(完整版)第一讲传输线基本理论
- 格式:ppt
- 大小:700.99 KB
- 文档页数:12
传输线理论讲义传输线理论传输线(transmission line):是以TEM导模的方式传送电磁波能量或信号的导行系统常用的传输线为双导体结构,包括平行双导线、同轴线、带状线和工作于准TEM导模的微带线等。
对传输线上电压和电流分布的分析需要采用传输线理论。
广义的传输线包括各种传输TE,TM模或混合模的波导,其中电磁场沿传播方向的分布规律与传输线上电压和电流的情况相似,可用等效传输线的观点进行分析。
电路理论和传输线理论之间的关键差别是电尺寸。
电路分析假设一个网络的实际尺寸远小于工作电磁波波长,而在微波段工作的传输线的尺寸通常为工作微波波长的几分之一或几个波长,传输线是一个分布参数网络,在整个长度内电压和电流的幅值和相位都可能发生变化。
传输线分布参数:由电磁场理论可知:传输线的两导体存在有耗电阻,传输线两导体单位长度的电阻用R表1示。
传输线的两导体之间之间媒质的介电常数通常有虚部,两导体之间存在漏电导,传输线单位长度的漏电导用G表示。
1传输线本身存在自感,传输线单位长度的电感用L表示。
1传输线的两导体之间存在电容,传输线单位长度的电容用C表示。
1一些常见传输线的分布参数同轴线、双导线和平行板传输线的分布参数注:媒质的复介电常数εεε''-'=i ,ss R σδσωμ1221==为导体的表面电阻。
取一小段线元z ?(λ<其等效电路为:实际的传输线为个等效网络的级联。
由基尔霍夫电压定理可得:)1(),(),(),(),(11a tt z i zL t z zi R t z z v t z v +?=?+-由基尔霍夫电流定理可得:)1(),(),(),(),(11b tt z z v zC t z z zv G t z z i t z i ??+??+?+?=?+-在(1a ),(1b)两边除以z ?,并取0→?z 的极限,可得以下微分方程。
)2(),(),(),(11a t t z i L t z i R z t z v ??+=??-)2(),(),(),(11b t t z v C t z v G z t z i ??+=??-时谐均匀传输线:])(Re[),(])(Re[),(ti t i e z I t z i e z V t z v ωω== (3)把(3)式代入(2)式可得:)()()()(111z I Z z I L i R dz z dV -=+-=ω (4a ))()()()(111z V Y z V C i G dzz dI -=+-=ω (4b )电压、电流的通解:把(4a)对z 微商一次,把(4b)代入可得:0)()(1122=-z V Y Z dz z V d (5) zR ?1zL ?1zG ?1zC ?1令:))((111111C i G L i R Y Z ωωγ++==(5)式可化简为:0)()(222=-z V dzz V d γ (5)式的通解为:z z e A e A z V γγ21)(+=- (6a )把(6a )代入(4a )可得:)(1)()(1)(21011z z e A e A Z dz z dV L i R z I γγω+=+-=- (6b)其中:11110C i G L i R Z ωω++=电压电流的定解:(6a),(6b)中的常数21,A A 可由传输线的端接条件确定。
传输线理论
传输线理论是电子和电力学中不可缺少的一部分,是计算、传输和处理信号的基本装置。
它会把发送信号过程中的电能储存在某一部分线路中,当信号到达时会释放电能,从而得到期望的信号结果。
传输线理论的基本原理是以电流为媒介的波形的传输。
当一个电流的信号(如果根据电磁学规律,一个电流信号存在时就会改变一个向量磁场)流经一根线路时,会在线路中传播,形成一种叫做“振荡”的效果,即电压和电流会在线路中持续发生变化。
如果电流的变化速度足够快,线路就会模拟出一定的波形。
在现代电子设备中,传输线理论的实际应用很常见。
它使用各种导线和组件,如电容器、电感器和变压器,来设置不同的参数,让信号在线路中持续传播,从而发挥它的作用。
以电路中常用的电容为例,它会把信号中的高频分量存储起来,从而达到平滑波形,而且把低频分量等发射出去。
传输线理论在电子行业中的另一个重要作用就是保护电子设备
免受不良外界环境影响。
它可以把外界来自电磁波或其他因素的高频影响抑制住,这样就可以有效减少对设备的损害,保证设备的稳定性和可靠性。
此外,传输线理论还被用在很多有趣的实验方面。
例如,通过结合人工智能技术,在一条电线上建立一种“传输线神经网络”,可以模拟人的神经元,来实现识别和分类等复杂的运算任务。
总之,传输线理论是电子和电力学中非常有用的理论,它可以有
效提高电子设备的工作性能,增强设备的耐受性,以及应用在实验方面,这些都给现代电子领域带来了非常重要的技术支持。
传输线基本概念
传输线是电气工程中的一个基本概念,通常用于电信和电能传输。
以下是传输线的基本概念:
1.导体:传输线中的导体是负责传输电流的部分,通常由金属材料制成,如铜或铝。
2.绝缘体:绝缘体用于包裹导体,防止电流外泄,同时防止导体与其他导体之间的直接
接触。
3.波动模式:传输线可以支持不同的波动模式,如横波(横电磁波)和纵波(纵电磁波)。
4.特性阻抗:传输线有一个特性阻抗,表示单位长度上的电阻和电抗。
特性阻抗是传输
线参数的一个关键特征。
5.传输速度:信号在传输线上传播的速度,通常接近真空中光速。
6.电压和电流的分布:传输线上电压和电流的分布受特性阻抗、波动模式以及传播方向
等因素影响。
7.传输线长度:传输线的长度对于信号的传播和特性阻抗的影响很大,尤其在高频情况
下。
8.返波系数:当信号在传输线的末端遇到不匹配时,部分信号将被反射回去,返波系数
描述了这种反射的程度。
传输线理论是电磁场理论的一部分,对于高频信号和微波传输具有重要的应用。
传输线的特性和参数对于电信、网络、电力系统等领域的设计和分析都至关重要。
传输线基本理论1.传输线的集总电路模型取⼀段⽆线⼩长Δz从基尔霍夫电压和基尔霍夫电流推到出微分⽅程对于简谐稳态条件,具有余弦型的向量形式,可以简化为联⽴求解上述电报⽅程可得传输线上的波⽅程2. ⽆耗传输线低耗传输线的传播常数和特征阻抗可以认为线是⽆耗的⽽得到的很好第近似。
⽆耗传输线中传播常数β为β=ω√LC相速是v=ωβ=1√LC波阻抗Z=µϵ注意:传播常数、波阻抗与⽆耗媒质中的平⾯波是相同的。
3.特性阻抗瞬态阻抗:传输线不均匀特性阻抗:传输线均匀对于⽆耗传输线特性阻抗,可以⽤单位长度电感和电容表⽰Z0=L C3.1影响特性阻抗的因素线宽的影响线宽对电感的影响:矩形⾛线的⾃感可近似表⽰为l是⾛线长度,w是⾛线宽度,t是铜箔厚度。
当l>>w+t时,电感⼤⼩主要由ln(2lw+t)决定,线宽越⼤电感越⼩(线宽越⼤,电流越分散,电感越⼩)。
线宽对电容的影响:线宽越⼤,⾛线和平⾯之间的电⼒线越多的集中在介质区域,单位长度电容越⼤。
介质厚度的影响介质厚度增加时,两个导体间距增加,互感减⼩,单位长度电感增加,电容减⼩。
因此介质厚度增⼤会增⼤介电常数。
介电常数的影响单位长度电感与介电常数⽆关,另外根据平板电容特性,介电常数越⼤,单位长度电容越⼤。
因此介电常数越⼤,特性阻抗越⼩铜箔厚度的影响铜箔的厚度会影响⾛线的电感和电容。
当l>>w+t时,电感⼤⼩主要由ln(2lw+t)决定,越厚,电感越⼩;⽽当厚度增⼤时,由于边缘场效应,电容增⼤。
因此铜箔越厚,阻抗越⼩。
4. 端接负载的传输线电压反射系数Γ:√√Γ=Z L−Z0 Z L+Z0回波损耗(return loss, RL):但负载失配时,不是所有来⾃源的功率都传给了负载RL=−20log|Γ|dB若负载与线是匹配的,则Γ=0,⽽且线上电压幅值为常数。
然⽽,当负载失配时,反射波的存在会导致驻波,这时线上的电压幅值不是常数,会沿线起伏。
传输线理论§1.1 引言微波传输线是传输微波能量和信息的电磁装置,也可用来构成各种微波元件。
本节主要讲述两点:传输线的基本概念以及分布参数的概念一、传输线的基本概念微波传输线是传输微波能量和信息的电磁装置,也可用来构成各种微波元件。
矩形波导圆形波导同轴线波导按其传播的被导电磁波的特征,大致可分为三种类型:(1)TEM波传输线(2)波导传输线(3)表面波传输线传输线的分析方法有“场”和“路”两种方法。
二、分布参数的概念分布参数是相对于集总参数而言的。
微波传输线与集总参数电路不同,当高频信号通过传输线时将产生如下一些分布参数效应分布电阻效应分布电导效应分布电感效应分布电容效应所以在高频情况下,传输线是具有分布参数的电路。
§1.2 传输线方程及其解传输线方程是研究传输线的电压、电流及其相互关系的方程。
本节主要讲述三个问题:传输线方程、传输线方程的解以及传输线的特性参量一、传输线方程传输线方程是研究传输线的电压、电流及其相互关系的方程。
对于均匀传输线,由于参数是沿线均匀分布的,所以只需考虑线元dz的情况,并把它看成集总参数电路。
dV(z)/dz=ZI(z) (1-3a)dI(z)/dz=YV(z) (1-3b)二、传输线原理传输线之电路表示方式一般以两条等长的导线表示,如图1.1(a)。
其中一小段长度为Δz的传输线,可以用1.1(b)的集总组件电路模型描述,其中图1.1 传输线之等效电路图R=两导体中单位长度的串联电阻,单位Ω/m。
L=两导体中单位长度的串联电感,单位H/m。
G=两导体中单位长度的并联电导,单位S/m。
R=两导体中单位长度的并联电容,单位F/m。
图1.1(b)中,由柯希荷夫电压定律可得为一组行进波,其中项表示往方向传播,项表示往方向传播。
将(1.6a)代入(1.3a),可得传输在线的电流波三、参数说明1.传播常数2.特性阻抗定义:传输线上任一点的行波电压与行波电流之比,即入射波电压与入射波电流之比,或反射波电压与反射波电流之比的负值。
传输线理论(y)Transmission Line Theory1第一部分传输线1.1 传输线的波动方程111.2 无损耗双线传输线12131.3 接负载的无损耗传输线1.4 反射系数、驻波比1.5 Simth圆图1.6 有耗传输线2什么是传输线什么是传输线?传输线是一种能在两点之间高效率地传输功率与信号的器材。
广义上讲,凡是传输功率与信号的器材广义上讲凡是能够用来导引电磁波向既定方向传输的导体、介质系统均可称其为传输线。
3几种典型的同轴电缆5常见传输线有双绞线、屏蔽双绞线、同轴电缆、波导和微带线等。
这些传输线都只能在一定的频率范围内使用。
例带线等这些传输线都只能在一定的频率范围内使用例如双绞线和屏蔽双绞线,只适用于100 kHz以下的信号传输当频率达时传输损耗将大大增加即电磁波输,当频率达1MHz时,传输损耗将大大增加,即电磁波在传输线内行进时,能量被迅速衰减,无法到达负载终端。
电磁兼容测试中常用的N型同轴电缆通常用于10GHz以下的频段;而波导和微带线则可应用于10GHz 以上的频率范围围。
图3-1 各种传输线的适用频率范围6同轴线是由介质隔开的内导体与同轴外导体构成。
同轴线的优点是使电场和磁场限制在内外导体间的介质区域内,既减小了辐射损耗,也屏蔽了外界干扰。
内外导体间的介质可以是空气,也可是损耗小的介质材料的作频率范围可以是损耗小的介质材料。
它的工作频率范围可从直流至特高频段(10GHz附近),在通信、电视及各种电子设备中得到广泛应用,也是电磁兼容测试中应用最多的一类传输线。
7同轴线是TEM波传输线的一种 本章节主要研究传播横电磁波模式的传输线,即第一类——TEM波传输线。
场源产生的能量沿着传输线所引导的方向以横电磁波模式传播,即在传输过程中电场和磁场相互垂直,且都垂直于传输线导向的传播方向。
8能量以“波”的形式传播线上的电压和电流不仅与时间有关,而且与位置有关V V低频高频9集总参数和分布参数按照“路”的分析方法传输高频电磁能量的传输线与按照路的分析方法,传输高频电磁能量的传输线与普通电路网络有一个明显的差别。
第一章传输线理论1-1.什么叫传输线?何谓长线和短线?一般来讲,凡是能够导引电磁波沿一定方向传输的导体、介质或由它们共同体组成的导波系统,均可成为传输线;长线是指传输线的几何长度l远大于所传输的电磁波的波长或与λ可相比拟,反之为短线。
(界限可认为是l/λ>=0.05)1-2.从传输线传输波形来分类,传输线可分为哪几类?从损耗特性方面考虑,又可以分为哪几类?按传输波形分类:(1)TEM(横电磁)波传输线例如双导线、同轴线、带状线、微带线;共同特征:双导体传输系统;(2)TE(横电)波和TM(横磁)波传输线例如矩形金属波导、圆形金属波导;共同特点:单导体传输系统;(3)表面波传输线例如介质波导、介质镜像线;共同特征:传输波形属于混合波形(TE波和TM 波的叠加)按损耗特性分类:(1)分米波或米波传输线(双导线、同轴线)(2)厘米波或分米波传输线(空心金属波导管、带状线、微带线)(3)毫米波或亚毫米波传输线(空心金属波导管、介质波导、介质镜像线、微带线)(4)光频波段传输线(介质光波导、光纤)1-3.什么是传输线的特性阻抗,它和哪些因素有关?阻抗匹配的物理实质是什么?传输线的特性阻抗是传输线处于行波传输状态时,同一点的电压电流比。
其数值只和传输线的结构,材料和电磁波频率有关。
阻抗匹配时终端负载吸收全部入射功率,而不产生反射波。
1-4.理想均匀无耗传输线的工作状态有哪些?他们各自的特点是什么?在什么情况的终端负载下得到这些工作状态?(1)行波状态:0Z Z L =,负载阻抗等于特性阻抗(即阻抗匹配)或者传输线无限长。
终端负载吸收全部的入射功率而不产生反射波。
在传输线上波的传播过程中,只存在相位的变化而没有幅度的变化。
(2)驻波状态:终端开路,或短路,或终端接纯抗性负载。
电压,电流在时间,空间分布上相差π/2,传输线上无能量传输,只是发生能量交换。
传输线传输的入射波在终端产生全反射,负载不吸收能量,传输线沿线各点传输功率为0.此时线上的入射波与反射波相叠加,形成驻波状态。