传输线基本理论
- 格式:ppt
- 大小:177.00 KB
- 文档页数:22
传输线基本理论1.传输线的集总电路模型取⼀段⽆线⼩长Δz从基尔霍夫电压和基尔霍夫电流推到出微分⽅程对于简谐稳态条件,具有余弦型的向量形式,可以简化为联⽴求解上述电报⽅程可得传输线上的波⽅程2. ⽆耗传输线低耗传输线的传播常数和特征阻抗可以认为线是⽆耗的⽽得到的很好第近似。
⽆耗传输线中传播常数β为β=ω√LC相速是v=ωβ=1√LC波阻抗Z=µϵ注意:传播常数、波阻抗与⽆耗媒质中的平⾯波是相同的。
3.特性阻抗瞬态阻抗:传输线不均匀特性阻抗:传输线均匀对于⽆耗传输线特性阻抗,可以⽤单位长度电感和电容表⽰Z0=L C3.1影响特性阻抗的因素线宽的影响线宽对电感的影响:矩形⾛线的⾃感可近似表⽰为l是⾛线长度,w是⾛线宽度,t是铜箔厚度。
当l>>w+t时,电感⼤⼩主要由ln(2lw+t)决定,线宽越⼤电感越⼩(线宽越⼤,电流越分散,电感越⼩)。
线宽对电容的影响:线宽越⼤,⾛线和平⾯之间的电⼒线越多的集中在介质区域,单位长度电容越⼤。
介质厚度的影响介质厚度增加时,两个导体间距增加,互感减⼩,单位长度电感增加,电容减⼩。
因此介质厚度增⼤会增⼤介电常数。
介电常数的影响单位长度电感与介电常数⽆关,另外根据平板电容特性,介电常数越⼤,单位长度电容越⼤。
因此介电常数越⼤,特性阻抗越⼩铜箔厚度的影响铜箔的厚度会影响⾛线的电感和电容。
当l>>w+t时,电感⼤⼩主要由ln(2lw+t)决定,越厚,电感越⼩;⽽当厚度增⼤时,由于边缘场效应,电容增⼤。
因此铜箔越厚,阻抗越⼩。
4. 端接负载的传输线电压反射系数Γ:√√Γ=Z L−Z0 Z L+Z0回波损耗(return loss, RL):但负载失配时,不是所有来⾃源的功率都传给了负载RL=−20log|Γ|dB若负载与线是匹配的,则Γ=0,⽽且线上电压幅值为常数。
然⽽,当负载失配时,反射波的存在会导致驻波,这时线上的电压幅值不是常数,会沿线起伏。
【射频笔记5】传输线理论基础一. 什么是传输线我们经常会用到传输线这一术语,可是讲到其具体定义时,很多工程师都是欲言又止,似懂非懂……我们知道,传输线用于将信号从一端传输到另一端,下图说明了所有传输线的一般特征所以,可以这样理解:传输线由两条一定长度导线组成,一条是信号传播路径,另一条是信号返回路径。
1. 分析传输线,一定要联系返回路径,单根的导体并不能成为传输线2.和电阻,电容,电感一样,传输线也是一种理想的电路元件,但是其特性却大不相同,用于仿真效果较好,但电路概念却比较复杂3.传输线有两个非常重要的特征:特性阻抗和时延二. 传输线分类经常用到的双绞线,同轴电缆都是传输线对于PCB来说,常有微带线和带状线两种微带线通常指PCB外层的走线,并且只有一个参考平面带状线是指介于两个参考平面之间的内层走线下图为微带线和带状线示意图及其阻抗计算公式,可以从这个公式中看出,阻抗和那些因素有关,但是实际工程应用中,都是用一些专业软件进行阻抗计算,比如Polar三. 传输线阻抗先来澄清几个概念,经常会看到阻抗,特性阻抗,瞬时阻抗,严格来讲,他们是有区别的,但是万变不离其宗,它们仍然是阻抗的基本定义.将传输线始端的输入阻抗简称为阻抗将信号随时遇到的及时阻抗称为瞬时阻抗如果传输线具有恒定不变的瞬时阻抗,就称之为传输线的特性阻抗特性阻抗描述了信号沿传输线传播时所受到的瞬态阻抗,这是影响传输线电路中信号完整性的一个主要因素如果没有特殊说明,一般用特性阻抗来统称传输线阻抗简单的来说,传输线阻抗可以用上面的公式来说明,但如果往深里说,我们就要分析信号在传输线中的行为,Eric Bogatin 博士在他的著作《Signal Integrity :Simplified》里面有很详细的说明,读者可以找原著来进行细究,这里只做一个简述:当信号沿着一条具有同样横截面的传输线移动时,假定把1V的阶梯波(step function)加到这条传输线中(如把1V的电池连接到传输线的发送端,电压跨在发送线和回路之间),一旦连接,这个电压阶梯波沿着该线以光速传播,它的速度通常约为6英寸/ns。
第二章传输线基本理论§2-1 引言一、传输线的种类用来传输电磁能量的线路称为传输系统,由传输系统引导向一定方向传播的电磁波称为导行波。
和低频段不同,微波传输线的种类繁多。
按其上传播的导行波的特征可分为三大类:①TEM波传输线。
如平行双线、同轴线以及微带传输线(包括带状线和微带)等;②波导传输线。
如矩形波导、圆柱波导、椭圆波导及脊波导等;③表面波传输线。
如介质波导、镜像线及单根线等等。
各类传输线示于图2-1-1中。
微波传输线不仅能将电磁能量由一处传送到另一外,还可以构成各种各样的微波元件,这与低频传输截然不同。
不同的频段,可以选不同类型的传输线。
对传输线的基本要求是:损耗小、效率高;功率容量大;工作频带宽;尺寸小且均匀。
二、分布参数的概念“长度”有绝对长度与相对长度两种概念。
对于传输线的“长”或“短”,并不是以其绝对长度而是以其与波长比值的相对大小而论的。
我们把比值称为传输线的相对长度。
在微波领域里,波长以厘米或毫米计。
虽然传输线的长度有时只不过是几十厘米甚至几个毫米,比如传输频率为3GHz的同轴电缆虽只有半米长,但它已是工作波长的5倍,故须把它称为“长线”;相反,输送市电的电力传输线(频率为50Hz)即使长度为几千米,但与市电的波长(6000千米)相比小得多,因此只能称为“短线”而不能称为“长线”。
微波传输线都属于“长线”的范畴,故本章又可称作长线的基本理论。
前者对应于低频率传输线。
它在低频电路中只起连接线的作用,因频率低,其本身分布参数所引起的效应过错全可以忽略不计,所以在低频电路中只考虑时间因子而忽略空间效应,因而把电路当作集中参数电路来处于是允许的。
后者对应于微波传输线。
因为频率很高时分布参数效应不能再忽视了,传输线不能仅当作连接线,它将形成分布参数电路,参与整个电路的工作。
因而传输线在电路中所引起的效应必须用传输线理论来研究。
亦即,在微波传输线上处处存在分布电阻、分布电感,线间处处存在分布电容和漏电电导。