠0 (D )m >-,且m ≠019.设U={1,2,3,4,5},A ,B 为U 的子集,若AB={2},(C U A )B={4},(C U A )(C U B )={1,5},则正确的是( )A.3B.3C.3D.320.若关于x 的方程x 2+(k 2-1) x +k +1=0的两根互为相反数,则k 的值为 ( )(A )1,或-1 (B )1 (C )-1 (D )0二、填空题(每小题4分)21.分解因式22.方程组的解集用列举法表示为____________.23.方程2x 2+2x -1=0的两根为x 1和x 2,则| x 1-x 2|= .24.已知一次函数图象过点和,则该函数解析式是_______________ 25. 已知函数22(1)()(12)2(2)x x f x x x x x +≤⎧⎪=-<<⎨⎪≥⎩,若,则的值为三、解答题(每题10分)26. 已知集合,(1) 若,求实数的值;(2)若,求实数的值.27.已知二次函数,满足(1)求函数解析式;(2)求函数当的值域.。
山东省济南市高一上学期期末考试(B 卷)数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分120分.测试时间120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至8页.第Ⅰ卷(选择题 共48分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂在答题卡上.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选择其它答案标号.不能答在试题卷上.3.可使用不含有存储功能的计算器.一.选择题:本大题共12个小题.每小题4分;共48分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.已知集合{}{}5,3,2,3,2==B A ,则集合B A Y =A. {}2B. {}3,2C. {}5,3,2D.{}5,3,2,3,2 2.点(21)P -,到直线4310x y -+=的距离等于 A.45 B.107 C.2 D.1253.下列命题中正确的是①平行于同一条直线的两条直线互相平行; ②垂直于同一条直线的两条直线互相平行; ③平行于同一个平面的两条直线互相平行; ④垂直于同一个平面的两条直线互相平行. A. ①② B. ①④ C. ②③ D. ③④ 4. 如图,正方体ABCD-A 1B 1C 1D 1中,①DA 1与BC 1平行;②DD 1与BC 1垂直;③A 1B 1与BC 1垂直.以上三个命题中, 正确命题的序号是A.①②B.②③C.③D.①②③5.已知奇函数()f x ,当0x >时1()f x x x=+,则(1)f -= A.1 B.2 C.-1 D.-2 6.下列函数中,在区间)2,0(上是增函数的是A 1D 1BACDC 1B 1第4题图A.542+-=x x y B.x y =C.2x y -=D.12log y x =7.函数()f x 是定义域为R 的奇函数,当0x >时()1f x x =-+,则当0x <时,()f x 的表达式为 A .()1f x x =+ B .()1f x x =- C .()1f x x =-+ D .()1f x x =-- 8.已知过点A (2,)m -、B (,4)m 的直线与直线210x y +-=平行,则m 的值为 A. 0 B. -8 C. 2 D. 109.两圆0122=-+y x 和042422=-+-+y x y x 的位置关系是A .内切B .相交C .外切D .外离10.函数()312f x ax a =+-,在区间(1,1)-上存在一个零点,则a 的取值范围是 A .115a -<<B .15a > C .15a >或1a <- D .1a <- 11.右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是 A.9π B.10π C.11π D.12π12.已知圆22450x y x +--=,则过点()1,2P 的最短弦所在直线l 的方程是A.3270x y +-=B.240x y +-=C.230x y --=D.230x y -+= 绝密★启用前高一数学试题(B )第Ⅱ卷(非选择题 共72分)注意事项:1.用蓝黑色钢笔或圆珠笔直接答在试题卷中. 2.答题前将密封线内的项目填写清楚.二.填空题:本大题共4个小题.每小题4分;共16分.将答案填在题中横线上. 13.已知集合A={}6≤x x ,B={}3x x >,则A B I = . 14.在空间直角坐标系中xyz o -,点B 是点A (1,2,3)在坐标平面yOz 内的正射影,则OB 等于 .15.等边三角形的边长为2,它绕其一边所在的直线旋转一周,则所得旋转体的体积是 .16.圆心是点(1,2)-,且与直线210x y +-=相切的圆的方程是 .第11题图三.解答题:本大题共6个小题.共56分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分8分)已知点()()4,2,6,4-B A ,求: (1) 直线A B 的方程;(2) 以线段AB 为直径的圆的方程.18.(本小题满分8分)已知函数2()2f x x x =--.求: (1)()f x 的值域; (2)()f x 的零点;(3)()0f x <时x 的取值范围.19.(本小题满分10分)如图,已知正四棱锥P-ABCD 的底边长为6、侧棱长为5. 求正四棱锥P-ABCD 的体积和侧面积.20.(本小题满分10分)计算下列各式:(1)21023213(2)(9.6)(3)(1.5)48-----+;(2)7log 23log lg 25lg 47++.PACDB第19题图21.(本小题满分10分)如图, 在直三棱柱ABC -A 1B 1C 1中,AC =3,BC =4,5=AB ,AA 1=4,点D 是AB 的中点, (1)求证:AC ⊥BC 1; (2)求证:AC 1//平面CDB 1;22.(本小题满分12分)已知函数()(0,)x x e af x a a R a e=+>∈是R 上的偶函数. (1)求a 的值;(2)证明函数()f x 在[0,)+∞上是增函数.得分 评卷人得分 评卷人第21题图。
山东省高一数学第一学期期末考试试卷(必修1、必修2)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟。
第I 卷(选择题 共60分)一、选择题(本大题共12题,每小题5分,共60分)1、若集合}22|{-<>=x x x M 或,}|{m x x N >= ,R N M =Y ,则m 的取值范围是( )A .2-≤mB .2-<mC .2->mD .2-≥m2、幂函数)(x f 的图象过点)21,4(,那么)8(f 的值为( ) A.42 B. 64 C. 22 D. 641 3、已知直线l 、m 、n 与平面α、β给出下列四个命题:①若m ∥l ,n ∥l ,则m∥n ; ②若m ⊥α,m ∥β,则α⊥β;③若m ∥α,n ∥α,则m∥n ;④若m ⊥β,α⊥β,则m ∥α其中,假命题的个数是( )A 1B 2C 3D 44、若奇函数()x f 在[]3,1上为增函数,且有最小值0,则它在[]1,3--上( )A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值05、若直线03)1(:1=--+y a ax l 与直线02)32()1(:2=-++-y a x a l 互相垂直,则a 的值是( )A.3-B. 1C. 0或23-D. 1或3-6、如图所示,四边形ABCD 中,AD//BC ,AD=AB ,∠BCD=45°,∠BAD=90°,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A —BCD ,则在三棱锥A —BCD 中,下列命题正确的是( )A 、平面ABD ⊥平面ABCB 、平面ADC ⊥平面BDCC 、平面ABC ⊥平面BDCD 、平面ADC ⊥平面ABC7、如右图为一个几何体的三视图,其中俯视图为正三角形,A 1B 1=2,AA 1=4,则该几何体的表面积为( ) A. 6+3 B. 24+3C. 24+23D. 328、点P 在正方形ABCD 所在平面外,PD ⊥平面ABCD ,PD=AD ,则PA 与BD 所成角的度数为( )A.30°B.45°C.60°D.90°9、已知函数⎩⎨⎧>≤=)0(log )0(3)(2x x x x f x ,那么)]81([f f 的值为( ) A . 27 B .271 C .27- D .271- 10、函数 54x x )(2+-=x f 在区间 [0,m]上的最大值为5,最小值为1,则m 的取值范围是( )A . ),2[+∞B .[2,4]C .(]2,∞- D.[0,2]11、已知函数y=f(x)是定义在R 上的奇函数,且当x ≥0时,f(x)=2x -2x 则f(x)是( )(A)f(x)=x(x-2) (B)f(x)=|x|(x-2)(C)f(x)= |x|(|x|-2)(D)f(x)=x(|x|-2) 12、如图,在正方体ABCD-A1B1C1D1中,P为中截面的中心,则△PA1C1在该正方体各个面上的射影可能是( )A .以下四个图形都是正确的B .只有(1)(4)是正确的C .只有(1)(2)(4)是正确的D .只有(2)(3)是正确的一、选择题(本大题共12题,每小题5分,共60分)第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上).13、函数y =-(x -2)x 的递增区间是_______________________________.14、函数12-=x y 的定义域是_______________________________.15、若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为_______________________________.16、经过直线2x+3y-7=0与7x+15y+1=0的交点,且平行于直线x+2y-3=0的直线方程是_______________________________.三、解答题:(本大题共5小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本小题满分14分)已知△ABC 的三个顶点分别为A (2,3),B (-1,-2),C (-3,4),求(Ⅰ)BC 边上的中线AD 所在的直线方程;(Ⅱ)△ABC 的面积。
2015-2016学年山东省济南一中、济南外国语、济钢高中、济南中学联考高一(上)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={0,1,2,3},A={1,3},则集合∁U A=()A.{0} B.{1,2} C.{0,2} D.{0,1,2}2.空间中,垂直于同一条直线的两条直线()A.平行 B.相交 C.异面 D.以上均有可能3.已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.164.函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1] C.[﹣2,1)D.[﹣2,﹣1]5.点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.26.已知圆,圆,则两圆位置关系是()A.相交 B.内切 C.外切 D.相离7.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.﹣3 B.﹣1 C.1 D.38.函数y=的值域是()A.R B.[,+∞)C.(2,+∞)D.(0,+∞)9.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是()A. cm3B. cm3C. cm3D. cm310.已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是()A.(3,5)B.(3,+∞)C.(2,+∞)D.(2,4]二、填空题:本大题共5小题,每小题4分,共20分.11.计算lg25+lg2lg5+lg2= .12.已知直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,则实数a= .13.设g(x)=2x+3,g(x+2)=f(x),则f(x)= .14.已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为.15.圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤. 16.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.17.已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.18.已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(Ⅰ)求函数f(x)的零点;(Ⅱ)若函数f(x)的最小值为﹣4,求a的值.19.已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.20.三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.(Ⅰ)求证:平面C1CD⊥平面ADC1;(Ⅱ)求证:AC1∥平面CDB1;(Ⅲ)求三棱锥D﹣CAB1的体积.21.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.2015-2016学年山东省济南一中、济南外国语、济钢高中、济南中学联考高一(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={0,1,2,3},A={1,3},则集合∁U A=()A.{0} B.{1,2} C.{0,2} D.{0,1,2}【考点】补集及其运算.【专题】集合.【分析】根据集合的基本运算进行求解.【解答】解:∵全集U={0,1,2,3},A={1,3},∴集合∁U A={0,2},故选:C【点评】本题主要考查集合的基本运算,比较基础.2.空间中,垂直于同一条直线的两条直线()A.平行 B.相交 C.异面 D.以上均有可能【考点】空间中直线与直线之间的位置关系.【专题】空间位置关系与距离.【分析】画出长方体,利用长方体中的各棱的位置关系进行判断.【解答】解:在空间,垂直于同一条直线的两条直线,有可能平行,相交或者异面;如图长方体中直线a,b都与c垂直,a,b相交;直线a,d都与c垂直,a,d异面;直线d,b都与c垂直,b,d平行.故选D.【点评】本题考查了空间在直线的位置关系;本题借助于长方体中棱的关系理解.3.已知函数f(x)=xα的图象经过点,则f(4)的值等于()A.B.C.2 D.16【考点】幂函数的概念、解析式、定义域、值域.【专题】计算题.【分析】由题意可得2α=,求出α=﹣,由此求出f(4)=运算求得结果.【解答】解:函数f(x)=xα的图象经过点,故有 2α=,∴α=﹣.∴f(4)===,故选B.【点评】本题主要考查幂函数的定义,求出α=﹣,是解题的关键,属于基础题.4.函数f(x)=+lg(x+2)的定义域为()A.(﹣2,1)B.(﹣2,1] C.[﹣2,1)D.[﹣2,﹣1]【考点】函数的定义域及其求法;对数函数的定义域.【专题】计算题.【分析】根据题意可得,解不等式可得定义域.【解答】解:根据题意可得解得﹣2<x≤1所以函数的定义域为(﹣2,1]故选B【点评】本题考查了求函数的定义域的最基本的类型①分式型:分母不为0②对数函数:真数大于0,求函数定义域的关键是根据条件寻求函数有意义的条件,建立不等式(组),进而解不等式(组).5.点P(x,y)在直线x+y﹣4=0上,O是原点,则|OP|的最小值是()A. B.2 C.D.2【考点】点到直线的距离公式.【专题】计算题.【分析】过O作已知直线的垂线,垂足为P,此时|OP|最小,所以|OP|最小即为原点到直线的距离,利用点到直线的距离公式求出即可.【解答】解:由题意可知:过O作已知直线的垂线,垂足为P,此时|OP|最小,则原点(0,0)到直线x+y﹣4=0的距离d==2,即|OP|的最小值为2.故选B.【点评】此题考查学生灵活运用点到直线的距离公式化简求值,是一道综合题.解答本题的关键是找到|OP|的最小时即OP垂直与已知直线.6.已知圆,圆,则两圆位置关系是()A.相交 B.内切 C.外切 D.相离【考点】圆与圆的位置关系及其判定.【专题】计算题;方程思想;综合法;直线与圆.【分析】把圆的方程化为标准形式,求出圆心和半径,根据两圆的圆心距等于半径之和,可得两个圆关系.【解答】解:由于圆C1:x2+y2﹣4x﹣6y+9=0,即(x﹣2)2+(y﹣3)2=16,表示以C1(2,3)为圆心,半径等于2的圆.圆C2:x2+y2+12x+6y﹣19=0,即(x+6)2+(y+3)2=64,表示以C2(﹣6,﹣3)为圆心,半径等于8的圆.由于两圆的圆心距等于=10=8+2,故两个圆外切.故选:C.【点评】本题主要考查圆的标准方程,圆和圆的位置关系,圆的标准方程的求法,属于基础题.7.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=2x2﹣x,则f(1)=()A.﹣3 B.﹣1 C.1 D.3【考点】函数奇偶性的性质.【专题】计算题.【分析】要计算f(1)的值,根据f(x)是定义在R上的奇函数,我们可以先计算f(﹣1)的值,再利用奇函数的性质进行求解,当x≤0时,f(x)=2x2﹣x,代入即可得到答案.【解答】解:∵当x≤0时,f(x)=2x2﹣x,∴f(﹣1)=2(﹣1)2﹣(﹣1)=3,又∵f(x)是定义在R上的奇函数∴f(1)=﹣f(﹣1)=﹣3故选A【点评】本题考查的知识点是函数奇偶性的性质,熟练掌握函数的奇偶性的性质是解答本题的关键.8.函数y=的值域是()A.R B.[,+∞)C.(2,+∞)D.(0,+∞)【考点】复合函数的单调性.【专题】函数的性质及应用.【分析】令t=﹣x2+2x,则y=,再根据t≤1以及指数函数的单调性求得y的值域.【解答】解:令t=﹣x2+2x=﹣(x﹣1)2+1,则y=.由于t≤1,∴y≥=,故选:B.【点评】本题主要考查复合函数的单调性、指数函数的定义域和值域,属于基础题.9.若某多面体的三视图(单位:cm)如图所示,则此多面体的体积是()A. cm3B. cm3C. cm3D. cm3【考点】由三视图求面积、体积.【专题】计算题;数形结合;数形结合法;空间位置关系与距离.【分析】作出几何体的直观图,可发现几何体为正方体切去一个三棱柱得到的.使用作差法求出几何体体积.【解答】解:由三视图可知该几何体为正方体去掉一个三棱柱得到的几何体.正方体的边长为1,去掉的三棱柱底面为等腰直角三角形,直角边为,棱柱的高为1,棱柱的体积为=.∴剩余几何体的体积为13﹣=.故选A.【点评】本题考查了常见几何体的三视图和结构特征,属于基础题.10.已知函数y=f(x)的定义域为{x|x∈R,且x≠2},且y=f(x+2)是偶函数,当x<2时,f(x)=|2x﹣1|,那么当x>2时,函数f(x)的递减区间是()A.(3,5)B.(3,+∞)C.(2,+∞)D.(2,4]【考点】奇偶性与单调性的综合;函数奇偶性的性质.【专题】函数的性质及应用.【分析】根据函数的奇偶性,推导出函数的对称性,再由题意和对称性求出函数的解析式,根据指数函数的图象画出函数大致的图形,可得到函数的减区间.【解答】解:∵y=f(x+2)是偶函数,∴f(﹣x+2)=f(x+2),则函数f(x)关于x=2对称,则f(x)=f(4﹣x).若x>2,则4﹣x<2,∵当x<2时,f(x)=|2x﹣1|,∴当x>2时,f(x)=f(4﹣x)=|24﹣x﹣1|,则当x≥4时,4﹣x≤0,24﹣x﹣1≤0,此时f(x)=|24﹣x﹣1|=1﹣24﹣x=1﹣16•,此时函数递增,当2<x≤4时,4﹣x>0,24﹣x﹣1>0,此时f(x)=|24﹣x﹣1|=24﹣x﹣1=16•﹣1,此时函数递减,所以函数的递减区间为(2,4],故选:D.【点评】本题考查函数单调性,指数函数的图象,根据函数奇偶性得到函数的对称性、函数的解析式是解决本题的关键,考查数形结合思想.二、填空题:本大题共5小题,每小题4分,共20分.11.计算lg25+lg2lg5+lg2= 1 .【考点】对数的运算性质.【专题】函数的性质及应用.【分析】根据对数的运算法则进行计算即可得到结论.【解答】解:lg25+lg2lg5+lg2=(lg5+lg2)lg5+lg2=lg5+lg2=lg10=1,故答案为:1【点评】本题主要考查对数的基本运算,利用对数的运算法则以及lg2+lg5=1是解决本题的关键.12.已知直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,则实数a= .【考点】两条直线垂直的判定.【专题】计算题.【分析】根据直线方程求出两直线的斜率,根据两直线垂直,斜率之积等于﹣1,求出实数a.【解答】解:∵直线l1:ax+3y﹣1=0与直线l2:2x+(a﹣1)y+1=0垂直,∴斜率之积等于﹣1,他们的斜率分别为和,∴×=﹣1,∴a=,故答案为.【点评】本题考查两直线垂直的性质,两直线垂直,斜率之积等于﹣1.13.设g(x)=2x+3,g(x+2)=f(x),则f(x)= 2x+7 .【考点】函数解析式的求解及常用方法.【专题】函数的性质及应用.【分析】根据f(x)=g(x+2),只需将x+2代入g(x)的解析式,即可求出所求.【解答】解:∵g(x)=2x+3,g(x+2)=f(x),∴f(x)=g(x+2)=2(x+2)+3=2x+7故答案为:2x+7【点评】本题主要考查了函数解析式的求解及常用方法,解题时要认真审题,仔细解答,属于基础题.14.已知各顶点都在一个球面上的正方体的棱长为2,则这个球的体积为4π.【考点】球的体积和表面积.【专题】计算题;空间位置关系与距离.【分析】求出正方体的对角线的长度,就是外接球的直径,利用球的体积公式求解即可.【解答】解:因为一个正方体的顶点都在球面上,它的棱长为2,所以正方体的外接球的直径就是正方体的对角线的长度:2.所以球的半径为:.所求球的体积为:=4π.故答案为:4π.【点评】本题考查球的内接体,球的体积的求法,求出球的半径是解题的关键,考查计算能力.15.圆心在y轴上且过点(3,1)的圆与x轴相切,则该圆的方程是x2+(y﹣5)2=25 .【考点】圆的标准方程.【专题】直线与圆.【分析】由题意求出圆的圆心与半径,即可写出圆的方程.【解答】解:圆心在y轴上且过点(3,1)的圆与x轴相切,设圆的圆心(0,r),半径为r.则:.解得r=5.所求圆的方程为:x2+(y﹣5)2=25.故答案为:x2+(y﹣5)2=25.【点评】本题考查圆的方程的求法,求出圆的圆心与半径是解题的关键.三、解答题:本大题共6小题,共60分,解答应写出文字说明,证明过程或演算步骤. 16.设集合A={x|﹣1≤x<3},B={x|2x﹣4≥x﹣2},C={x|x≥a﹣1}.(1)求A∩B;(2)若B∪C=C,求实数a的取值范围.【考点】集合关系中的参数取值问题;交集及其运算.【专题】探究型.【分析】(1)化简集合B,然后求集合的交集.(2)利用B∪C=C,得到B⊆C,然后求实数a 的取值范围.【解答】解:(1)由题意知,B={x|2x﹣4≥x﹣2}={x|x≥2}…所以A∩B={x|2≤x<3}…(2)因为B∪C=C,所以B⊆C…所以a﹣1≤2,即a≤3…【点评】本题主要考查集合的基本运算以及利用集合关系求参数问题,比较基础.17.已知平面内两点A(8,﹣6),B(2,2).(Ⅰ)求过点P(2,﹣3)且与直线AB平行的直线l的方程;(Ⅱ)求线段AB的垂直平分线方程.【考点】直线的一般式方程;直线的一般式方程与直线的垂直关系.【专题】计算题;规律型;方程思想;定义法;直线与圆.【分析】(Ⅰ)求出直线的斜率,利用点斜式方程求解即可.(Ⅱ)求出线段AB的中点坐标,求出斜率然后求解垂直平分线方程.【解答】解:(Ⅰ)因为,…所以由点斜式得直线l的方程4x+3y+1=0…(Ⅱ)因为AB的中点坐标为(5,﹣2),AB的垂直平分线斜率为…所以由点斜式得AB的中垂线方程为3x﹣4y﹣23=0…【点评】本题考查直线与直线的位置关系,直线方程的求法,考查计算能力.18.已知函数f(x)=log a(1﹣x)+log a(x+3)(0<a<1).(Ⅰ)求函数f(x)的零点;(Ⅱ)若函数f(x)的最小值为﹣4,求a的值.【考点】函数的最值及其几何意义;函数的零点与方程根的关系.【专题】计算题;规律型;函数的性质及应用.【分析】(Ⅰ)求出函数的定义域,化简方程,然后求函数f(x)的零点;(Ⅱ)利用复合函数通过x的范围,结合二次函数的性质,通过函数f(x)的最小值为﹣4,求a的值.【解答】解:(Ⅰ)要使函数有意义:则有,解之得:﹣3<x<1…函数可化为由f(x)=0,得﹣x2﹣2x+3=1即x2+2x﹣2=0,∵,∴f(x)的零点是…(Ⅱ)函数化为:,∵﹣3<x<1,∴0<﹣(x+1)2+4≤4…∵0<a<1,∴即f(x)min=log a4由log a4=﹣4,得a﹣4=4,∴…【点评】本题考查函数的最值的求法,二次函数的性质的应用,考查分析问题解决问题的能力.19.已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.【考点】直线与圆的位置关系;直线与圆相交的性质.【专题】计算题;综合题.【分析】把圆的方程化为标准方程后,找出圆心坐标与圆的半径r,(1)当直线l与圆相切时,圆心到直线的距离d等于圆的半径r,利用点到直线的距离公式表示出圆心到直线l的距离d,让d等于圆的半径r,列出关于a的方程,求出方程的解即可得到a的值;(2)联立圆C和直线l的方程,消去y后,得到关于x的一元二次方程,然后利用韦达定理表示出AB的长度,列出关于a的方程,求出方程的解即可得到a的值.【解答】解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有.解得.(2)联立方程并消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.设此方程的两根分别为x1、x2,所以x1+x2=﹣,x1x2=则AB===2两边平方并代入解得:a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.【点评】此题考查学生掌握直线与圆相切时圆心到直线的距离等于圆的半径,灵活运用韦达定理及两点间的距离公式化简求值,是一道综合题.20.三棱柱ABC﹣A1B1C1中,CC1⊥平面ABC,△ABC是边长为4的等边三角形,D为AB边中点,且CC1=2AB.(Ⅰ)求证:平面C1CD⊥平面ADC1;(Ⅱ)求证:AC1∥平面CDB1;(Ⅲ)求三棱锥D﹣CAB1的体积.【考点】平面与平面垂直的判定;棱柱、棱锥、棱台的体积;直线与平面平行的判定.【专题】计算题;规律型;数形结合;空间位置关系与距离.【分析】(Ⅰ)证明CC1⊥AB,CD⊥AB,推出AB⊥平面C1CD,即可证明平面C1CD⊥平面ADC1.(Ⅱ)连结BC1,交B1C于点O,连结DO.证明DO∥AC1.然后证明AC1∥平面CDB1.(Ⅲ)说明BB1为三棱锥D﹣CBB1的高.利用等体积法求解三棱锥D﹣CAB1的体积.【解答】解:(Ⅰ)∵CC1⊥平面ABC,又AB⊂平面ABC,∴CC1⊥AB∵△ABC是等边三角形,CD为AB边上的中线,∴CD⊥AB…∵CD∩CC1=C∴AB⊥平面C1CD∵AB⊂平面ADC1∴平面C1CD⊥平面ADC1;…(Ⅱ)连结BC1,交B1C于点O,连结DO.则O是BC1的中点,DO是△BAC1的中位线.∴DO∥AC1.∵DO⊂平面CDB1,AC1⊄平面CDB1,∴AC1∥平面CDB1;…(Ⅲ)∵CC1⊥平面ABC,BB1∥CC1,∴BB1⊥平面ABC.∴BB1为三棱锥D﹣CBB1的高.=S△SCD•BB1==.∴三棱锥D﹣CAB1的体积为.…【点评】本题考查平面与平面垂直,直线与平面平行,几何体的体积的求法,考查空间想象能力以及计算能力.21.已知f(x)是定义在[﹣1,1]上的奇函数,且f(1)=1,若a,b∈[﹣1,1],a+b≠0时,有>0成立.(Ⅰ)判断f(x)在[﹣1,1]上的单调性,并证明;(Ⅱ)解不等式:f(2x﹣1)<f(1﹣3x);(Ⅲ)若f(x)≤m2﹣2am+1对所有的a∈[﹣1,1]恒成立,求实数m的取值范围.【考点】函数恒成立问题.【专题】计算题;规律型;函数思想;转化思想;函数的性质及应用.【分析】(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,利用函数的单调性的定义证明f(x)在[﹣1,1]上单调递增.(Ⅱ)利用f(x)在[﹣1,1]上单调递增,列出不等式组,即可求出不等式的解集.(Ⅲ)问题转化为m2﹣2am≥0,对a∈[﹣1,1]恒成立,通过①若m=0,②若m≠0,分类讨论,判断求解即可.【解答】解:(Ⅰ)任取x1,x2∈[﹣1,1],且x1<x2,则﹣x2∈[﹣1,1],∵f(x)为奇函数,∴f(x1)﹣f(x2)=f(x1)+f(﹣x2)=•(x1﹣x2),…由已知得>0,x1﹣x2<0,∴f(x1)﹣f(x2)<0,即f(x1)<f(x2).∴f(x)在[﹣1,1]上单调递增.…(Ⅱ)∵f(x)在[﹣1,1]上单调递增,∴…∴不等式的解集为.…(Ⅲ)∵f(1)=1,f(x)在[﹣1,1]上单调递增.∴在[﹣1,1]上,f(x)≤1.问题转化为m2﹣2am+1≥1,即m2﹣2am≥0,对a∈[﹣1,1]恒成立.…下面来求m的取值范围.设g(a)=﹣2m•a+m2≥0.①若m=0,则g(a)=0≥0,对a∈[﹣1,1]恒成立.②若m≠0,则g(a)为a的一次函数,若g(a)≥0,对a∈[﹣1,1]恒成立,必须g(﹣1)≥0且g(1)≥0,∴m≤﹣2或m≥2.综上,m=0 或m≤﹣2或m≥2…【点评】本题考查函数的单调性的判断与应用,函数恒成立的应用,考查计算能力.。
2016-2017学年山东省济南一中高一(上)期末数学试卷一、选择题(本大题共12小题,每小题5分,共60分.)1.(5.00分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.A={0,1,2}B.{﹣2}C.{﹣1,0,1}D.{﹣2,﹣1}2.(5.00分)已知□ABCD的三个顶点A(﹣1,﹣2),B(3,1),C(0,2),则顶点D的坐标为()A.(2,﹣3)B.(﹣1,0)C.(4,5) D.(﹣4,﹣1)3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)4.(5.00分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.π B.4πC.4πD.6π5.(5.00分)函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,)D.(e,+∞)6.(5.00分)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β7.(5.00分)直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行,则a的值是()A.1 B.﹣2 C.1或﹣2 D.﹣1或28.(5.00分)下列函数是偶函数且在(0,+∞)上是增函数的是()A.B.C.y=lnx D.y=﹣x2+19.(5.00分)已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积()A.24πB.21 π C.33πD.39 π10.(5.00分)若f(lnx)=3x+4,则f(x)的表达式为()A.3lnx B.3lnx+4 C.3e x D.3e x+411.(5.00分)已知f(x)=a x,g(x)=log a x(a>0且a≠1),若f(1)•g(2)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A.B.C.D.12.(5.00分)若函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,则a的范围是()A.(0,)B.(0,1) C.(0,]D.[,1)二、填空题(本大题共6小题,每小题5分,共30分)13.(5.00分)已知函数f(x)=xα的图象过点(2,),则f(9)=.14.(5.00分)计算()﹣2+log2+(﹣2)0=.15.(5.00分)半径为R的半圆卷成一个圆锥,则它的体积为.16.(5.00分)如图是一个柱体的三视图,它的体积等于底面积乘以高,该柱体的体积等于.17.(5.00分)点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则m+k=.18.(5.00分)已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f (3m﹣1),则实数m的取值范围是.三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤)19.(12.00分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).20.(12.00分)已知正方形的中心为(0,﹣1),其中一条边所在的直线方程为3x+y﹣2=0.求其他三条边所在的直线方程.21.(12.00分)已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (1)求函数f(x)在R上的解析式;(2)写出f(x)单调区间(不必证明)22.(12.00分)在三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.(1)证明:A1M⊥平面MAC;(2)证明:MN∥平面A1ACC1.23.(12.00分)已知函数f(x)=a x﹣a+1,(a>0且a≠1)恒过定点(,2),(Ⅰ)求实数a;(Ⅱ)若函数g(x)=f(x+)﹣1,求:函数g(x)的解析式;(Ⅲ)在(Ⅱ)的条件下,若函数F(x)=g(2x)﹣mg(x﹣1),求F(x)在[﹣1,0]的最小值h(m).2016-2017学年山东省济南一中高一(上)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.)1.(5.00分)已知A={x|x+1>0},B={﹣2,﹣1,0,1},则(∁R A)∩B=()A.A={0,1,2}B.{﹣2}C.{﹣1,0,1}D.{﹣2,﹣1}【解答】解:A={x|x+1>0}={x|x>﹣1},B={﹣2,﹣1,0,1},则∁R A={x|x≤﹣1},(∁R A)∩B={﹣2,﹣1}.故选:D.2.(5.00分)已知□ABCD的三个顶点A(﹣1,﹣2),B(3,1),C(0,2),则顶点D的坐标为()A.(2,﹣3)B.(﹣1,0)C.(4,5) D.(﹣4,﹣1)【解答】解:∵四边形ABCD是平行四边形,∴,∴=+=(﹣4,﹣1),故选:D.3.(5.00分)函数f(x)=+lg(1+x)的定义域是()A.(﹣∞,﹣1)B.(1,+∞)C.(﹣1,1)∪(1,+∞) D.(﹣∞,+∞)【解答】解:根据题意,使f(x)=+lg(1+x)有意义,应满足,解可得(﹣1,1)∪(1,+∞);故选:C.4.(5.00分)平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,则此球的体积为()A.π B.4πC.4πD.6π【解答】解:因为平面α截球O的球面所得圆的半径为1,球心O到平面α的距离为,所以球的半径为:=.所以球的体积为:=4π.故选:B.5.(5.00分)函数f(x)=lnx﹣的零点所在的大致区间是()A.(1,2) B.(2,3) C.(1,)D.(e,+∞)【解答】解:函数的定义域为:(0,+∞),有函数在定义域上是递增函数,所以函数只有唯一一个零点.又∵f(2)﹣ln2﹣1<0,f(3)=ln3﹣>0∴f(2)•f(3)<0,∴函数f(x)=lnx﹣的零点所在的大致区间是(2,3).故选:B.6.(5.00分)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β【解答】解:A,若l∥α,l∥β,则满足题意的两平面可能相交,排除A;B,若l∥α,l⊥β,则在平面α内存在一条直线垂直于平面β,从而两平面垂直,故B正确;C,若α⊥β,l⊥α,则l可能在平面β内,排除C;D,若α⊥β,l∥α,则l可能与β平行,相交,排除D故选:B.7.(5.00分)直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行,则a的值是()A.1 B.﹣2 C.1或﹣2 D.﹣1或2【解答】解:∵直线x+ay﹣7=0与直线(a+1)x+2y﹣14=0互相平行∴1×2﹣a(a+1)=0∴a2+a﹣2=0∴a=﹣2或a=1当a=﹣2时,直线x﹣2y﹣7=0与直线﹣x+2y﹣14=0互相平行;当a=1时,直线x+y﹣7=0与直线2x+2y﹣14=0重合,不满足题意;故a=﹣2故选:B.8.(5.00分)下列函数是偶函数且在(0,+∞)上是增函数的是()A.B.C.y=lnx D.y=﹣x2+1【解答】解:选项A,是偶函数,指数大于0,则在(0,+∞)上是增函数,故正确;选项B,的底数小于1,故在(0,+∞)上是减函数,故不正确;选项C,y=lnx的定义域不对称,故是非奇非偶函数,故不正确;选项D,y=﹣x2+1是偶数函数,但在(0,+∞)上是减函数,故不正确;故选:A.9.(5.00分)已知△ABC,AB=4,BC=3,AC=5,现以AB为轴旋转一周,则所得几何体的表面积()A.24πB.21 π C.33πD.39 π【解答】解:∵在△ABC中,AB=4,BC=3,AC=5,∴△ABC为直角三角形,∴底面周长=6π,侧面积=6π×5=15π,∴几何体的表面积=15π+π•32=24π.故选:A.10.(5.00分)若f(lnx)=3x+4,则f(x)的表达式为()A.3lnx B.3lnx+4 C.3e x D.3e x+4【解答】解:设t=lnx,则x=e t,所以f(t)=3e t+4,所以f(x)=3e x+4.故选:D.11.(5.00分)已知f(x)=a x,g(x)=log a x(a>0且a≠1),若f(1)•g(2)<0,那么f(x)与g(x)在同一坐标系内的图象可能是()A.B.C.D.【解答】解:由指数函数和对数函数的单调性知,函数f(x)=a x和g(x)=log a x (a>0,且a≠1)在(0,+∞)上单调性相同,故可排除选项A、D.而指数函数f(x)=a x的图象过定点(0,1),对数函数g(x)=log a x的图象过定点(1,0),再由关系式f(1)•g(2)<0,故可排除选项B.故选:C.12.(5.00分)若函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,则a的范围是()A.(0,)B.(0,1) C.(0,]D.[,1)【解答】解:∵函数f(x)=(a>0,且a≠1)在(0,+∞)上是增函数,∴,∴0<a≤,故选:C.二、填空题(本大题共6小题,每小题5分,共30分)13.(5.00分)已知函数f(x)=xα的图象过点(2,),则f(9)=3.【解答】解:∵f(x)=xα的图象过点(2,),∴2α=,∴f(x)=,∴f(9)==3.故答案为:3.14.(5.00分)计算()﹣2+log2+(﹣2)0=3.【解答】解:()﹣2+log2+(﹣2)0==4﹣2+1=3.故答案为:3.15.(5.00分)半径为R的半圆卷成一个圆锥,则它的体积为.【解答】解:设圆锥底面圆的半径为r,高为h,则2πr=πR,∴∵R2=r2+h2,∴∴V=×π××=故答案为:16.(5.00分)如图是一个柱体的三视图,它的体积等于底面积乘以高,该柱体的体积等于3.【解答】解:由已知中的三视图,可知该几何体是一个以左视图为底面的三棱柱,其底面面积S==,故该柱体的体积V=Sh=3,故答案为:317.(5.00分)点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则m+k=5.【解答】解:由题意,点(1,2)和(﹣1,m)关于kx﹣y+3=0对称,则点(,)在直线kx﹣y+3=0上,可得:,解得m=4.那么:点(1,2)和(﹣1,4)确定的直线的斜率为﹣1与kx﹣y+3=0垂直,故得:k=1则m+k=4+1=5,故答案为:5.18.(5.00分)已知R上的偶函数f(x)在[0,+∞)单调递增,若f(m+1)<f (3m﹣1),则实数m的取值范围是m>1或m<0.【解答】解:根据题意,由于函数f(x)是偶函数,则f(m+1)=f(|m+1|),f (3m﹣1)=f(|3m﹣1|),又由f(x)在[0,+∞)单调递增,则f(m+1)<f(3m﹣1)⇔|m+1|<|3m﹣1|;解可得:m>1或m<0,即m的取值范围是:m>1或m<0;故答案为:m>1或m<0三、解答题(本大题共5小题,每题12分,共60分,解答应写出文字说明,证明过程或推演步骤)19.(12.00分)已知全集U=R,,B={x|log3x≤2}.(Ⅰ)求A∩B;(Ⅱ)求∁U(A∪B).【解答】解:(Ⅰ)={x|﹣1<x<2},B={x|log3x≤2}={x|0<x≤9,所以A∩B={x|0<x<2};(Ⅱ)A∪B={x|﹣1<x≤9},C U(A∪B)={x|x≤﹣1或x>9.20.(12.00分)已知正方形的中心为(0,﹣1),其中一条边所在的直线方程为3x+y﹣2=0.求其他三条边所在的直线方程.【解答】解:设其中一条边为3x+y+D=0,则=,解得D=4或﹣2(舍)∴3x+y+4=0,设另外两边为x﹣3y+E=0,则=,解得E=0或﹣6,∴x﹣3y=0或x﹣3y﹣6=0∴其他三边所在直线方程分别为;3x+y+4=0,x﹣3y=0,x﹣3y﹣6=0.21.(12.00分)已知定义在R上的奇函数f(x),当x>0时,f(x)=﹣x2+2x (1)求函数f(x)在R上的解析式;(2)写出f(x)单调区间(不必证明)【解答】解:(1)设x<0,则﹣x>0,f(﹣x)=﹣(﹣x)2+2(﹣x)=﹣x2﹣2x.(3分)又f(x)为奇函数,所以f(﹣x)=﹣f(x).于是x<0时f(x)=x2+2x(5分)所以f(x)=(6分)(2)由f(x)=可知f(x)在[﹣1,1]上单调递增,在(﹣∞,﹣1)、(1,+∞)上单调递减(12分)22.(12.00分)在三棱柱ABC﹣A1B1C1中,侧棱与底面垂直,∠BAC=90°,AB=AA1,点M,N分别为A1B 和B1C1的中点.(1)证明:A1M⊥平面MAC;(2)证明:MN∥平面A1ACC1.【解答】证明:(1)由题设知,∵A1A⊥面ABC,AC⊂面ABC,∴AC⊥A1A,又∵∠BAC=90°,∴AC⊥AB,∵AA1⊂平面AA1BB1,AB⊂平面AA1BB1,AA1∩AB=A,∴AC⊥平面AA1BB1,A1M⊂平面AA1BB1∴A1M⊥AC.又∵四边形AA1BB1为正方形,M为A1B的中点,∴A1M⊥MA,∵AC∩MA=A,AC⊂平面MAC,MA⊂平面MAC,∴A1M⊥平面MAC…(6分)(2)连接AB1,AC1,由题意知,点M,N分别为AB1和B1C1的中点,∴MN∥AC1.又MN⊄平面A1ACC1,AC1⊂平面A1ACC1,∴MN∥平面A1ACC1.…(12分)23.(12.00分)已知函数f(x)=a x﹣a+1,(a>0且a≠1)恒过定点(,2),(Ⅰ)求实数a;(Ⅱ)若函数g(x)=f(x+)﹣1,求:函数g(x)的解析式;(Ⅲ)在(Ⅱ)的条件下,若函数F(x)=g(2x)﹣mg(x﹣1),求F(x)在[﹣1,0]的最小值h(m).【解答】解:(Ⅰ)由+1=2,解得a=,(Ⅱ)∵g(x)=f(x+)﹣1,∴g(x)=﹣1+1=((Ⅲ)∵F(x)=g(2x)﹣mg(x﹣1),∴F(x)=﹣2m,令t=,t∈[1,2],∴y=t2﹣2mt=(t﹣m)2﹣m2,①当m≤1时,y=t2﹣2mt在[1,2]单调递增,∴t=1时,y min=1﹣2m,②当1<m<2时,∴当t=m时,y min=﹣m2,③①当m≥2时,y=t2﹣2mt在[1,2]单调递减,∴t=2时,y min=4﹣4m,综上所述h(m)=.。