第二节 平面向量的基本定理及坐标表示
- 格式:dps
- 大小:2.92 MB
- 文档页数:35
一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。
第2讲 平面向量的基本定理及坐标表示1.平面向量的基本定理如果e 1,e 201不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a 02λ1e 1+λ2e 2.2.平面向量的坐标表示03x 轴、y 轴正方向相同的两个单位向量i ,j 作为基底,对任一向量a ,有唯一一对实数x ,y ,使得a =x i +y j 04(x ,y )叫做向量a 的直角坐标,记作a =(x ,y ),显然i 05(1,0),j 06(0,1),0=07(0,0).3.平面向量的坐标运算 (1)设a =(x 1,y 1),b =(x 2,y 2), 则a +b 08(x 1+x 2,y 1+y 2), a -b 09(x 1-x 2,y 1-y 2), λa 10(λx 1,λy 1). (2)设A (x 1,y 1),B (x 2,y 2), 则AB →11(x 2-x 1,y 2-y 1), |AB→|12 错误!. 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,则a ∥b ⇔a =λb (λ∈R )⇔13x 1y 2-x 2y 1=0.1.平面向量一组基底是两个不共线向量,平面向量基底可以有无穷多组. 2.当且仅当x 2y 2≠0时,a ∥b 与x1x2=y1y2等价,即两个不平行于坐标轴的共线向量的对应坐标成比例.3.若a 与b 不共线,且λa +μb =0,则λ=μ=0.4.已知P 为线段AB 的中点,若A (x 1,y 1),B (x 2,y 2),则P 点坐标为⎝ ⎛⎭⎪⎪⎫x1+x22,y1+y22. 5.已知△ABC 的顶点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则△ABC 的重心G 的坐标为⎝ ⎛⎭⎪⎪⎫x1+x2+x33,y1+y2+y33. 6.A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2-x 1)(y 3-y 1)-(x 3-x 1)(y 2-y 1)=0,或(x 2-x 1)(y 3-y 2)=(x 3-x 2)(y 2-y 1),或(x 3-x 1)(y 3-y 2)=(x 3-x 2)(y 3-y 1).1.已知向量a =(2,4),b =(-1,1),则2a +b 等于( ) A .(5,7) B .(5,9) C .(3,7) D .(3,9)答案 D解析 2a +b =2(2,4)+(-1,1)=(3,9),故选D.2.设向量a =(x,1),b =(4,x ),若a ,b 方向相反,则实数x 的值是( ) A .0 B .±2 C .2D .-2答案 D解析 由题意可得a ∥b ,所以x 2=4,解得x =-2或2,又因为a ,b 方向相反,所以x =-2.故选D.3.下列各组向量中,可以作为基底的是( ) A .e 1=(0,0),e 2=(1,-2) B .e 1=(-1,2),e 2=(5,7) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎪⎫12,-34答案 B解析 两个不共线的非零向量构成一个基底,A 中向量e 1为零向量,C ,D 中两向量共线,B 中e 1≠0,e 2≠0,且e 1与e 2不共线.故选B.4.设向量a =(-1,2),向量b 是与a 方向相同的单位向量,则b =( ) A .(1,-2) B .⎝ ⎛⎭⎪⎪⎫-55,255 C.⎝ ⎛⎭⎪⎪⎫-15,25 D .⎝ ⎛⎭⎪⎪⎫55,-255 答案 B解析 因为向量b 是与a 方向相同的单位向量,所以b =a|a|=错误!(-1,2)=错误!(-1,2)=⎝⎛⎭⎪⎪⎫-55,255.故选B. 5.已知▱ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________.答案 (1,5)解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎪⎨⎪⎧4=5-x ,1=6-y ,解得⎩⎪⎨⎪⎧x =1,y =5.6.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则mn =________.答案 -12解析 由向量a =(2,3),b =(-1,2),得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1).由m a +n b 与a -2b 共线,得2m -n 4=3m +2n -1,所以m n =-12.考向一 平面向量基本定理的应用例1 (1)如图,点A ,B ,C ,P 均在正方形网格的格点上.若AP →=λAB →+μAC →(λ,μ∈R ),则λ+2μ=( )A .1B .32C .43D .2答案 B解析 设在正方形网格上方向为水平向右,长度为一格的向量为i ,方向为竖直向上,长度为一格的向量为j ,∴AB→=-2i +2j ,AC →=4i ,AP →=i +j ,∵AP →=λAB →+μAC →(λ,μ∈R ),即i +j =λ(-2i +2j )+μ×4i ,i +j =(4μ-2λ)i +2λj ,∴⎩⎪⎨⎪⎧4μ-2λ=1,2λ=1,解得⎩⎪⎨⎪⎧λ=12,μ=12,∴λ+2μ=32.故选B.(2) 如图,以向量OA →=a ,OB →=b 为邻边作平行四边形OADB ,BM →=13BC →,CN →=13CD →,用a ,b 表示OM →,ON →,MN →.解 ∵BA →=OA →-OB →=a -b ,BM →=16BA →=16a -16b ,∴OM →=OB →+BM →=b +⎝ ⎛⎭⎪⎪⎫16a -16b =16a +56b .∵OD →=a +b ,∴ON →=OC →+13CD →=12OD →+16OD →=23OD →=23a +23b ,∴MN →=ON →-OM →=23a +23b -16a -56b =12a -16b .综上,OM →=16a +56b ,ON →=23a +23b ,MN →=12a -16b .应用平面向量基本定理表示向量的方法应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加法、减法或数乘运算,基本方法有两种:(1)运用向量的线性运算法则对待求向量不断进行化简,直至用基底表示为止. (2)将向量用含参数的基底表示,然后列方程或方程组,利用基底表示向量的唯一性求解.1.(2020·北京市朝阳区一模)如图,在△ABC 中,点D ,E 满足BC→=2BD→,CA →=3CE →.若DE →=x AB →+y AC →(x ,y ∈R ),则x +y =( )A .-12B .-13C.12 D .13答案 B解析 △ABC 中,点D ,E 满足BC →=2BD →,CA →=3CE →.DE →=DC →+CE →=12BC →+13CA→=12(AC →-AB →)-13AC →=-12AB →+16AC →,又DE →=x AB →+y AC →(x ,y ∈R ),∴⎩⎪⎨⎪⎧x =-12,y =16,∴x +y =-12+16=-13.故选B.2.(2020·青岛市高三上学期期末)在△ABC 中,AB →+AC →=2AD →,AE →+2DE →=0,若EB→=x AB →+y AC →,则( ) A .y =2x B .y =-2x C .x =2y D .x =-2y答案 D解析 如图所示,∵AB→+AC →=2AD →,∴点D 为边BC 的中点.∵AE →+2DE →=0,∴AE →=-2DE →,∴DE →=-13AD →=-16(AB →+AC →).又DB →=12CB →=12(AB →-AC →),∴EB →=DB →-DE →=12(AB →-AC →)+16(AB →+AC →)=23AB →-13AC →.又EB →=x AB →+y AC →,∴x =23,y =-13,即x =-2y .故选D.考向二 平面向量的坐标运算例2 (1)若向量AB →=DC →=(2,0),AD →=(1,1),则AC →+BC →等于( ) A .(3,1) B .(4,2) C .(5,3)D .(4,3)答案 B解析 AC→=AD →+DC →=(3,1),又BD →=AD →-AB →=(-1,1),则BC →=BD →+DC →=(1,1),所以AC→+BC →=(4,2).(2)(2020·辽宁省辽南协作校二模)已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c =( )A.⎝ ⎛⎭⎪⎪⎫133,83 B .⎝ ⎛⎭⎪⎪⎫-133,-83C.⎝ ⎛⎭⎪⎪⎫133,43 D .⎝ ⎛⎭⎪⎪⎫-133,-43答案 D解析 ∵a -2b +3c =0,∴c =-13(a -2b )=-13(5+4×2,-2+2×3)=⎝⎛⎭⎪⎪⎫-133,-43.故选D. (3)(2020·天津和平区模拟) 如图,在直角梯形ABCD 中,AB ∥DC ,AD ⊥DC ,AD =DC =2AB ,E 为AD 的中点,若CA→=λCE →+μDB →(λ,μ∈R ),则λ+μ的值为( )A.65B .85C .2D .83答案 B解析 建立如图所示的平面直角坐标系,则D (0,0).不妨设AB =1,则CD =AD=2,∴C (2,0),A (0,2),B (1,2),E (0,1),∴CA→=(-2,2),CE →=(-2,1),DB →=(1,2),∵CA →=λCE →+μDB →,∴(-2,2)=λ(-2,1)+μ(1,2),∴⎩⎪⎨⎪⎧-2λ+μ=-2,λ+2μ=2,解得λ=65,μ=25,则λ+μ=85.故选B.平面向量坐标运算的技巧(1)向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解的,若已知有向线段两端点的坐标,则应先求向量的坐标.(2)解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解,并注意方程思想的应用.3.若向量a =(2,1),b =(-1,2),c =⎝⎛⎭⎪⎪⎫0,52,则c 可用向量a ,b 表示为( )A .c =12a +bB .c =-12a -bC .c =32a +12bD .c =32a -12b答案 A解析设c =x a +y b ,易知⎩⎪⎨⎪⎧ 0=2x -y ,52=x +2y ,∴⎩⎪⎨⎪⎧x =12,y =1.∴c =12a +b .故选A.4.已知OB 是平行四边形OABC 的一条对角线,O 为坐标原点,OA →=(2,4),OB →=(1,3),若点E 满足OC→=3EC →,则点E 的坐标为( )A.⎝ ⎛⎭⎪⎪⎫-23,-23B .⎝ ⎛⎭⎪⎪⎫-13,-13C.⎝ ⎛⎭⎪⎪⎫13,13 D .⎝ ⎛⎭⎪⎪⎫23,23答案 A解析 解法一:易知OC→=OB →-OA →=(-1,-1),则C (-1,-1),设E (x ,y ),则3EC→=3(-1-x ,-1-y )=(-3-3x ,-3-3y ), 由OC →=3EC →,知⎩⎪⎨⎪⎧-3-3x =-1,-3-3y =-1,所以⎩⎪⎨⎪⎧x =-23,y =-23,所以点E 的坐标为⎝ ⎛⎭⎪⎪⎫-23,-23.解法二:易知OC→=OB →-OA →=(-1,-1),由OC →=3EC →得OC →=3(OC →-OE →),所以OE→=23OC→=⎝⎛⎭⎪⎪⎫-23,-23,所以点E的坐标为⎝⎛⎭⎪⎪⎫-23,-23.考向三平面向量共线的坐标表示例3(1)(2020·山东省菏泽市一模)已知向量a,b满足a=(1,2),a+b=(1+m,1),若a∥b,则m=()A.2 B.-2C.12D.-12答案 D解析b=(a+b)-a=(1+m,1)-(1,2)=(m,-1).因为a∥b,所以2m+1=0,解得m=-12.故选D.(2)(2021·海口市海南中学高三月考)已知向量a=(1,1),点A(3,0),点B为直线y=2x上的一个动点,若AB→∥a,则点B的坐标为________.答案(-3,-6)解析由题意,设B(x,2x),则AB→=(x-3,2x),∵AB→∥a,∴x-3-2x=0,解得x =-3,∴B(-3,-6).利用两向量共线解题的技巧(1)一般地,在求与一个已知向量a共线的向量时,可设所求向量为λa(λ∈R),然后结合其他条件列出关于λ的方程,求出λ的值后代入λa即可得到所求的向量.(2)如果已知两向量共线,求某些参数的取值时,那么利用“若a=(x1,y1),b=(x2,y2),则a∥b的充要条件是x1y2=x2y1”解题比较方便.5.已知点A(4,0),B(4,4),C(2,6),则AC与OB的交点P的坐标为________.答案(3,3)解析 解法一:由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA→=(4λ-4,4λ). 又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3),所以点P 的坐标为(3,3).解法二:设点P (x ,y ),则OP →=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP →=(x -4,y ),AC →=(-2,6),且AP →与AC →共线,所以(x -4)×6-y ×(-2)=0,解得x =y =3,所以点P 的坐标为(3,3).6.(2020·长郡中学高三适应性考试)已知向量AC →=(1,sin α-1),BA →=(3,1),BD →=(2,cos α),若B ,C ,D 三点共线,则tan(2021π-α)=________.答案 -2解析 ∵B ,C ,D 三点共线, ∴BD→=x BC →=x (BA →+AC →), 即(2,cos α)=x (4,sin α),则⎩⎪⎨⎪⎧2=4x ,cosα=xsinα,得x =12,即cos α=12sin α,得tan α=2,则tan(2021π-α)=tan(-α)=-tan α=-2.一、单项选择题1.向量a ,b 满足a +b =(-1,5),a -b =(5,-3),则b =( ) A .(-3,4) B .(3,4) C .(3,-4) D .(-3,-4)答案 A解析 由a +b =(-1,5),a -b =(5,-3),得2b =(-1,5)-(5,-3)=(-6,8),所以b =12(-6,8)=(-3,4).2.(2021·山东聊城月考)已知平行四边形ABCD 中,AD →=(3,7),AB →=(-2,3),对角线AC 与BD 交于点O ,则CO→的坐标为( ) A.⎝ ⎛⎭⎪⎪⎫-12,5 B .⎝ ⎛⎭⎪⎪⎫12,5C.⎝ ⎛⎭⎪⎪⎫12,-5 D .⎝ ⎛⎭⎪⎪⎫-12,-5答案 D解析 因为AC →=AB →+AD →=(-2,3)+(3,7)=(1,10),所以OC →=12AC →=⎝ ⎛⎭⎪⎪⎫12,5,所以CO →=⎝ ⎛⎭⎪⎪⎫-12,-5.3. 如图,在梯形ABCD 中,DC →=14AB →,BE →=2EC→,且AE →=r AB →+s AD →,则2r +3s =( )A.1 B.2 C.3 D.4 答案 C解析根据题图,由题意可得AE→=AB→+BE→=AB→+23BC→=AB→+23(BA→+AD→+DC→)=13AB→+23(AD→+DC→)=13AB→+23⎝⎛⎭⎪⎪⎫AD→+14AB→=12AB→+23AD→.因为AE→=r AB→+s AD→,所以r=12,s=23,则2r+3s=1+2=3.4.已知向量a=(-1,2),b=(3,m),m∈R,则“m=-6”是“a∥(a+b)”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件答案 A解析由题意得a+b=(2,2+m),由a∥(a+b),得-1×(2+m)=2×2,所以m=-6,则“m=-6”是“a∥(a+b)”的充要条件.5.已知向量a=(2,1),b=(3,4),c=(1,m),若实数λ满足a+b=λc,则λ+m等于()A.5 B.6C.7 D.8答案 B解析由平面向量的坐标运算法则可得a+b=(5,5),λc=(λ,λm),据此有⎩⎪⎨⎪⎧λ=5,λm=5,解得λ=5,m =1,所以λ+m =6.6.(2020·青岛模拟)已知向量a =(1+cos x,2),b =(sin x,1),x ∈⎝ ⎛⎭⎪⎪⎫0,π2,若a ∥b ,则sin x =( )A.45B .35C .25D .255答案 A解析 根据题意,向量a =(1+cos x,2),b =(sin x,1),若a ∥b ,则2sin x =1+cos x ,变形可得cos x =2sin x -1,又sin 2x +cos 2x =1,则有sin 2x +(2sin x -1)2=1,变形可得,5sin 2x -4sin x =0,解得sin x =0或sin x =45,又x ∈⎝⎛⎭⎪⎪⎫0,π2,则sin x =45.故选A.7. (2020·黑龙江省大庆一中三模)“勾3股4弦5”是勾股定理的一个特例.根据记载,西周时期的数学家商高曾经和周公讨论过“勾3股4弦5”的问题,比毕达哥拉斯发现勾股定理早了500多年,如图,在矩形ABCD 中,△ABC 满足“勾3股4弦5”,且AB =3,E 为AD 上一点,BE ⊥AC .若BA→=λBE →+μAC →,则λ+μ的值为( )A .-925 B .725C .1625D .1答案 B解析 由题意建立如图所示平面直角坐标系,因为AB =3,BC =4,则B (0,0),A (0,3),C (4,0),BA→=(0,3),AC →=(4,-3),设BE →=(a,3),因为BE ⊥AC ,所以AC →·BE →=4a -9=0,解得a =94.由BA →=λBE →+μAC →,得(0,3)=λ⎝ ⎛⎭⎪⎪⎫94,3+μ(4,-3),所以⎩⎪⎨⎪⎧94λ+4μ=0,3λ-3μ=3,解得⎩⎪⎨⎪⎧λ=1625,μ=-925,所以λ+μ=725,故选B.8. 如图,扇形的半径为1,圆心角∠BAC =150°,点P 在弧BC 上运动,AP →=λAB →+μAC→,则3λ-μ的最小值是( )A .0B .3C .2D .-1答案 D解析 以A 为原点,AB 所在直线为x 轴,建立如图所示平面直角坐标系,则A (0,0),B (1,0),C (cos150°,sin150°)=⎝ ⎛⎭⎪⎪⎫-32,12,设P (cos θ,sin θ)(0°≤θ≤150°),因为AP →=λAB →+μAC →,所以(cos θ,sin θ)=λ(1,0)+μ⎝⎛⎭⎪⎪⎫-32,12,于是⎩⎪⎨⎪⎧λ-32μ=cosθ,12μ=sinθ,解得λ=cos θ+3sin θ,μ=2sin θ,那么3λ-μ=sin θ+3cos θ=2sin(θ+60°),因为0°≤θ≤150°,所以60°≤θ+60°≤210°,故sin(θ+60°)≥-12,因此3λ-μ的最小值为-1.故选D.二、多项选择题9.设O 是平行四边形ABCD 的两条对角线AC ,BD 的交点,则可作为这个平行四边形所在平面的一组基底的向量组是( )A.AD →与AB →B .DA →与BC → C.CA →与DC →D .OD→与OB → 答案 AC解析 平面内任意两个不共线的向量都可以作为基底,如图,对于A ,AD →与AB →不共线,可作为基底;对于B ,DA→与BC →为共线向量,不可作为基底;对于C ,CA →与DC→是两个不共线的向量,可作为基底;对于D ,OD →与OB →在同一直线上,是共线向量,不可作为基底.10.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(m +1,m -2),若点A ,B ,C 能构成三角形,则实数m 可以是( )A .-2B .12C .1D .-1答案 ABD解析 各选项代入验证,若A ,B ,C 三点不共线即可构成三角形.因为AB →=OB →-OA→=(2,-1)-(1,-3)=(1,2),AC →=OC →-OA →=(m +1,m -2)-(1,-3)=(m ,m +1).假设A ,B ,C 三点共线,则1×(m +1)-2m =0,即m =1.所以只要m ≠1,则A ,B ,C 三点可构成三角形,故选ABD.11.(2021·广东湛江高三模拟)若点D ,E ,F 分别为△ABC 的边BC ,CA ,AB 的中点,且BC→=a ,CA →=b ,则下列结论正确的是( ) A.AD →=-12a -bB .BE →=a +12bC.CF →=-12a +12bD .EF →=12a答案 ABC解析如图,在△ABC中,AD→=AC→+CD→=-CA→+12CB→=-b-12a,故A正确;BE→=BC→+CE→=a+12b,故B正确;AB→=AC→+CB→=-b-a,CF→=CA→+12AB→=b+12×(-b-a)=-12a+12b,故C正确;EF→=12CB→=-12a,故D不正确.故选ABC.12. (2020·山东潍坊高三模拟)如图所示,点A,B,C是圆O上的三点,线段OC 与线段AB交于圆内一点P,若AP→=λAB→,OC→=μOA→+3μOB→,则()A.P为线段OC的中点时,μ=1 2B.P为线段OC的中点时,μ=1 3C.无论μ取何值,恒有λ=3 4D.存在μ∈R,λ=1 2答案AC解析OP→=OA→+AP→=OA→+λAB→=OA→+λ(OB→-OA→)=(1-λ)OA→+λOB→,因为OP→与OC →共线,所以1-λμ=λ3μ,解得λ=34,故C 正确,D 错误;当P 为OC 的中点时,则OP →=12OC →,则1-λ=12μ,λ=12×3μ,解得μ=12,故A 正确,B 错误.故选AC.三、填空题13.(2020·哈尔滨六中二模)已知向量a =(log 2x,1),b =(log 23,-1),若a ∥b ,则x =________.答案13解析 因为a ∥b ,所以-log 2x =log 23,所以log 2x +log 23=0,所以log 2(3x )=0,所以3x =1,所以x =13.14.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为________.答案 (2,4)解析 因为在梯形ABCD 中,DC =2AB ,AB ∥CD ,所以DC →=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ), AB→=(2,1)-(1,2)=(1,-1), 所以(4-x,2-y )=2(1,-1), 即(4-x,2-y )=(2,-2), 所以⎩⎪⎨⎪⎧4-x =2,2-y =-2,解得⎩⎪⎨⎪⎧x =2,y =4,故点D 的坐标为(2,4).15. 向量a ,b ,c 在正方形网格中的位置如图所示.若c =λa +μb (λ,μ∈R ),则λμ=________.答案 4解析 以向量a 和b 的交点为坐标原点建立如图所示的平面直角坐标系,设每个小正方形的边长为1个单位,则A (1,-1),B (6,2),C (5,-1),所以a =AO→=(-1,1),b =OB→=(6,2),c =BC →=(-1,-3). 由c =λa +μb 可得⎩⎪⎨⎪⎧ -1=-λ+6μ,-3=λ+2μ,解得⎩⎪⎨⎪⎧ λ=-2,μ=-12,所以λμ=4.16.(2020·济南市高三上学期期末)平行四边形ABCD 中,M 为CD 的中点,点N 满足BN→=2NC →,若AB →=λAM →+μAN →,则λ+μ的值为________. 答案 12解析 因为M 为CD 的中点,点N 满足BN→=2NC →, 所以DM →=12DC →,BN →=23BC →. 又因为AB→=λAM →+μAN →, 所以AB→=λ(AD →+DM →)+μ(AB →+BN →) =λ⎝ ⎛⎭⎪⎪⎫AD →+12DC →+μ⎝⎛⎭⎪⎪⎫AB →+23BC → =λAD →+λ2DC →+μAB →+2μ3BC →.① 又因为在平行四边形ABCD 中,AB→=DC →,AD →=BC →, 所以①整理得,AB →=λAD →+λ2AB →+μAB →+2μ3AD →, 即⎝ ⎛⎭⎪⎪⎫1-λ2-μAB →=⎝ ⎛⎭⎪⎪⎫λ+2μ3AD →. 又因为AB→,AD →不共线,由平面向量基本定理得 ⎩⎪⎨⎪⎧ 1-λ2-μ=0,λ+2μ3=0,解得⎩⎪⎨⎪⎧ λ=-1,μ=32,所以λ+μ=12.。
平面向量基本定理及坐标表示1.平面向量基本定理如果e1,e2是同一平面内两个不共线的向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1、λ2,使a=λ1e1+λ2e2.其中,不共线的向量e1,e2叫做表示这一平面内所有向量的一组基底。
2。
平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a=(x1,y1),b=(x2,y2),则a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),λa=(λx1,λy1),|a|=错误!。
(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标。
②设A(x1,y1),B(x2,y2),则错误!=(x2-x1,y2-y1),|错误!|=错误!。
3。
平面向量共线的坐标表示设a=(x1,y1),b=(x2,y2),其中b≠0。
a∥b⇔x1y2-x2y1=0.1。
判断下面结论是否正确(请在括号中打“√”或“×”)(1)平面内的任何两个向量都可以作为一组基底.(×)(2)在△ABC中,向量错误!,错误!的夹角为∠ABC.(×)(3)若a,b不共线,且λ1a+μ1b=λ2a+μ2b,则λ1=λ2,μ1=μ2。
(√)(4)平面向量的基底不唯一,只要基底确定后,平面内的任何一个向量都可被这组基底唯一表示.(√)(5)若a=(x1,y1),b=(x2,y2),则a∥b的充要条件可表示成错误!=错误!.(×) (6)已知向量a=(1-sinθ,1),b=(错误!,1+sinθ),若a∥b,则θ等于45°。
(×) 2。
已知点A(6,2),B(1,14),则与错误!共线的单位向量为________.答案(-错误!,错误!)或(错误!,-错误!)解析因为点A(6,2),B(1,14),所以错误!=(-5,12),|错误!|=13,与错误!共线的单位向量为±错误!=±错误!(-5,12)=±(-错误!,错误!).3。
平面向量基本定理及坐标表示预习设计 基础备考知识梳理1.两个向量的夹角(1)定义:已知两个 向量a 和b ,作=,,b a =则∠AOB=8叫做向量a 与b 的夹角.(2)范围:向量夹角θ的范围是 ,a 与b 同向时,夹角=θ ;a 与b 反向时,夹角θ(3)向量垂直:若向量a 与b 的夹角是 ,则a 与b 垂直,记作2.平面向量基本定理及坐标表示(1)平面向量基本定理:定理:如果21,e e 是同一平面内的两个 向量,那么对于这一平面内的任意向量a , 一对实数,,21λλ使=a 其中,不共线的向量21,e e 叫做表示这一平面内所有向量的一组(2)平面向量的正交分解: 把一个向量分解为两个 的向量,叫做把向量正交分解.(3)平面向量的坐标表示:①在平面直角坐标系中,分别取与x 轴、y 轴方向相同的两个单位向量i ,j 作为基底,对于平面内的一个向量a ,有且只有一对实数x ,y ,使,yj xi a +=把有序数对 叫做向量a 的坐标,记作 =a ,其中叫a 在x 轴上的坐标, 叫a 在y 轴上的坐标.,2yj xOA += ②、设则向量OA 的坐标(x ,y)就是 ,即若),,(y x OA =则A 点坐标为 反之亦成立.(O 是坐标原点)3.平面向量的坐标运算(1)加法、减法、数乘运算.(2)向量坐标的求法:已知),,(),,(2211y x B y x A 则),,(1212y y x x AB --=即一个向量的坐标等于该向量 的坐标减去 的坐标.(3)平面向量共线的坐标表示设),,(),,(2211y x b y x a ==其中,0=/b 则a 与b 共线⇔⇔=b a λ典题热身1.若),1,0(),2,3(-==b a 则a b -2的坐标是 ( ))4,3.(-A )4,3.(-B )4,3.(C )4,3.(--D答案:D2.已知),,8(),5,4(y b a ==且,//b a 则y 等于 ( )5.A 10.B 532.c 15.D 答案:B3.正三角形ABC 中,的夹角为 ( )60.A 45.B 120.C90.D答案:C4.已知平面任一点0满足),,(R y x y x ∈+=则”“1=+y x 是“点P 在直线AB 上”的 ( )答案:C5.下列各组向量: );7,5(),2,1(21=-=e e ①);10,6(),5,3(21==e e ②⋅-=-=)43,21(),3,2(21e e ③ 其中,能作为表示它们所在平面内所有向量的基底的是 (填序号)答案:①课堂设计 方法备考题型一 平面向量基本定理及其应用【例1】如图所示,在OAB ∆由41,=AD ,21,=与BC 交于点M ,设b a ==,以a ,b 为基底表示.题型二 平面向量的坐标运算【例2】已知).4,3(),1,3(),4,2(----C B A 设.2,3,,,b c c b a -=====且(1)求;33c b a -+(2)求满足nc mb a +=的实数m ,n ;(3)求M 、N 的坐标及向量的坐标.题型三 平面向量共线的坐标表示【例3】平面内给定三个向量,4(),2,1(),2,3(=-==c b a )1回答下列问题:(1)求满足nc mb a +=的实数m ,n ;(2)若!)2//()(a b kc a -+求实数k ;(3)若向量d 满足),//()(b a c d +-且,5||=-c d 求d .◎技法巧点1.基底的选取在解决与向量有关的具体问题时,合理地选择基底会给解题带来方便,在解决有关三角形的问题时,可以不去特意选择两个基本向量,而可以用三边所在的三个向量,最后可以根据需要任意留下两个即可.2.向量的坐标表示向量的坐标表示,实际上是向量的代数表示,引入向量的坐标表示可使向量运算完全代数化,将数与形紧密地结合起来,这样可以将许多几何问题转化为同学们熟知的数量运算,这也给我们解决几何问题提供了一种新的方法——向量坐标法,即建立平面直角坐标系,将几何问题用坐标表示,通过向量的坐标运算解决问题.失误防范1.要区分点的坐标与向量的坐标的区别,尽管在形式上它们完全一样,但意义完全不同,向量的坐标中同样有方向与大小的信息.2.在处理分点问题比如碰到条件“若P 是线段AB 的分点,且|PA ∣=2∣PB ∣”时,P 可能是AB 的 内分点,也可能是AB 的外分点,即可能的结论有.2,2-==或3.数学上的向量是自由向量,向量),(b a x =经过平移后得到的向量的坐标仍是).,(b a随堂反馈.1.(2010.陕西省质检)在平行四边形ABCD 中,E ,F 分别是CD 和BC 的中点,若,μλ+= 其中R ∈μλ,则μλ+的值为( )34.A 1.B 32.C 31.D2.(2011.广东高考)已知向量若A 为实数,,3),0,1(),2,1((===c b a ).4则,//)(c b a λ+=λ( ) 41.A 21.B 1.C2.D 3.(2010.陕西高考)已知向量=-=-=c m b a ),,1(),1,2(!//)(),2,1(c b a +-则=m4.给定两个长度为1的平面向量和它们的夹角为,120如图所示点C 在以O 为圆心的圆弧B A 上变动.若y x +=·其中∈y x ,R 则y x +的最大值是5.(2011.佛山模拟)已知在平面直角坐标系中,A (-2,O ),B OA OM B O ),3,1(βα+=(其中0为原点,实数a ,b 满足若)1=+βα)0,1(N , ||MN 的最小值是高效作业 技能备考一、选择题1.(2011.嘉兴模拟)已知向量,则),(),,1(2m m b m a =-=,则向量b a +所在的直线可能为( )A .x 轴B .第一、三象限的角平分线C .y 轴D .第二、四象限的角平分线2.(2011.衙州联考)且),1,(sin ),1,cos 2(αα==b a 且,//b a 则tana 等于 ( )2.A 21.B 2.C - 21.-D 3.(2011.广东五校联考)若),cos 21,31(),43,(sin x b x a ==且,//b a 则锐角x 为 ( ) 6.πA 4π⋅B 3C π⋅ π125.D 4.(2010.绍兴模拟)已知向量)1,2(),3,1(-=-=,)2,1(-+=m m 若点A ,B ,C 能构成三角形,则实数m 应满足的条件是2.-=/m A 21.=/m B 1.=/m c 1.-=/m D 5.(2010.合肥质检)在ABC ∆中,角A ,B ,C 所对的边分别为!)cos ,3(,,,C c b m c b a -=,//),cos ,(n m A a n =则A cos 的值等于( )63.A 43.B 33.c 23.D 6.(2011.青岛模拟)如图,在四边形ABCD 中==BC AB ,,1=CD 且 135,90=∠=∠BCD B 记向量b AC a AB ==,则=( )b a A )221(2.+- b a B )221(2.++- b ac )221(2.-+- b a D )221(2.-+二、填空题7.(2011.湖南高考)设向量b a ,满足)1,2(,52||==b a 且a 与b 的方向相反,则a 的坐标为8.(2011.天津十二校联考)已知直角坐标平面内的两个向量),32,(),3,1(-==m m b a 使平面内的任意一个向量c 都可以唯一的表示成,b a C μλ+=则m 的取值范围是9.(2011.湛江质检)已知向量集合,3()2,1|{λ+==(a a M ⋅∈}),4R λ}),5,4()2,2(|{R b b N ∈+--==λλ则 M =N ( )三、解答题10.(2010.枣庄模拟)已知)2,3(),1,2(),2,1(C B A -和),3,2(-D 以⋅AC AB ,为一组基底来表示.B ++11.已知向量t k b a ,),1,2(),2,1(-==为正实数+=a x ,b ta k yb t 11,)1(2+-=+问是否存在k 、t ,使,//y x 若存在,求出k 的取值范围;若不存在,请说明理由.12.在平行四边形ABCD 中,),0,6(),1,1(=A 点M 是线段AB 的中点,线段CM 与BD 交于点P.(1)若)5,3(= 求点C 的坐标;(2)当||||AD AB =时,求点P 的轨迹.。
平面向量基本定理及坐标表示1.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,存在唯一一对实数λ1、λ2,使a =λ1e 1+λ2e 2,其中,不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底.2.平面向量的坐标运算(1)向量加法、减法、数乘及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |=x 21+y 21.(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标. ②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=x 2-x 12+y 2-y 12.3.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0,a 、b 共线⇔x 1y 2-x 2y 1=0.选择题:设e 1,e 2是平面内一组基底,那么( ) A .若实数λ1,λ2使λ1e 1+λ2e 2=0,则λ1=λ2=0B .空间内任一向量a 可以表示为a =λ1e 1+λ2e 2(λ1,λ2为实数)C .对实数λ1,λ2,λ1e 1+λ2e 2不一定在该平面内D .对平面内任一向量a ,使a =λ1e 1+λ2e 2的实数λ1,λ2有无数对下列各组向量中,可以作为基底的是( )A .e 1=(0,0),e 2=(1,-2)B .e 1=(-1,2),e 2=(5,7)C .e 1=(3,5),e 2=(6,10)D .e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,-34解析 两个不共线的非零向量构成一组基底,故选B.已知平面向量a =(1,1),b =(1,-1),则向量12a -32b 等于( )A .(-2,-1)B .(-2,1)C .(-1,0)D .(-1,2) 解析 12a =(12,12),32b =(32,-32),故12a -32b =(-1,2).已知a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )A .-12a +32b a -32b C .-32a -12b D .-32a +12b解析 设c =λa +μb ,∴(-1,2)=λ(1,1)+μ(1,-1),∴⎩⎨⎧-1=λ+μ,2=λ-μ,∴⎩⎪⎨⎪⎧λ=12,μ=-32,∴c =12a -32b .已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ等于( ) C .1 D .2 解析 ∵a +λb =(1+λ,2),c =(3,4),且(a +λb )∥c ,∴1+λ3=24,∴λ=12已知a =(5,-2),b =(-4,-3),若a -2b +3c =0,则c 等于( )解析 由已知3c =-a +2b =(-5,2)+(-8,-6)=(-13,-4),∴c =⎝ ⎛⎭⎪⎫-133,-43.已知向量OA→=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23解析 AB→=OB →-OA →=(4-k ,-7),AC →=OC →-OA →=(-2k ,-2),∵A ,B ,C 三点共线,∴AB →,AC →共线,∴-2×(4-k )=-7×(-2k ),解得k =-23已知点A (1,3),B (4,-1),则与向量A B →同方向的单位向量为( )解析 A B →=O B →-O A →=(4,-1)-(1,3)=(3,-4),∴与A B →同方向的单位向量为A B →|A B →|=⎝⎛⎭⎪⎫35,-45.已知点A (-1,5)和向量a =(2,3),若AB→=3a ,则点B 的坐标为( )A .(7,4)B .(7,14)C .(5,4)D .(5,14)解析 设点B 的坐标为(x ,y ),则AB →=(x +1,y -5),由AB →=3a ,得⎩⎨⎧ x +1=6,y -5=9,解得⎩⎨⎧x =5,y =14.已知向量a =(-1,2),b =(3,m ),m ∈R ,则“m =-6”是“a ∥(a +b )”的( ) A .充分必要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件解析 由题意得a +b =(2,2+m ),由a ∥(a +b ),得-1×(2+m )=2×2,∴m =-6,则“m =-6”是“a∥(a +b )”的充要条件,故选A已知在□ABCD 中,AD→=(2,8),AB →=(-3,4),则AC →=( )A .(-1,-12)B .(-1,12)C .(1,-12)D .(1,12) 解析 ∵四边形ABCD 是平行四边形,∴AC →=AB →+AD →=(-1,12)在△ABC 中,点D 在BC 边上,且CD→=2DB →,CD →=rAB →+sAC →,则r +s 等于( )C .-3D .0解析 ∵CD →=2DB →,∴CD →=23CB →=23(AB →-AC →)=23AB →-23AC →,则r +s =23+⎝ ⎛⎭⎪⎫-23=0已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC→=2AE →,则向量EM →=( )AC →+13AB → AC →+16AB → AC →+12AB → AC →+32AB →解析 如图,∵EC →=2AE →,∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →在△ABC 中,点P 在BC 上,且BP→=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →等于( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21)解析 BC →=3PC →=3(2PQ →-PA →)=6PQ →-3PA →=(6,30)-(12,9)=(-6,21).在梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点,若AB →=λAM →+μAN →,则λ+μ等于( )解析 ∵AB →=AN →+NB →=AN →+CN →=AN →+(CA →+AN →)=2AN →+CM →+MA →=2AN →-14AB →-AM →,∴AB →=85AN →-45AM →,∴λ+μ=45.填空题:已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b =________. 解析 由a =(1,2),b =(-2,m ),且a ∥b ,得1×m =2×(-2),即m =-4. 从而b =(-2,-4),那么2a +3b =2(1,2)+3(-2,-4)=(-4,-8).已知向量a =(x,1),b =(2,y ),若a +b =(1,-1),则x +y =________.解析 ∵(x,1)+(2,y )=(1,-1),∴⎩⎨⎧ x +2=1,y +1=-1,解得⎩⎨⎧x =-1,y =-2,∴x +y =-3.已知向量a =(1,2),b =(0,1),设u =a +k b ,v =2a -b ,若u ∥v ,则实数k 的值为( ) A .-1 B .-12 D .1解析 ∵u =(1,2)+k (0,1)=(1,2+k ),v =(2,4)-(0,1)=(2,3),又u ∥v ,∴1×3=2(2+k ),得k =-12已知向量a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,且u ∥v ,则实数x 的值为________.解析 ∵a =(1,2),b =(x,1),u =a +2b ,v =2a -b ,∴u =(1,2)+2(x,1)=(2x +1,4),v =2(1,2)-(x,1)=(2-x,3).又∵u ∥v ,∴3(2x +1)-4(2-x )=0,即10x =5,解得x =12. 若三点A (1,-5),B (a ,-2),C (-2,-1)共线,则实数a 的值为________解析 AB →=(a -1,3),AC →=(-3,4),根据题意AB →∥AC →,∴4(a -1)=3×(-3),即4a =-5,∴a =-54在□ABCD 中,AC 为一条对角线,AB→=(2,4),AC →=(1,3),则向量BD →的坐标为__________.解析 ∵AB →+BC →=AC →,∴BC →=AC →-AB →=(-1,-1),∴BD →=AD →-AB →=BC →-AB →=(-3,-5).已知□ABCD 的顶点A (-1,-2),B (3,-1),C (5,6),则顶点D 的坐标为________ 解析 设D (x ,y ),则由AB →=DC →,得(4,1)=(5-x,6-y ),即⎩⎨⎧ 4=5-x ,1=6-y ,解得⎩⎨⎧x =1,y =5.已知梯形ABCD ,其中AB ∥CD ,且DC =2AB ,三个顶点A (1,2),B (2,1),C (4,2),则点D 的坐标为_______ 解析 ∵在梯形ABCD 中,AB ∥CD ,DC =2AB ,∴DC→=2AB →.设点D 的坐标为(x ,y ),则DC→=(4,2)-(x ,y )=(4-x,2-y ),AB →=(2,1)-(1,2)=(1,-1),∴(4-x,2-y )=2(1,-1),即(4-x,2-y )=(2,-2), ∴⎩⎨⎧ 4-x =2,2-y =-2,解得⎩⎨⎧x =2,y =4,故点D 的坐标为(2,4).如图,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________. 解析:设BP→=kBN →,k ∈R .∵AP →=AB →+BP →=AB →+kBN →=AB →+k (AN →-AB →)=AB →+k (14AC →-AB →)=(1-k )AB →+k 4AC →, 且AP →=mAB →+211AC →,∴1-k =m ,k 4=211,解得k =811,m =311.在□ABCD 中,AB →=e 1,AC →=e 2,NC →=14AC →,BM →=12MC →,则MN →=________(用e 1,e 2表示) 解析 如图,MN →=CN →-CM →=CN →+2BM →=CN →+23BC →=-14AC →+23(AC →-AB →)=-14e 2+23(e 2-e 1)=-23e 1+512e 2如图,已知AB→=a ,AC →=b ,BD →=3DC →,用a ,b 表示AD →,则AD →=____________解析 AD →=AB →+BD →=AB →+34BC →=AB →+34(AC →-AB →)=14AB →+34AC →=14a +34b若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b 的值为________.解析 AB →=(a -2,-2),AC →=(-2,b -2),则(a -2)(b -2)-4=0,即ab -2a -2b =0,∴1a +1b =12.设OA →=(-2,4),OB →=(-a,2),OC →=(b,0),a >0,b >0,O 为坐标原点,若A ,B ,C 三点共线,则1a +1b 的最小值为________解析 由题意得AB→=(-a +2,-2),AC →=(b +2,-4), 又AB →∥AC →,∴(-a +2,-2)=λ(b +2,-4),即⎩⎨⎧-a +2=λb +2,-2=-4λ,整理得2a +b =2,∴1a +1b =12(2a +b )(1a +1b )=12(3+2a b +b a )≥12(3+22a b ·b a )=3+222(当且仅当b =2a 时,等号成立).已知A (7,1),B (1,4),直线y =12ax 与线段AB 交于点C ,且AC →=2CB →,则实数a =________.解析 设C (x ,y ),则AC→=(x -7,y -1),CB →=(1-x,4-y ),∵AC →=2CB →,∴⎩⎨⎧ x -7=21-x ,y -1=24-y ,解得⎩⎨⎧x =3,y =3.∴C (3,3).又∵C 在直线y =12ax 上,∴3=12a ·3,∴a =2.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________解析 若点A ,B ,C 能构成三角形,则向量AB →,AC →不共线.∵AB →=OB →-OA →=(2,-1)-(1,-3)=(1,2),AC→=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.解析 ∵a ∥b ,∴sin2θ×1-cos 2θ=0,∴2sin θcos θ-cos 2θ=0, ∵0<θ<π2,∴cos θ>0,∴2sin θ=cos θ,∴tan θ=12解答题:已知A (1,1),B (3,-1),C (a ,b ).(1)若A ,B ,C 三点共线,求a ,b 的关系式; (2)若AC→=2AB →,求点C 的坐标. 解析 (1)由已知得AB→=(2,-2),AC →=(a -1,b -1),∵A ,B ,C 三点共线,∴AB→∥AC →,∴2(b -1)+2(a -1)=0,即a +b =2.(2)∵AC→=2AB →,∴(a -1,b -1)=2(2,-2). ∴⎩⎨⎧ a -1=4,b -1=-4,解得⎩⎨⎧a =5,b =-3.∴点C 的坐标为(5,-3).已知点O 为坐标原点,A (0,2),B (4,6),OM →=t 1OA →+t 2AB →. (1)求点M 在第二或第三象限的充要条件;(2)求证:当t 1=1时,不论t 2为何实数,A ,B ,M 三点共线. (1)解 OM →=t 1OA →+t 2AB →=t 1(0,2)+t 2(4,4)=(4t 2,2t 1+4t 2). 当点M 在第二或第三象限时,有⎩⎨⎧4t 2<0,2t 1+4t 2≠0,故所求的充要条件为t 2<0且t 1+2t 2≠0.(2)证明 当t 1=1时,由(1)知OM →=(4t 2,4t 2+2).∵AB →=OB →-OA →=(4,4),AM →=OM →-OA →=(4t 2,4t 2)=t 2(4,4)=t 2AB →, ∴AM→与AB →共线,又有公共点A ,∴A ,B ,M 三点共线.能力提升题组已知向量a =(2,3),b =(-1,2),若(m a +n b )∥(a -2b ),则mn 等于( ) A .-2 B .2 C .-12 解析 由题意得m a +n b =(2m -n,3m +2n ),a -2b =(4,-1),∵(m a +n b )∥(a -2b ),∴-(2m -n )-4(3m +2n )=0,∴m n =-12已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在∠AOB 内,且OC →与OA →的夹角为30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn 的值为( )A .2 C .3 D .4 解析 ∵OA →·OB→=0,∴OA →⊥OB →,以OA 为x 轴,OB 为y 轴建立直角坐标系,OA →=(1,0),OB →=(0,3),OC →=mOA →+nOB →=(m ,3n ).∵tan 30°=3n m =33,∴m =3n ,即m n =3如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且B P →=2P A →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14 解析 由题意知O P →=O B →+B P →,又B P →=2P A →,∴O P →=O B →+23B A →=O B →+23(O A →-O B →)=23O A →+13O B →,∴x =23,y =13.已知点A (-1,2),B (2,8),AC →=13AB →,DA →=-13BA →,则CD →的坐标为________解析 设点C ,D 的坐标分别为(x 1,y 1),(x 2,y 2).由题意得AC →=(x 1+1,y 1-2),AB →=(3,6),DA →=(-1-x 2,2-y 2),BA →=(-3,-6).∵AC →=13AB →,DA →=-13BA →,∴有⎩⎨⎧ x 1+1=1,y 1-2=2和⎩⎨⎧-1-x 2=1,2-y 2=2.解得⎩⎨⎧ x 1=0,y 1=4和⎩⎨⎧x 2=-2,y 2=0.∴点C ,D 的坐标分别为(0,4),(-2,0),从而CD→=(-2,-4).已知向量a =(1,1),b =(1,-1),c =(2cos α,2sin α)(α∈R ),实数m ,n 满足m a +n b =c ,则(m -3)2+n 2的最大值为________解析 由m a +n b =c ,可得⎩⎨⎧m +n =2cos α,m -n =2sin α,故(m +n )2+(m -n )2=2,即m 2+n 2=1,故点M (m ,n )在单位圆上,则点P (3,0)到点M 的距离的最大值为|OP |+1=3+1=4,故(m -3)2+n 2的最大值为42=16.已知△ABC 和点M 满足MA→+MB →+MC →=0.若存在实数m ,使得AB →+AC →=mAM →成立,则m =________.解析∵MA→+MB →+MC →=0,∴M 为△ABC 的重心.如图所示,连接AM 并延长交BC 于D ,则D 为BC 的中点. ∴AM →=23AD →.又AD →=12(AB →+AC →),∴AM →=13(AB →+AC →), 即AB →+AC →=3AM →,∴m =3.如图所示,A ,B ,C 是圆O 上的三点,线段CO 的延长线与BA 的延长线交于圆O 外的一点D ,若OC →=mOA→+nOB →,则m +n 的取值范围是________ 解析 由题意得,OC→=kOD →(k <0),又|k |=|OC→||OD →|<1,∴-1<k <0.又∵B ,A ,D 三点共线,∴OD →=λOA →+(1-λ)OB →,∴mOA→+nOB →=kλOA →+k (1-λ)OB →, ∴m =kλ,n =k (1-λ),∴m+n=k,从而m+n∈(-1,0).。
平面向量基本定理及其坐标表示学习目标1、掌握平面向量的基本定理2、掌握平面向量的坐标表示及相关运算3、掌握向量平行、垂直的坐标法定义及三点共线的基本性质4、掌握函数图像平移中的按向量平移1.向量的坐标表示我们知道:两个向量如果长度相等,方向相同,则可将他们视为同一个向量。
因此,对于平面上任意一个向量a ,我们过坐标原点O 作一个向量OA ,使得OA a =,此时,如果A 点的坐标为(,)x y ,我们就记(,)a x y =,这就是向量a 的坐标表示。
显然(1) 如(,)a x y =,则22||a x y =+(2) 如1122(,),(,)A x y B x y ,则2121(,)AB x x y y =--2.基于坐标表示的向量之运算规则。
如1122(,),(,)a x y b x y ==,则(1)1212(,)a b x x y y ±=±± (2)11(,)a x y λλλ=3.向量的共线与垂直设1122(,),(,)a x y b x y ==为两个非零向量,则(1)//a b 12210x y x y ⇔-=; (2)a b ⊥12120x x y y ⇔+=;证明:(1)//a b ⇔存在实数λ,使得a b λ=,即1122(,)(,)x y x y λ=,也即1212,x x y y λλ==,故122122220x y x y x y x y λλ-=-=(2)不妨设,OA a OB b ==,即1122(,),(,)A x y B x y ,不妨设120x x ≠a b ⊥12121212110OA OB y y OA OB k k x x y y x x ⇔⊥⇔=-⇔⨯=-⇔+=; 120x x =时的特殊情况留给读者自己证明。
4.平面向量基本定理如果12,e e 是同一平面内的两个不共线向量,那么对于该平面内的任意向量a ,有且只有一对实数12,λλ,使1122a e e λλ=+,向量12,e e 叫表示这一平面内所有向量的一组基底.5.基于坐标表示的向量的内积设1122(,),(,)a x y b x y ==,则:1212a b x x y y ⋅=+读者可利用向量余弦定理自行证明:这里定义的内积跟前面定义的内积||||cos a b a b α⋅=⋅(其中α为,a b 的夹角)是一致的。
第2节 平面向量基本定理及坐标表示知识梳理1.平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底. 2.平面向量的正交分解把一个向量分解为两个互相垂直的向量,叫做把向量正交分解. 3.平面向量的坐标运算(1)向量加法、减法、数乘运算及向量的模 设a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2),λa =(λx 1,λy 1),|a |(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标即为向量的坐标.②设A (x 1,y 1),B (x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →| 4.平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),则a ∥b ⇔x 1y 2-x 2y 1=0.1.平面内不共线向量都可以作为基底,反之亦然.2.若a 与b 不共线,λa +μb =0,则λ=μ=0.3.向量的坐标与表示向量的有向线段的起点、终点的相对位置有关系.两个相等的向量,无论起点在什么位置,它们的坐标都是相同的.诊断自测1.判断下列结论正误(在括号内打“√”或“×”) (1)平面内的任何两个向量都可以作为一组基底.( )(2)设a ,b 是平面内的一组基底,若实数λ1,μ1,λ2,μ2满足λ1a +μ1b =λ2a +μ2b ,则λ1=λ2,μ1=μ2.( )(3)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) (4)平面向量不论经过怎样的平移变换之后其坐标不变.( ) 答案 (1)× (2)√ (3)× (4)√ 解析 (1)共线向量不可以作为基底. (3)若b =(0,0),则x 1x 2=y 1y 2无意义.2.若P 1(1,3),P 2(4,0),且P 是线段P 1P 2的一个三等分点(靠近点P 1),则点P 的坐标为( ) A.(2,2)B.(3,-1)C.(2,2)或(3,-1)D.(2,2)或(3,1)答案 A解析 由题意得P 1P →=13P 1P 2→且P 1P 2→=(3,-3), 设P (x ,y ),则(x -1,y -3)=(1,-1), 所以x =2,y =2,则点P (2,2).3.已知向量a =(-1,3),b =(2,1),则3a -2b =( ) A.(-7,7) B.(-3,-2) C.(6,2)D.(4,-3)答案 A解析 3a -2b =(-3,9)-(4,2)=(-7,7).4.(2020·长沙调研)已知向量a =(m ,1),b =(3,m -2),则m =3是a ∥b 的( ) A.充分不必要条件 B.必要不充分条件 C.既不充分也不必要条件 D.充要条件 答案 A解析 ∵a =(m ,1),b =(3,m -2),若a ∥b ,则m (m -2)-3=0, 得m =3或m =-1,所以“m =3”是“a ∥b ”的充分不必要条件.5.(2020·合肥质检)设向量a =(-3,4),向量b 与向量a 方向相反,且|b |=10,则向量b 的坐标为( ) A.⎝ ⎛⎭⎪⎫-65,85 B.(-6,8)C.⎝ ⎛⎭⎪⎫65,-85 D.(6,-8)答案 D解析 因为向量b 与a 方向相反,则可设b =λa =(-3λ,4λ),λ<0,则|b |=9λ2+16λ2=5|λ|=10,∴λ=-2,b =(6,-8).6.(2021·济南模拟)如图,在平行四边形ABCD 中,F 是BC 的中点,CE →=-2DE →,若EF→=xAB →+yAD →,则x +y =( )A.1B.6C.16D.13答案 C解析 因为四边形ABCD 是平行四边形, 所以AB→=DC →,AD →=BC →,因为CE→=-2DE →,所以ED →=-13DC →=-13AB →, 连接AF ,在△AEF 中,所以EF→=EA →+AF →=ED →-AD →+AB →+BF →=-13AB →-AD →+AB →+12BC →=23AB →-12AD →, 又因为EF→=xAB →+yAD →,所以x =23,y =-12,故x +y =16.考点一 平面向量的坐标运算1.已知四边形ABCD 的三个顶点A (0,2),B (-1,-2),C (3,1),且BC →=2AD →,则顶点D 的坐标为( ) A.⎝ ⎛⎭⎪⎫2,72 B.⎝ ⎛⎭⎪⎫2,-12 C.(3,2)D.(1,3)答案 A解析 设D (x ,y ),AD →=(x ,y -2),BC →=(4,3),又BC →=2AD →,所以⎩⎨⎧4=2x ,3=2(y -2),解得⎩⎪⎨⎪⎧x =2,y =72,故选A.2.向量a ,b ,c 在正方形网格中的位置如图所示,若c =λa +μb (λ,μ∈R ),则λμ=( )A.1B.2C.3D.4答案 D解析 以向量a 和b 的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A (1,-1),B (6,2),C (5,-1),∴a =AO→=(-1,1),b =OB →=(6,2),c =BC →=(-1,-3), ∵c =λa +μb ,∴(-1,-3)=λ(-1,1)+μ(6,2), 则⎩⎨⎧-λ+6μ=-1,λ+2μ=-3,解得⎩⎪⎨⎪⎧λ=-2,μ=-12,∴λμ=-2-12=4.3.(2020·西安调研)在平面直角坐标系中,O 为坐标原点,OA→=⎝ ⎛⎭⎪⎫32,12,若OA →绕点O 逆时针旋转60°得到向量OB →,则OB →=( )A.(0,1)B.(1,0)C.⎝ ⎛⎭⎪⎫32,-12D.⎝ ⎛⎭⎪⎫12,-32答案 A解析 ∵OA→=⎝ ⎛⎭⎪⎫32,12,∴OA →与x 轴的夹角为30°, 依题意,向量OB →与x 轴的夹角为90°, 则点B 在y 轴正半轴上,且|OB →|=|OA →|=1,∴点B (0,1),则OB→=(0,1).4.(2021·重庆检测)如图,原点O 是△ABC 内一点,顶点A 在x 轴上,∠AOB =150°,∠BOC =90°,|OA →|=2,|OB →|=1,|OC →|=3,若OC→=λOA →+μOB →,则μλ=( )A.-33B.33C.-3D.3答案 D解析 由三角函数定义,易知A (2,0),B ⎝ ⎛⎭⎪⎫-32,12,C (3cos 240°,3sin 240°),即C ⎝ ⎛⎭⎪⎫-32,-332, 因为OC→=λOA →+μOB →,所以⎝ ⎛⎭⎪⎫-32,-332=λ(2,0)+μ⎝ ⎛⎭⎪⎫-32,12, 所以⎩⎪⎨⎪⎧2λ-32μ=-32,12μ=-332,解得⎩⎨⎧λ=-3,μ=-3 3.所以μλ= 3.感悟升华 1.向量的坐标表示把点与数联系起来,实际上是向量的代数表示,即引入平面向量的坐标可以使向量运算代数化,成为数与形结合的载体,可以使很多几何问题的解答转化为我们熟知的数量运算.2.向量的坐标运算主要是利用向量的加、减、数乘运算法则进行计算.若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用. 考点二 平面向量基本定理及其应用【例1】如图所示,已知在△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA 交于点E ,设OA →=a ,OB→=b . (1)用a 和b 表示向量OC →,DC →;(2)若OE→=λOA →,求实数λ的值. 解 (1)依题意,A 是BC 的中点,∴2OA→=OB →+OC →,即OC →=2OA →-OB →=2a -b . DC→=OC →-OD →=OC →-23OB → =2a -b -23b =2a -53b . (2)设OE→=λOA →(0<λ<1), 则CE→=OE →-OC →=λa -(2a -b )=(λ-2)a +b . ∵CE→与DC →共线, ∴存在实数k ,使CE→=kDC →, (λ-2)a +b =k ⎝ ⎛⎭⎪⎫2a -53b ,解得λ=45.感悟升华 1.应用平面向量基本定理表示向量的实质是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.2.用平面向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【训练1】 (1)在△ABC 中,M ,N 分别是边AB ,AC 的中点,点O 是线段MN 上异于端点的一点,且满足λOA →+3OB →+4OC →=0(λ≠0),则λ=________.(2)(多选题)(2021·威海调研)设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题(向量b ,c 和a 在同一平面内且两两不共线),则真命题是( ) A.给定向量b ,总存在向量c ,使a =b +cB.给定向量b 和c ,总存在实数λ和μ,使a =λb +μcC.给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μcD.给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc 答案 (1)7 (2)AB解析 (1)法一 由已知得OA →=-3λOB →-4λOC →,① 由M ,O ,N 三点共线,知∃t ∈R ,使OM →=tON →,故2OM →=2tON →,故OA →+OB →=t (OA →+OC →), 整理得OA→=1t -1OB →+t 1-tOC →,② 对比①②两式的系数,得⎩⎪⎨⎪⎧-3λ=1t -1,-4λ=t 1-t ,解得⎩⎪⎨⎪⎧t =-43,λ=7. 法二 因为M 是AB 的中点,所以OM→=12(OA →+OB →),于是OB→=2OM →-OA →,同理OC →=2ON →-OA →, 将两式代入λOA→+3OB →+4OC →=0,整理得(λ-7)OA→+6OM →+8ON →=0,因为M ,O ,N 三点共线,故∃p ∈R ,使得OM →=pON →,于是(λ-7)OA→+(6p +8)ON →=0,显然OA→,ON →不共线,故λ-7=6p +8=0,故λ=7. (2)∵向量b ,c 和a 在同一平面内且两两不共线,∴b ≠0,c ≠0, 给定向量a 和b ,只需求得其向量差a -b ,即为所求的向量c ,故总存在向量c ,使a =b +c ,故A 正确;当向量b ,c 和a 在同一平面内且两两不共线时,向量b ,c 可作基底, 由平面向量基本定理可知结论成立,故B 正确; 取a =(4,4),μ=2,b =(1,0),无论λ取何值,向量λb 都平行于x 轴,而向量μc 的模恒等于2, 要使a =λb +μc 成立,根据平行四边形法则,向量μc 的纵坐标一定为4, 故找不到这样的单位向量c 使等式成立,故C 错误;因为λ和μ为正数,所以λb 和μc 代表与原向量同向的且有固定长度的向量, 这就使得向量a 不一定能用两个单位向量的组合表示出来, 故不一定能使a =λb +μc 成立,故D 错误.故选AB. 考点三 平面向量共线的坐标表示角度1 利用向量共线求向量或点的坐标【例2】已知点A (4,0),B (4,4),C (2,6),O 为坐标原点,则AC 与OB 的交点P 的坐标为________. 答案 (3,3)解析 法一 由O ,P ,B 三点共线,可设OP →=λOB →=(4λ,4λ),则AP →=OP →-OA →=(4λ-4,4λ).又AC→=OC →-OA →=(-2,6), 由AP→与AC →共线,得(4λ-4)×6-4λ×(-2)=0, 解得λ=34,所以OP →=34OB →=(3,3), 所以点P 的坐标为(3,3).法二 设点P (x ,y ),则OP→=(x ,y ),因为OB →=(4,4),且OP →与OB →共线,所以x 4=y4,即x =y .又AP→=(x -4,y ),AC →=(-2,6),且AP →与AC →共线, 所以(x -4)×6-y ×(-2)=0,解得x =y =3, 所以点P 的坐标为(3,3).角度2 利用向量共线求参数【例3】 (1)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.(2)(2021·福州联考)设向量OA →=(1,-2),OB →=(a ,-1),OC →=(-b ,0),其中O 为坐标原点,且a >0,b >0,若A ,B ,C 三点共线,则1a +2b 的最小值为( ) A.8B.9C.6D.4答案 (1)12 (2)A解析 (1)由题意得2a +b =(4,2),因为c =(1,λ),且c ∥(2a +b ),所以4λ-2=0,即λ=12.(2)由题意知AB→=OB →-OA →=(a -1,1),AC →=OC →-OA →=(-b -1,2).因为A ,B ,C 三点共线,设AB →=λAC →,则(a -1,1)=λ(-b -1,2).∴⎩⎨⎧a -1=λ(-b -1),1=2λ,得2a +b =1. 又a >0,b >0,则1a +2b =⎝ ⎛⎭⎪⎫1a +2b (2a +b )=2+2+b a +4ab ≥4+2b a ·4ab =8,当且仅当b a =4ab ,即a =14,b =12时,等号成立. ∴1a +2b 的最小值为8.感悟升华 1.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (b ≠0),则a =λb .2.向量共线的坐标表示既可以判定两向量平行,也可以由平行求参数.当两向量的坐标均非零时,也可以利用坐标对应成比例来求解.【训练2】 (1)(2020·太原联考)已知向量e 1=(1,1),e 2=(0,1),若a =e 1+λe 2与b =-(2e 1-3e 2)共线,则实数λ=________.(2)(2021·安徽江南十校调研)在直角坐标系xOy 中,已知点A (0,1)和点B (-3,4),若点C 在∠AOB 的平分线上,且|OC →|=310,则向量OC →的坐标为________.答案 (1)-32 (2)(-3,9)解析 (1)由题意知a =e 1+λe 2=(1,1+λ), b =-(2e 1-3e 2)=(-2,1).由于a ∥b ,所以1×1+2(1+λ)=0,解得λ=-32. (2)因为点C 在∠AOB 的平分线上,所以存在λ∈(0,+∞),使得OC →=λ⎝ ⎛⎭⎪⎪⎫OA →|OA →|+OB →|OB →|. ∴OC→=λ(0,1)+λ⎝ ⎛⎭⎪⎫-35,45=⎝ ⎛⎭⎪⎫-35λ,95λ, 又|OC→|=310,所以⎝ ⎛⎭⎪⎫-35λ2+⎝ ⎛⎭⎪⎫95λ2=(310)2,解得λ=5.故向量OC→=(-3,9).A 级 基础巩固一、选择题1.设A (0,1),B (1,3),C (-1,5),D (0,-1),则AB →+AC →等于( )A.-2AD →B.2AD→ C.-3AD →D.3AD→ 答案 C解析 由题意得AB →=(1,2),AC →=(-1,4),AD →=(0,-2),所以AB →+AC →=(0,6)=-3(0,-2)=-3AD→.2.已知向量a =(2,1),b =(3,4),c =(1,m ),若实数λ满足a +b =λc ,则λ+m 等于( ) A.5 B.6C.7D.8答案 B解析 由平面向量的坐标运算法则可得a +b =(5,5), λc =(λ,λm ),据此有⎩⎨⎧λ=5,λm =5,解得λ=5,m =1,∴λ+m =6.3.(2020·郑州质检)已知向量AB →=(1,4),BC →=(m ,-1),若AB →∥AC →,则实数m的值为( ) A.14 B.-4C.4D.-14答案 D解析 ∵向量AB →=(1,4),BC →=(m ,-1), ∴AC→=AB →+BC →=(1+m ,3), 又AB →∥AC →,所以1×3-4(1+m )=0,解得m =-14. 4.在平面直角坐标系xOy 中,已知A (1,0),B (0,1),C 为第一象限内一点,且∠AOC =π4,且|OC |=2,若OC →=λOA →+μOB →,则λ+μ=( ) A.22 B.2C.2D.42答案 A解析 因为|OC |=2,∠AOC =π4,所以C (2,2),又OC →=λOA →+μOB →,所以(2,2)=λ(1,0)+μ(0,1)=(λ,μ),所以λ=μ=2,λ+μ=2 2.5.(2021·济南调研)在△ABC 中,AN→=14NC →,若P 是直线BN 上的一点,且满足AP →=mAB→+25AC →,则实数m 的值为( ) A.-4 B.-1C.1D.4答案 B解析 根据题意设BP →=nBN →(n ∈R ),则AP →=AB →+BP →=AB →+nBN →=AB →+n (AN →-AB →)=AB→+n ⎝ ⎛⎭⎪⎫15AC →-AB →=(1-n )AB →+n 5AC →.又AP →=mAB →+25AC →,∴⎩⎪⎨⎪⎧1-n =m ,n 5=25,解得⎩⎨⎧n =2,m =-1.6.(2021·东北师大附中等五校联考)已知向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),α∈⎝ ⎛⎭⎪⎫π2,π,且a ∥b ,则sin ⎝ ⎛⎭⎪⎫α-π2=( )A.-13B.13C.223D.-223答案 C解析 向量a =⎝ ⎛⎭⎪⎫13,tan α,b =(cos α,1),且a ∥b ,则13=tan α·cos α=sin α, 又α∈⎝ ⎛⎭⎪⎫π2,π,知cos α=-223,所以sin ⎝ ⎛⎭⎪⎫α-π2=-cos α=223.7.(2020·西安质检)已知在Rt △ABC 中,∠BAC =90°,AB =1,AC =2,D 是△ABC 内一点,且∠DAB =60°,设AD→=λAB →+μAC →(λ,μ∈R ),则λμ=( )A.233B.33C.3D.23答案 A解析 如图,以A 为原点,AB 所在直线为x 轴,AC 所在直线为y 轴建立平面直角坐标系,则B 点的坐标为(1,0),C 点的坐标为(0,2),因为∠DAB =60°,所以设D 点的坐标为(m ,3m )(m >0).AD→=(m ,3m )=λAB →+μAC →=λ(1,0)+μ(0,2)=(λ,2μ),则λ=m ,且μ=32m , 所以λμ=233.8.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,m =(a ,b ),n =(cos B ,cos A ),则“m ∥n ”是“△ABC 是等腰三角形”的( ) A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件答案 D解析 由m ∥n 得b cos B -a cos A =0,即sin B cos B =sin A cos A ,可得sin 2B =sin 2A ,因为角A ,B ,C 分别是△ABC 的内角,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,可得△ABC 是等腰三角形或直角三角形. 因此,由“m ∥n ”不能推出“△ABC 是等腰三角形”.因为由“△ABC 是等腰三角形”不能推出“A =B ”,所以由“△ABC 是等腰三角形”也不能推出“m ∥n ”.故“m ∥n ”是“△ABC 是等腰三角形”的既不充分也不必要条件. 二、填空题9.已知A (2,3),B (4,-3),点P 在线段AB 的延长线上,且|AP |=32|BP |,则点P 的坐标为________. 答案 (8,-15)解析 设P (x ,y ),由点P 在线段AB 的延长线上, 则AP→=32BP →,得(x -2,y -3)=32(x -4,y +3), 即⎩⎪⎨⎪⎧x -2=32(x -4),y -3=32(y +3).解得⎩⎨⎧x =8,y =-15.所以点P 的坐标为(8,-15).10.(2021·武汉联考)已知非零向量a =(2x ,y ),b =(1,-2),且a ∥b ,则x y =________. 答案 -14解析 因为a =(2x ,y ),b =(1,-2),且a ∥b ,所以2x ·(-2)-y ·1=0,所以xy =-14.11.已知矩形ABCD 的两条对角线交于点O ,点E 为线段AO 的中点,若DE →=mAB →+nAD→,则m +n 的值为________.答案 -12解析 如图所示,因为点E 为线段AO 的中点, 所以DE→=12(DA →+DO →)=12DA →+14DB → =-12AD →+14AB →-14AD →=14AB →-34AD →. 又DE→=mAB →+nAD →, 所以m =14,n =-34,故m +n =-12.12.已知向量OA→=(1,-3),OB →=(2,-1),OC →=(k +1,k -2),若A ,B ,C 三点能构成三角形,则实数k 应满足的条件是________. 答案 k ≠1解析 若点A ,B ,C 能构成三角形, 则向量AB→,AC →不共线.∵AB→=OB →-OA →=(2,-1)-(1,-3)=(1,2), AC →=OC →-OA →=(k +1,k -2)-(1,-3)=(k ,k +1), ∴1×(k +1)-2k ≠0,解得k ≠1.B 级 能力提升13.(多选题)(2021·济南调研)已知向量e 1,e 2是平面α内的一组基向量,O 为α内的定点,对于α内任意一点P ,当OP →=x e 1+y e 2时,则称有序实数对(x ,y )为点P 的广义坐标.若平面α内的点A ,B 的广义坐标分别为(x 1,y 1),(x 2,y 2),则下列命题正确的是( )A.线段AB 的中点的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22B.A ,B 两点间的距离为(x 1-x 2)2+(y 1-y 2)2C.向量OA →平行于向量OB →的充要条件是x 1y 2=x 2y 1D.向量OA →垂直于向量OB →的充要条件是x 1y 2+x 2y 1=0 答案 AC解析 设线段AB 的中点为M ,则OM →=12(OA →+OB →)=12(x 1+x 2)e 1+12(y 1+y 2)e 2,所以点M 的广义坐标为⎝ ⎛⎭⎪⎫x 1+x 22,y 1+y 22,知A 正确;由于该坐标系不一定是平面直角坐标系,因此B 错误;由向量平行得OA →=λOB →,即(x 1,y 1)=λ(x 2,y 2),所以x 1y 2=x 2y 1,得C 正确;OA →与OB →垂直,则OA →·OB →=0,所以x 1x 2e 21+(x 1y 2+x 2y 1)e 1·e 2+y 1y 2e 22=0,即x 1y 2+x 2y 1=0不是OA→与OB →垂直的充要条件,因此D 不正确.故选AC. 14.(多选题)(2021·日照调研)如图1,“六芒星”由两个全等的正三角形组成,中心重合于点O 且三组对边分别平行,点A ,B 是“六芒星”(如图2)的两个顶点,动点P 在“六芒星”上(包含内部以及边界),若OP →=xOA →+yOB →,则x +y 的取值可能是( )A.-6B.1C.5D.9答案 BC解析 设OA →=a ,OB →=b ,求x +y 的范围,只需考虑图中6个向量的情况即可,讨论如下:(1)若P 在A 点,∵OA→=a ,∴(x ,y )=(1,0);(2)若P 在B 点,∵OB→=b ,∴(x ,y )=(0,1); (3)若P 在C 点,∵OC→=OA →+AC →=2b +a ,∴(x ,y )=(1,2);(4)若P 在D 点,∵OD →=OA →+AE →+ED →=a +b +(2b +a )=2a +3b ,∴(x ,y )=(2,3);(5)若P 在E 点,∵OE→=OA →+AE →=a +b ,∴(x ,y )=(1,1);(6)若P 在F 点,∵OF →=OA →+AF →=a +3b ,∴(x ,y )=(1,3).∴x +y 的最大值为2+3=5.根据对称性,可知x +y 的最小值为-5. 故选BC.15.已知点P 为四边形ABCD 所在平面内一点,且满足AB →+2CD →=0,AP →+BP →+4DP →=0,AP →=λAB →+μBC →(λ,μ∈R ),则λμ=________. 答案 13解析 如图,取AB 的中点O ,连接DO . 由AB→+2CD →=0,知AB ∥CD ,AB =2CD , 所以CD 綉OB ,所以四边形OBCD 为平行四边形. 又由AP→+BP →+4DP →=0,得-2PO →+4DP →=0, 即PO →=2DP →,所以D ,P ,O 三点共线,且P 为OD 上靠近D 的三等分点, 所以AP→=AO →+OP →=12AB →+23OD →=12AB →+23BC →, 所以λ=12,μ=23,所以λμ=13.16.在△ABC 中,点D ,E 是线段BC 上的两个动点,且AD →+AE →=xAB →+yAC →,则xy 的最大值为________. 答案 1解析 设DE 的中点为M ,连接AM (如图). 则AD→+AE →=2AM →=xAB →+yAC →, 所以AM→=x 2AB →+y 2AC →, 又B ,C ,M 三点共线, 所以x +y =2,且x >0,y >0,又x +y ≥2xy ,当且仅当x =y =1时,取等号,∴xy≤1,即xy的最大值为1.。
第二节平面向量的基本定理及坐标表示【最新考纲】 1.了解平面向量的基本定理及其意义.2.掌握平面向量的正交分解及其坐标表示.3.会用坐标表示平面向量的加法、减法与数乘运算.4.理解用坐标表示的平面向量共线的条件.1.平面向量基本定理如果e1,e2是同一平面内的两个不共线向量,那么对于该平面内任意向量ɑ,有且只有一对实数λ1,λ2,使ɑ=λ1e1+λ2e2.2.平面向量的坐标表示在平面直角坐标系中,分别取与x轴、y轴方向相同的两个单位向量i、j作为基底.对于平面内的一个向量ɑ,有且只有一对实数x、y,使ɑ=xi+yj,把有序数对(x,y)叫做向量ɑ的坐标,记作ɑ=(x,y).3.平面向量的坐标运算(1)向量加法、减法、数乘向量及向量的模设ɑ=(x1,y1),b=(x2,y2),则ɑ+b=(x1+x2,y1+y2),ɑ-b=(x1-x2,y1-y2),λɑ=(λx1,λy1),|ɑ|(2)向量坐标的求法①若向量的起点是坐标原点,则终点坐标为向量的坐标. ②设A(x 1,y 1),B(x 2,y 2),则AB →=(x 2-x 1,y 2-y 1),|AB →|=4.平面向量共线的坐标表示设ɑ=(x 1,y 1),b =(x 2,y 2),其中b ≠0.ɑ∥b ⇔x 1y 2-x 2y 1=0.1.(质疑夯基)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)在△ABC 中,AB→,AC →可以作为基底.( ) (2)在△ABC 中,设AB →=ɑ,BC →=b ,则向量ɑ与b 的夹角为∠ABC.( )(3)若ɑ,b 不共线,且λ1ɑ+μ1b =λ2ɑ+μ2b ,则λ1=λ2,μ1=μ2.( )(4)若ɑ=(x 1,y 1),b =(x 2,y 2),则ɑ∥b 的充要条件可以表示成x 1x 2=y 1y 2.( ) 答案:(1)√ (2)× (3)√ (4)×2.(2015·四川卷)设向量ɑ=(2,4)与向量b =(x ,6)共线,则实数x =( )A .2B .3C .4D .6解析:∵ɑ∥b,∴2×6-4x=0,解得x=3.答案:B3.已知平面向量ɑ=(2,-1),b=(1,3),那么|ɑ+b|等于() A.5 B.13 C.17 D.13解析:因为ɑ+b=(2,-1)+(1,3)=(3,2),所以|ɑ+b|=32+22=13.答案:B4.已知向量ɑ=(2,4),b=(-1,1),则2ɑ-b=()A.(5,7) B.(5,9)C.(3,7) D.(3,9)解析:2ɑ-b=(4,8)-(-1,1)=(5,7).答案:A5.在下列向量组中,可以把向量ɑ=(3,2)表示出来的是() A.e1=(0,0),e2=(1,2)B.e1=(-1,2),e2=(5,-2)C.e1=(3,5),e2=(6,10)D.e1=(2,-3),e2=(-2,3)解析:由题意知,A选项中e1=0,C、D选项中两向量均共线,都不符合基底条件,故选B(事实上,ɑ=(3,2)=2e1+e2).答案:B一个区别在平面直角坐标系中,以原点为起点的向量OA→=ɑ,点A 的位置被向量ɑ唯一确定,此时点A 的坐标与ɑ的坐标统一为(x ,y).但表示形式与意义不同,如点A(x ,y),向量ɑ=OA →=(x ,y),向量坐标中既有大小信息又有方向信息.两点提醒1.若ɑ,b 为非零向量,当ɑ∥b 时,ɑ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.2.若ɑ=(x 1,y 1),b =(x 2,y 2),则ɑ∥b 的充要条件是x 1y 2-x 2y 1=0,不能表示成x 1x 2=y 1y 2,因为x 2,y 2有可能等于0.三个结论1.若ɑ与b 不共线,λɑ+μb =0,则λ=μ=0.2.已知OA →=λOB →+μOC →(λ,μ为常数),则A ,B ,C 三点共线的充要条件是λ+μ=1.3.平面向量的基底中一定不含零向量.一、选择题1.已知点A(1,3),B(4,-1),则与向量AB →同方向的单位向量为( )A.⎝ ⎛⎭⎪⎫35,-45B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35 解析:AB →=(3,-4),则与其同方向的单位向量e =AB →|AB →|=15(3,-4)=⎝ ⎛⎭⎪⎫35,-45.答案:A2.已知向量ɑ=(3,1),b =(0,-2).若实数k 与向量c 满足ɑ+2b =kc ,则c 可以是( )A .(3,-1)B .(-1,-3)C .(-3,-1)D .(-1,3)解析:∵ɑ+2b =kc ,∴(3,1)+2(0,-2)=kc ,则c =1k (3,-3).答案:D3.(2017·朝阳一模)在△ABC 中,M 为边BC 上任意一点,N 为AM 的中点,AN→=λAB →+μAC →,则λ+μ的值为( ) A.12 B.13 C.14 D .1 解析:∵M 为边BC 上任意一点, ∴可设AM→=xAB →+yAC →(x +y =1). ∵N 为AM 的中点,∴AN→=12AM →=12xAB →+12yAC →=λAB →+μAC →. ∴λ+μ=12(x +y)=12.答案:A4.若α,β是一组基底,向量γ=xα+yβ(x ,y ∈R),则称(x ,y)为向量γ在基底α,β下的坐标,现已知向量α在基底p =(1,-1),q =(2,1)下的坐标为(-2,2),则ɑ在另一组基底m =(-1,1),n =(1,2)下的坐标为( )A .(2,0)B .(0,-2)C .(-2,0)D .(0,2)解析:∵ɑ在基底p ,q 下的坐标为(-2,2),即ɑ=-2p +2q =(2,4),令ɑ=xm +yn =(-x +y ,x +2y),∴⎩⎨⎧-x +y =2,x +2y =4,即⎩⎨⎧x =0,y =2.∴ɑ在基底m ,n 下的坐标为(0,2). 答案:D5.(2017·大连模拟)已知平面向量ɑ=(1,x),b =⎝ ⎛⎭⎪⎫12x -3,y -1,若ɑ与b 共线,则y =f(x)的最小值是( )A .-92B .-4C .-72D .-3解析:因为ɑ与b 共线,所以y -1-x ⎝ ⎛⎭⎪⎫12x -3=0,则y =12x 2-3x +1=12(x -3)2-72,所以当x =3时,y min =-72.答案:C6.已知ɑ,b 是不共线的向量,AB→=λɑ+b ,AC →=ɑ+μb ,λ,μ∈R ,那么A 、B 、C 三点共线的充要条件为( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:∵A 、B 、C 三点共线,∴存在实数t ,满足AB →=tAC →,即λɑ+b =t ɑ+μtb ,又ɑ,b 是不共线的向量,∴⎩⎨⎧λ=t1=μt,∴λμ=1. 答案:D二、填空题7.已知两点A(-1,0),B(1,3),向量ɑ=(2k -1,2),若AB →∥ɑ,则实数k 的值为________.解析:因为A(-1,0),B(1,3),所以AB →=(2,3). 又因为AB →∥ɑ,所以2k -12=23,故k =76.答案:768.(2015·江苏卷)已知向量ɑ=(2,1),b =(1,-2),若m ɑ+nb =(9,-8)(m ,n ∈R),则m -n 的值为________.解析:∵m ɑ+nb =(2m +n ,m -2n)=(9,-8),∴⎩⎨⎧2m +n =9,m -2n =-8,∴⎩⎨⎧m =2,n =5,∴m -n =2-5=-3. 答案:-39.设e 1、e 2是平面内一组基向量,且ɑ=e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量ɑ,b 的线性组合,即e 1+e 2=________.解析:由题意,设e 1+e 2=m ɑ+nb. 因为ɑ=e 1+2e 2,b =-e 1+e 2,所以e 1+e 2=m(e 1+2e 2)+n(-e 1+e 2)=(m -n)e 1+(2m +n)e 2. 由平面向量基本定理,得⎩⎨⎧m -n =1,2m +n =1,所以⎩⎪⎨⎪⎧m =23,n =-13.即e 1+e 2=23ɑ-13b.答案:23ɑ-13b三、解答题10.(2016·郑州一中月考)已知A(-2,4),B(3,-1),C(-3,-4).设AB→=ɑ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b. (1)求3ɑ+b -3c ;(2)求满足ɑ=mb +nc 的实数m 、n 的值;(3)求M ,N 的坐标及向量MN→的坐标. 解:由已知得ɑ=(5,-5),b =(-6,-3),c =(1,8). (1)3ɑ+b -3c =3(5,-5)+(-6,-3)-3(1,8)=(15-6-3,-15-3-24)=(6,-42).(2)∵mb +nc =(-6m +n ,-3m +8n)=(5,-5),∴⎩⎨⎧-6m +n =5,-3m +8n =-5, 解得⎩⎨⎧m =-1,n =-1.(3)设O 为坐标原点, ∵CM→=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4)=(0,20), ∴M(0,20).又∵CN→=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4)=(9,2), ∴N(9,2), ∴MN→=(9,-18).。
6.3 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+=B .3λμ-=C .20λμ+=D .20λμ-=【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________. 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4B .4C .-1D .1【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2) B.(1,2) C.(5,6)D.(2,0)(2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4B .-4C .14D .14-(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6B .2-C .6-D .2【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭ D .3,--【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15-B .15C .75-D .753.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0B .()1,1C .()2,2--D .()2,24.已知()5,2a =-,()4,3b =-,(),c x y =,若220a b c -+=,则c 等于( ) A .(1,4)B .13,42⎛⎫⎪⎝⎭C .13,42⎛⎫-⎪⎝⎭D .13,42⎛⎫-- ⎪⎝⎭5.已知()13A ,,()41B -,,则与向量AB 共线的单位向量为( ) A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫ ⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫ ⎪⎝⎭, 6.设向量a =(1,4),b =(2,x ),c a b =+.若//a c ,则实数x 的值是( ) A .-4B .2C .4D .87.若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 8.已知O 为单位圆,A 、B 在圆上,向量OA ,OB 的夹角为60°,点C 在劣弧AB 上运动,若OC xOA yOB =+,其中,x y R ∈,则x y +的取值范围___________.9.在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( ) A .14B .13C .23D .1610.已知ABC 所在的平面内一点P (点P 与点A ,B ,C 不重合),且523AP PO OB OC =++,则ACP △与BCP 的面积之比为( ) A .2:1B .3:1C .3:2D .4:36.3.1 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底; 对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B. 【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________. 【答案】3【解析】因为{a ,b }是一个基底, 所以a 与b 不共线,由平面向量基本定理得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,所以⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【解析】因为DC ∥AB ,AB =2DC ,E ,F 分别是DC ,AB 的中点, 所以FC →=AD →=a ,DC →=AF →=12AB →=12b .EF →=ED →+DA →+AF →=-12DC →-AD →+12AB →=-12×12b -a +12b =14b -a .【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【答案】a +b 2a +c【解析】以{a ,b }为基底时,AC →=AB →+AD →=a +b ; 以{a ,c }为基底时,将BD →平移,使B 与A 重合, 再由三角形法则或平行四边形法则即得AC →=2a +c .【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+= B .3λμ-=C .20λμ+=D .20λμ-=【答案】C【解析】因为M 为AC 的中点,所以1122BM BA BC =+,所以2AB BM BC =-+, 又(),AB BM BC λμλμ=+∈R ,所以2λ=-,1μ=,故选:C.【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【答案】C【解析】由2AC CB =得()2OC OA OB OC -=-,即1233OC OA OB =+, 又(),OC xOA yOB x y R =+∈,所以1323x y ⎧=⎪⎪⎨⎪=⎪⎩,因此1139322x y +=+=.故选:C. 【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【解析】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45° =4×22=22, AM =OA ·sin 45° =4×22=2 2. ∴A (22,22),故a =(22,22).∵∠AOC =180°-105°=75°,∠AOy =45°, ∴∠COy =30°. 又∵OC =AB =3,∴C ⎝⎛⎭⎫-32,332,∴AB →=OC →=⎝⎛⎭⎫-32,332,即b =⎝⎛⎭⎫-32,332.(2)BA →=-AB →=⎝⎛⎭⎫32,-332.(3)OB →=OA →+AB →=(22,22)+⎝⎛⎭⎫-32,332=⎝⎛⎭⎫22-32,22+332.∴点B 的坐标为⎝⎛⎭⎫22-32,22+332.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________.【答案】 (2,0)【解析】∵MN →=(-3,6),设N (x ,y ), 则MN →=ON →-OM →=(x -5,y +6)=(-3,6).∴⎩⎪⎨⎪⎧ x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0.即N (2,0). 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【解析】由题得AB =(0,4)所以||0(31)4AB =++.故选C【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【解析】设点P 的坐标为(),x y ,则(5,1)NP x y =-+,(53,12)(2,1)MN =--+=,因为NP MN =,即(5,1)(2,1)x y -+=,所以5211x y -=⎧⎨+=⎩,解得70x y =⎧⎨=⎩,所以()7,0P .故选:C.【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【答案】B【解析】()3,2A ,()5,1B ,2,1AB,则22AB ==,所以与AB 反方向的单位向量为255,55AB AB.故选:B.【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4 B .4C .-1D .1【答案】C【解析】由题意,向量(),2a m =,()1,2b =-,所以()()1,00,0a b m +=+=, 可得50m +=,解得1m =-.故选:C .【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2)B.(1,2)C.(5,6)D.(2,0)【答案】B【解析】由题意得b -a =(3,1)-(1,2)=(2,-1). (2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【答案】D【解析】12BC →=12(AC →-AB →)=12(-2,-2)=(-1,-1).【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【解析】(1)2a +3b =2(-1,2)+3(2,1) =(-2,4)+(6,3)=(4,7). (2)a -3b =(-1,2)-3(2,1) =(-1,2)-(6,3)=(-7,-1). (3)12a -13b =12(-1,2)-13(2,1) =⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23. 【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫ ⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【答案】ABC【解析】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确.选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确.选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确故选:ABC 【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4 B .-4 C .14D .14-【答案】D【解析】由题意知//a c ,//b c ,所以//a b ;又(1,)a x =,(4,1)b =-,所以1(1)40x ⨯--=,解得14x =-.故选:D(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2-C .6-D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- , 若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B 【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭D .3,--【答案】C【解析】若向量b 与向量a 平行,则b a λ=,(1,3,2)a =-,则(,3,2)b λλλ=- 设向量(),,b x y z =,则x 与y 符号相同,y 与z 符号相反,所以可知A ,B ,D 不成立, 选项C :若12λ=-,则12x =-,32y =-,1z =,故C 正确.故选:C.【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由//a b →→可得()213m m +=,解得32m =-或1m =,所以“1m =”是“//a b →→” 充分不必要条件.故选:A.【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-【答案】D【解析】由()1,1a =,()2,1b =-,可得()24,2a b λλλ+=+-,()1,2a b -=-, 因为()()2//a b a b λ+-,所以()()()24210λλ+--⨯-=,解得2λ=-.故选:D.课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e = D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭ 【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15- B .15C .75-D .75【答案】B【解析】由题意,设AB a AD b ,==,则在平行四边形ABCD 中,因为12BE BC =,13DF DC =,所以点E 为BC 的中点,点F 在线段DC 上,且2CF DF =, 所以1123AE a b AF a b =+=+,, 又因为BD AE AF λμ=+,且BD AD AB b a =-=-,所以11112332a b AE AF a b a b a b λμλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫-+=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1C .()2,2--D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C.所以113112λμλμ⎧+=-⎪⎪⎨⎪+=⎪⎩,解得8595λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以15λμ+=。
[知识能否忆起]一、平面向量基本定理及坐标表示1.平面向量基本定理如果e 1,e 2是同一平面内的两个向量,那么对于这一平面内的任意向量a ,一对实数λ1,λ2,使a =.其中,不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组.不共线有且只有基底λ1e 1+λ2e 22.平面向量的正交分解把一个向量分解为两个的向量,叫做把向量正交分解.3.平面向量的坐标表示(1)在平面直角坐标系中,分别取与x 轴,y 轴方向相同的两个单位向量i ,j 作为基底.对于平面内的一个向量a ,有且只有一对实数x ,y ,使a =x i +yj ,把有序数对叫做向量a 的坐标,记作a =,其中叫做a 在x 轴上的坐标,叫做a 在y 轴上的坐标.互相垂直(x ,y )(x ,y )x y(2)设OA u u u r =xi +yj ,则向量OA u u u r 的坐标(x ,y )就是 的坐标,即若OA u u u r =(x ,y ),则A 点坐标为 ,反之亦成立.(O 是坐标原点)终点A (x,y )二、平面向量坐标运算1.向量加法、减法、数乘向量及向量的模设a =(x 1,y 1),b =(x 2,y 2),则a +b =,a -b =,λa =.(x 1+x 2,y 1+y 2)(x 1-x 2,y 1-y 2)(λx 1,λy 1)2.向量坐标的求法(1)若向量的起点是坐标原点,则终点坐标即为向量的坐标.(2)设A (x 1,y 1),B (x 2,y 2),则=,||=.三、平面向量共线的坐标表示设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.若a ∥b ⇔.AB u u u r AB u u u r (x 2-x 1,y 2-y 1)x 1y 2-x 2y 1=0(x 2-x 1)2+(y 2-y 1)2[小题能否全取]1.(2012·广东高考)若向量AB u u u r =(1,2),BC u u u r =(3,4),则ACu u u r = ( )解析:∵AC u u u r =AB u u u r +BC u u u r ,∴AC u u u r =(1,2)+(3,4)=(4,6).答案:AA .(4,6)B .(-4,-6)C .(-2,-2)D .(2,2)2.已知向量a=(2,1),b=(x,-2),若a∥b,则a+b等于() A.(-2,-1) B.(2,1)C.(3,-1) D.(-3,1)解析:由a∥b可得2×(-2)-1×x=0,故x=-4,所以a+b=(-2,-1).答案:A3.(教材习题改编)已知两点A (4,1),B (7,-3),则与AB u u u r 同向的单位向量是 ( ) A.⎝ ⎛⎭⎪⎫35,-45 B.⎝ ⎛⎭⎪⎫-35,45 C.⎝ ⎛⎭⎪⎫-45,35 D.⎝ ⎛⎭⎪⎫45,-35 解析:∵A (4,1),B (7,-3),∴AB u u u r =(3,-4),∴与AB u u u r 同向的单位向量为AB u u u r |AB u u u r |=⎝ ⎛⎭⎪⎫35,-45. 答案:A4.在平行四边形ABCD 中,若AB u u u r =(1,3),AC u u u r =(2,5),则AD u u u r =________,BD u u u r =________.解析:AD u u u r =BC u u u r =AC u u u r -AB u u u r =(2,5)-(1,3)=(1,2),BD u u u r =AD u u u r -AB u u u r =(1,2)-(1,3)=(0,-1).答案:(1,2) (0,-1)5.梯形ABCD 中,AB ∥CD ,AB =2CD ,M ,N 分别是CD ,AB 的中点,设AB u u u r=a ,AD u u u r =b .若MN u u u u r =ma +nb ,则n m =________.解析:∵MN u u u u r =MD u u u r +DA u u u r +AN u u u r =-14a -b +12a =14a -b ,∴m =14,n =-1.∴n m =-4. 答案:-41.基底的不唯一性只要两个向量不共线,就可以作为平面的一组基底,对基底的选取不唯一,平面内任意向量a都可被这个平面的一组基底e1,e2线性表示,且在基底确定后,这样的表示是唯一的.2.向量坐标与点的坐标的区别要区分点的坐标与向量坐标的不同,尽管在形式上它们完全一样,但意义完全不同,向量坐标中既有方向的信息也有大小的信息.平面向量基本定理及其应用[例1] (2012·苏北四市联考)如图,在四边形ABCD 中,AC 和BD相交于点O ,设AD u u u r =a ,AB u u u r =b ,若AB u u u r =2DC u u u r ,则AO u u u r =________(用向量a 和b 表示).[自主解答] ∵AB u u u r =2DC u u u r ,∴△DOC ∽△BOA ,且OC OA =12,∴AO u u u r =23AC u u u r =23(AD u u u r +DC u u u r )=23⎝ ⎛⎭⎪⎫a +12b =23a +13b . [答案] 23a +13b用向量基本定理解决问题的一般思路是:先选择一组基底,再用该基底表示向量,也就是利用已知向量表示未知向量,其实质就是利用平行四边形法则或三角形法则进行向量的加减运算和数乘运算.1.(2012·南宁模拟)在△ABC 中,M 为边BC 上任意一点,N为AM 中点,AN u u u r =λAB u u u r +μAC u u u r ,则λ+μ的值为( )A.12B.13C.14D .1答案:A解析:设CM u u u r =m CB u u u r =m (AB u u u r -AC u u u r )(0≤m ≤1),则AMu u u u r =AC u u u r +CM u u u r =(1-m ) AC u u u r +m AB u u u r ,AN u u u r =12AM u u u u r =m 2AB u u u r +1-m 2AC u u u r ,所以λ+μ=m 2+1-m 2=12.[例2] (1)(2012·西城期末)已知向量a =(3,1),b =(0,-2).若实数k 与向量c 满足a +2b =kc ,则c 可以是 ( )平面向量的坐标运算A .(3,-1)B .(-1,-3)C .(-3,-1)D .(-1, 3) (2)已知A (-2,4),B (3,-1),C (-3,-4).设AB u u u r =a ,BC u u u r =b ,CA u u r =c .①求3a +b -3c ;②求满足a =mb +nc 的实数m ,n .[自主解答] (1)∵a =(3,1),b =(0,-2), ∴a +2b =(3,-3)=-3(-1,3).(2)由已知得a =(5,-5),b =(-6,-3),c =(1,8). [答案](1)D①3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42).②∵mb +nc =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧ -6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧ m =-1,n =-1.本例中第(2)题增加条件CM u u u r =3c ,ON u u u r =2b ,求M ,N 的坐标及向量MN u u u u r 的坐标.解:∵CM u u u r =OM u u u r -OC u u u r =3c ,∴OM u u u r =3c +OC u u u r =(3,24)+(-3,-4)=(0,20).∴M (0,20).又∵CN u u u r =ON u u u r -OC u u u r =-2b ,∴ON u u u r =-2b +OC u u u r =(12,6)+(-3,-4)=(9,2),∴N (9,2).M (0,20),N (9,2)∴MN u u u u r = (9,-18).1.向量的坐标运算实现了向量运算代数化,将数与形结合起来,从而可使几何问题转化为数量运算.2.两个向量相等当且仅当它们的坐标对应相同.此时注意方程(组)思想的应用.[注意]向量的坐标与点的坐标不同:向量平移后,其起点和终点的坐标都发生变化,但向量的坐标不变.2.(2012·淮安模拟)已知向量a =(6,4),b =(0,2),OC u u u r =a+λb ,O 为坐标原点,若点C 在函数y =sin ⎝ ⎛⎭⎪⎫π12x 的图象上,则实数λ的值为________.解析:由题意得OC u u u r =(6,4)+λ(0,2)=(6,4+2λ),故点C 的坐标为(6,4+2λ),根据条件得4+2λ=sin 6π12=1,解得λ=-32. 答案:-32[例3](2011·广东高考)已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c 则λ=()平面向量共线的坐标表示A.14B.12C .1D .2[自主解答] 可得a +λb =(1+λ,2),由(a +λb )∥c得(1+λ)×4-3×2=0,所以λ=12. [答案]B在本例条件下,问是否存在非零常数λ,使a+λb和a -λc平行?若平行是同向还是反向?解:∵a+λb=(1+λ,2),a-λc=(1-3λ,2-4λ),若(a+λb)∥(a-λc),∴(1+λ)(2-4λ)-2(1-3λ)=0.∴λ=1.∴a+λb=(2,2)与a-λc=(-2,-2)反向.即存在λ=1使a+λb与a-λc平行且反向.a∥b的充要条件有两种表达方式(1)a∥b(b≠0)⇔a=λb(λ∈R);(2)设a=(x1,y1),b=(x2,y2),则a∥b⇔x1y2-x2y1=0.两种充要条件的表达形式不同.第(1)种是用线性关系的形式表示的,而且有前提条件b≠0,而第(2)种无b≠0限制.3.(1)(2012·北京东城区综合练习)已知向量a =(2,3),b=(-1,2),若ma +nb 与a -2b 共线,则m n = ( )A .-2B .2C .-12 D.12解析:由向量a =(2,3),b =(-1,2)得ma +nb =(2m -n,3m +2n ),a -2b =(4,-1),因为ma +nb 与a -2b 共线,所以(2m -n )×(-1)-(3m +2n )×4=0,整理得m n =-12. 答案:C(2)(2012·嘉兴模拟)已知a ,b 是不共线的向量,AB u u u r =λa+b ,AC u u u r =a +μb ,λ,μ∈R ,那么A ,B ,C 三点共线的充要条件为 ( )A .λ+μ=2B .λ-μ=1C .λμ=-1D .λμ=1解析:∵A ,B ,C 三点共线,∴存在实数t ,满足AB u u u r =t AC u u u r ,即λa +b =ta +μtb ,又a ,b 是不共线的向量, ∴⎩⎪⎨⎪⎧ λ=t ,1=μt ,即λμ=1.答案:D[典例] 如图,在平行四边形ABCD 中,M ,N 分别为DC ,BC 的中点,已知AM u u u u r =c ,AN u u u r =d ,试用c ,d 表示AB u u u r ,AD u u u r.[解] 在△ADM 中,AD u u u r =AM u u u u r -DM u u u u r =c -12AB u u u r.① 在△ABN 中,AB u u u r =AN u u u r -BN u u u r =d -12AD u u u r.②由①②得AB u u u r =23(2d -c ),AD u u u r =23(2c -d ).[题后悟道] 本题求解利用了方程思想,首先利用三角形法则表示出向量AB u u u r ,AD u u u r ,然后解关于AB u u u r ,AD u u u r 的方程组,方程思想在利用平面向量基本定理求参数经常用到.所谓方程思想,是指在解决问题时,用事先设定的未知数表示问题中所涉及的各量间的等量关系,建立方程或方程组,求出未知数及各量的值,或者用方程的性质去分析、转化问题,使问题获得解决.针对训练如图所示,在△ABC 中,点M 是AB 的中点,且AN u u u r =12NC u u u r ,BN 与CM 相交于点E ,设AB u u u r =a ,AC u u u r =b ,试 用基底a ,b 表示向量AE u u u r . 解:易得AN u u u r =13AC u u u r =13b ,AM u u u u r =12AB u u u r =12a ,由N ,E ,B 三点共线知,存在实数m ,满足AE u u u r =m AN u u u r +(1-m ) AB u u u r =13mb +(1-m )a .由C ,E ,M 三点共线知存在实数n ,满足AE u u u r =n AM u u u u r +(1-n ) AC u u u r =12na +(1-n )b .所以13mb +(1-m )a =12na +(1-n )b .由于a ,b 为基底,所以⎩⎪⎨⎪⎧ 1-m =12n ,13m =1-n ,解得⎩⎪⎨⎪⎧ m =35,n =45, 所以AE u u u r =25a +15b .教师备选题(给有能力的学生加餐)1.已知向量a =(3,1),b =(sin α-m ,cos α),且a ∥b ,则实数m 的最小值为 ( )A .-2B .-1C .- 2D .-3答案:A解析:∵a ∥b ,∴3cos α-sin α+m =0.∴m =sin α-3cos α=2sin ⎝ ⎛⎭⎪⎫α-π3≥-2.2.若α,β是一组基底,向量γ=xα+yβ(x,y∈R),则称(x,y)为向量γ在基底α,β下的坐标,现已知向量a在基底p=(1,-1),q=(2,1)下的坐标为(-2,2),则a在另一组基底m=(-1,1),n=(1,2)下的坐标为()A.(2,0) B.(0,-2)C.(-2,0) D.(0,2)解析:∵a 在基底p ,q 下的坐标为(-2,2),即a =-2p +2q =(2,4).令a =x m +y n =(-x +y ,x +2y ),故⎩⎪⎨⎪⎧-x +y =2,x +2y =4,即⎩⎪⎨⎪⎧ x =0,y =2.答案:D3.如图,已知平行四边形ABCD 的顶点A (0,0),B (4,1),C (6,8).(1)求顶点D 的坐标;(2)若DE u u u r =2EC u u u r ,F 为AD 的中点,求AE 与BF 的交点I 的坐标.解:(1)设点D (x ,y ),因为AD u u u r =BC u u u r ,所以(x ,y )=(6,8)-(4,1)=(2,7),所以顶点D 的坐标为(2,7).(2)设点I (x ,y ),则有F点坐标为⎝ ⎛⎭⎪⎫1,72,由于 DE u u u r =2EC u u u r ,故(x E -2,y E -7)=2(6-x E,8-y E )⇒E ⎝ ⎛⎭⎪⎫143,233,由于BF u u u r =⎝ ⎛⎭⎪⎫-3,52, BI u u r =(x -4,y -1),BF u u u r ∥BI u u r ⇒52(x -4)=-3(y -1),又AE u u u r ∥AI u u r ⇒233x =143y ,联立方程组可得x =74,y =238, 则点I 的坐标为⎝ ⎛⎭⎪⎫74,238.。