平面向量的基本定理
- 格式:doc
- 大小:23.50 KB
- 文档页数:9
平面向量基本定理
平面向量基本定理:
1、定义:平面向量基本定理是一种数学定理,它将向量的矢量乘积和其他数学定理结合在一起。
2、证明:平面向量基本定理可以由叉积定理和等价矢量乘积定理来证明:
A×B = C×A+B , 其中A和B是两个向量,C是其叉积。
同时有:A⋅(B×C) = B⋅(C×A) + C⋅(A×B)
将C×A替换成A×B,得到A⋅B×C= B⋅C×A + A⋅A×B,再将A⋅A×B 替换成C×A,即得到A⋅B×C = B⋅C×A + C⋅A×B。
故A×B=C×A+B,即平面向量基本定理得证。
3、应用:平面向量基本定理主要应用于平面向量运算。
它可以用于求解三角形和圆的关系,计算叉积和点面积,求解抛物线的中心,解决线性方程组的特殊解,以及证明连续多边形的属性等。
4、例题:
(1)已知AB、BC、CD是相互垂直的向量,若AB=2,BC=3,则
AC⋅CD的值为?
(2)A、B、C、D四点不共线,且AB⋅BC=2,BC⋅CD=3,若AC=4,求CD的值?
解:(1)由题意可知,ABCD四点不共线,AB、BC、CD相互垂直,由矢量乘积的叉积定理可得,AB×BC=AC×CD,故
AC⋅CD=AB⋅BC=2×3=6。
(2)由题意可知,AB⋅BC=2,BC⋅CD=3,且AC=4,因为AB、BC、CD相互垂直,所以有:AB×BC=AC×CD,由于有AB⋅BC=2,AC=4,故CD=2/4=1/2。
向量基本定理证明一、向量基本定理内容1. 平面向量基本定理- 如果e_1,e_2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ_1,λ_2,使a = λ_1e_1+λ_2e_2。
其中{e_1,e_2}叫做表示这一平面内所有向量的一个基底。
2. 空间向量基本定理- 如果三个向量a,b,c不共面,那么对空间任一向量p,存在一个唯一的有序实数组x,y,z,使p = xa+yb + zc。
{a,b,c}叫做空间的一个基底。
二、平面向量基本定理的证明1. 存在性证明- 设e_1,e_2是同一平面内的两个不共线向量,a是这一平面内的任一向量。
- 过向量a的起点O作平行于e_1,e_2的直线,与e_1,e_2所在的直线分别交于A,B两点。
- 因为e_1≠0,设→OA=λ_1e_1,同理设→OB=λ_2e_2。
- 根据向量加法的平行四边形法则,a=→OA+→OB=λ_1e_1+λ_2e_2。
2. 唯一性证明- 假设a=λ_1e_1+λ_2e_2=μ_1e_1+μ_2e_2,其中λ_1,λ_2,μ_1,μ_2∈ R。
- 则(λ_1 - μ_1)e_1+(λ_2-μ_2)e_2 = 0。
- 因为e_1,e_2不共线,所以λ_1-μ_1 = 0且λ_2-μ_2 = 0,即λ_1=μ_1,λ_2=μ_2。
三、空间向量基本定理的证明1. 存在性证明- 设a,b,c是不共面的三个向量,p是空间任一向量。
- 把向量a,b,c,p的起点都移到同一点O。
- 过点P作直线PP_1平行于c,且与平面OAB交于点P_1。
- 在平面OAB内,过点P_1作直线P_1P_2平行于b,交OA于点P_2。
- 过点P_2作直线P_2P_3平行于a,交OB于点P_3。
- 设→OP_3=x a,→P_3P_2=y b,→P_2P_1=z c。
- 由向量加法的三角形法则可得p=→OP=→OP_3+→P_3P_2+→P_2P_1=xa + yb+zc。
一、平面向量的基本定理(1)平面向量基本定理:如果1e 和2e 是一平面内的两个不平行的向量,那么该平面内的任一向量a ,存在唯一的一对实数1a ,2a ,使a =1122a e a e +.(2) 基底:我们把不共线向量1e ,2e 叫做表示这一平面内所有向量的一组基底,记作{}12,e e .1122a e a e +叫做向量a 关于基底{}12,e e 的分解式. 注:①定理中1e ,2e 是两个不共线向量;②a 是平面内的任一向量,且实数对1a ,2a 是惟一的; ③平面的任意两个不共线向量都可作为一组基底.(3)平面向量基本定理的证明:在平面内任取一点O ,作11OE e =,22OE e =,OA a =.由于1e 与2e 不平行,可以进行如下作图:过点A 作2OE 的平行(或重合)直线,交直线1OE 于点M ,过点A 作1OE 的平行(或重合)直线,交直线2OE 于点N ,于是依据平行向量基本定理,存在两个唯一的实数1a 和2a 分别有11OM a e =,22ON a e =,所以1122a OA OM ON a e a e ==+=+证明表示的唯一性:如果存在另对实数x ,y 使12OA xe ye =+,则112212a e a e xe ye +=+,即1122()()0x a e y a e -+-=,由于1e 与2e 不平行,如果1x a -与2y a -中有一个不等于0,不妨设20y a -≠,则1212x a e e y a -=--,由平行向量基本定理,得1e 与2e 平行,这与假设矛盾,因此10x a -=,20y a -=,即1x a =,2y a =.二、向量的正交分解与向量的直角坐标运算:(1)向量的直角坐标:如果基底的两个基向量1e ,2e 互相垂直,则称这个基底为正交基底.在正交基底下分解向量,叫做正交分解.(2)向量的坐标表示:在直角坐标系中,一点A 的位置被点A 的位置向量OA 所唯一确定.设点A 的坐标为(,)x y ,由平面向量基本定理,有12(,)OA xe ye x y =+=,即点A 的位置向量OA 的坐标(,)x y ,也就是点A 的坐标;反之,点A 的坐标也是点A 相对于坐标原点的位置向量OA 的坐标.E 2E 1e 2e 1O ANMae1e 2axyO O yxae 2e 1平面向量的基本定理及坐标运算(3)向量的直角坐标运算:设12(,)a a a =,12(,)b b b =,则 ①1122(,)a b a b a b +=++;②1122(,)a b a b a b -=--;③1212(,)(,)a a a a a λλλλ==注:①两个向量的和与差的坐标等于两个向量相应坐标的和与差;②数乘向量的积的坐标等于数乘以向量相应坐标的积.(4)若11(,)A x y ,22(,)B x y ,则向量2121(,)AB OB OA x x y y =-=--;即:一个向量的坐标等于向量的终点的坐标减去始点的坐标.(5)用平面向量坐标表示向量共线条件:设12(,)a a a =,12(,)b b b =,则12210a b a b -=就是两个向量平行的条件.若向量b 不平行于坐标轴,即10b ≠,20b ≠,则两个向量平行的条件是,相应坐标成比例.题型一、平面向量的基本定理【例1】 若已知1e 、2e 是平面上的一组基底,则下列各组向量中不能作为基底的一组是( )A .1e 与2e -B .31e 与22eC .1e +2e 与1e —2eD .1e 与21e【例2】 线段与互相平分,则可以表示为( )A .B .C .D . 【例3】 已知ABCD □的两条对角线交于点O ,设AB a =,AD b =,用向量a 和b 表示向量BD ,AO .【例4】 如图,平行四边形ABCD 中,E F 、分别是BC DC 、的中点,G 为DE BF 、的交点,若AB =a ,AD =b ,试以a ,b 为基底表示DE 、BF 、CG .AB CD BD AB CD -1122AB CD -+1()2AB CD -()AB CD --GFE DCBA【例5】 设P 是正六边形OABCDE 的中心,若OA a =,OE b =,试用向量a ,b 表示OB 、OC 、OD【例6】 已知向量a ,b 不共线,()R c ka b k =+∈,d a b =-,如果c d ∥,那么( )A .1k =且c 与d 同向B .1k =且c 与d 反向C .1k =-且c 与d 同向D .1k =-且c 与d 反向【例7】 已知四边形ABCD 是菱形,点P 在对角线AC 上(不包括端点A ,C ),则AP 等于( )A .()AB AD λ+,(01)λ∈, B .()AB BC λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭, C .()AB AD λ+,202λ⎛⎫∈ ⎪ ⎪⎝⎭,D .()AB BC λ-,202λ⎛⎫∈ ⎪ ⎪⎝⎭, 【例8】 已知向量a b ,不共线,m n ,为实数,则当0ma nb +=时,有m n += 【例9】 在平行四边形ABCD 中,E 和F 分别是边CD 和BC 的中点.若AC AE AF λμ=+,其中λ,R μ∈,则λμ+= .【例10】证明:若向量,,OA OB OC 的终点A B C 、、共线,当且仅当存在实数,λμ满足等式1λμ+=,使得OC OB OA λμ=+.POE DCBAFEDCBAOCBA题型二、平面向量的坐标表示与运算【例11】设向量(23),AB =,且点A 的坐标为(12),,则点B 的坐标为 . 【例12】若(21),a =,(34),b =-则34a b +的坐标为_________. 【例13】设平面向量()()3,5,2,1a b ==-,则2a b -=( )A .()6,3B .()7,3C .()2,1D .()7,2【例14】已知(2,3),(1,2)a x b y =-=+,若a b =,则x = ,y = . 【例15】若()0,1A ,()1,2B ,()3,4C ,则AB -2BC = 【例16】若()3,2M -,()5,1N --且12MP =MN ,求P 点的坐标.【例17】已知向量()1,0a =,()0,1b =,()R c ka b k =+∈,d a b =-,如果那么( )A .且与同向B .且与反向C .且与同向D .且与反向【例18】已知向量()11a =,,()2b x =,若a b +与42b a -平行,则实数的值是( ) A .2- B .0 C .1 D .2【例19】在平面直角坐标系xoy 中,四边形ABCD 的边AB DC ∥,AD BC ∥,已知点()2,0A -,()6,8B ,()8,6C ,则D 点的坐标为___________.【例20】已知向量()3,1a =,()1,3b =,(),7c k =,若()a c -∥b ,则= . 【例21】已知()12a =,,()32b =-,,当ka b +与3a b -平行,k 为何值( )A .14 B .-14 C .-13 D .13【例22】已知(1,2),(3,2)a b ==-,当实数k 取何值时,k a +2b 与2a -4b 平行?//c d 1k =c d 1k =c d 1k =-c d 1k =-c d x k【例23】点(23),A 、(54),B 、(710),C ,若()R AP AB AC λλ=+∈,试求λ为何值时,点P 在一、三象限角平分线上.【练1】 在ABC △中,AB c =,AC b =.若点D 满足2BD DC =,则AD =( )A .2133b c +B .5233c b -C .2133b c -D .1233b c +【练2】 如图,在ABC △中,点O 是BC 的中点,过点O 的直线分别交直线AB ,AC 于不同的两点M N ,,若AB mAM =,AC nAN =,则m n +的值为.【练3】 已知两个向量()()121a b x ==,,,,若a b ∥,则x 的值等于( ) A .12-B .12C .2-D .2【练4】 若平面向量a ,b 满足1a b +=,a b +平行于轴,()21b =-,,则a = .DCBAONMCBAx 随堂练习【题1】 若向量()1,1a =,()1,1b =-,()4,2c =,则c = ( )A .3a +bB . 3a -bC .-a +3bD .a +3b【题2】 已知a =(4,2),b =(x ,3),且a ∥b ,则x 等于( )A .9B .6C .5D .3【题3】 已知平面向量a =(x ,1),b =(-x ,x 2),则向量a +b ( )A .平行于x 轴B .平行于第一、三象限的角平分线C .平行于y 轴D .平行于第一、四象限的角平分线【题4】 已知向量e 1与e 2不共线,实数x ,y 满足(3x -4y )e 1+(2x -3y )e 2=6e 1+3e 2,则x -y 等于( )A .3B .-3C .0D .2【题5】 已知向量(1,2)a =,(0,1)b =,设u a kb =+,2v a b =-,若u ∥v ,则实数k 的值为( )A .-1B .-12C .12D .1【题6】 设点A (2,0),B (4,2),若点P 在直线AB 上,且|AB |=2|AP |,则点P 的坐标为( )A .(3,1)B .(1,-1)C .(3,1)或(1,-1)D .无数多个【题7】 设(1,2),(2,3),a b ==若向量a b λ+与向量(4,7)c =--共线,则λ=.【题8】 已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________.【题9】 已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN→=-2b .(1)求:3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n .【题10】 在平行四边形ABCD 中,AC 与BD 交于点O ,E 是线段OD 的中点,AE 的延长线与CD 交于点F .若AC →=a ,BD →=b ,则AF →=( ) A .14a +12b B .23a +13b C .12a +14bD .13a +23b课后作业。
高考数学平面向量的基本定理总结一、平面向量的定义在平面上,任意给定的两个点A和B,我们可以由点A指向点B画出一条有向线段,这条有向线段就是一个平面向量,记作AB。
二、平面向量的表示平面向量既可以用有向线段表示,也可以用坐标表示。
对于平面上的向量AB,用坐标表示为:AB = (x2-x1, y2-y1)其中(x1, y1)和(x2, y2)分别是向量起点A和终点B的坐标。
这种表示方法非常直观,也很容易理解。
三、平面向量的基本运算在平面向量的基本定理中,我们需要掌握平面向量的基本运算,主要包括向量的加法、减法和数量乘法。
1. 向量的加法设有向量A的坐标为(x1, y1),向量B的坐标为(x2, y2),则向量A和向量B的和向量C的坐标为:C = A + B = (x1+x2, y1+y2)2. 向量的减法设有向量A的坐标为(x1, y1),向量B的坐标为(x2, y2),则向量A减去向量B的差向量D的坐标为:D = A - B = (x1-x2, y1-y2)3. 数量乘法设k为实数,向量A的坐标为(x1, y1),则向量A的数量乘积ka的坐标为:ka = (kx1, ky1)四、平面向量的基本定理平面向量的基本定理是指任何一个平面向量都可以表示成两个非零向量的和。
具体而言,对于平面上的向量A,可以找到两个非零向量B和C,使得:A =B + C其中,向量B和向量C的坐标满足条件:B = (x1, y1),C = (x2, y2)B和C分别称为向量A的两个互补向量。
根据平面向量的基本定理,我们可以将任意一个向量拆分成两个向量的和,从而简化向量的运算和应用。
五、基本定理的应用平面向量的基本定理在高考数学中有着广泛的应用。
主要包括以下几个方面:1. 向量的坐标运算:利用基本定理,我们可以通过向量的坐标进行加法、减法、数量乘法和求模等运算,从而简化向量的运算。
2. 向量的平衡力:基于平面向量的基本定理,我们可以将受力问题转化为向量的平衡问题,通过求解向量的平衡条件,得到力的大小和方向。
平面向量中重要定理总结(非常经典)1、共线向量定理向量a (a ≠0)与b 共线,当且仅当存在唯一一个实数λ,使b =λa .2、三点共线的证明方法若存在非零实数λ,使得AB →=λAC →或AB →=λBC →或AC →=λBC →,则A ,B ,C 三点共线.3、平面向量的基本定理如果e 1,e 2是同一平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数λ1,λ2使a =λ1e 1+λ2e 2.4、奔驰定理:已知O 是ABC ∆内一点,则0=⋅+⋅+⋅∆∆∆OC S OB S OA S AOB AOC BOC推论:已知O 是ABC ∆内一点,若=⋅+⋅+⋅z y x ,则z y x S S S AOB AOC BOC ::::=∆∆∆5、极化恒等式定理:平行四边形的对角线的平方和等于相邻两边平方和的两倍. 即:)|||(|2|AD ||AB |2222BO AO +=+ 设.,b AD a AB == 则,,b a DB b a AC -=+= 极化恒等式:[]22)()(41b a b a b a --+=⋅,即:=⋅6、三点共线定理:已知OB y OA x OC +=,且1=+y x ,则C B A ,,三点共线 OABC向量等和线: 平面内一组基底,及任意向量,21λλ+=,若点P 在直线AB 上或在与AB 平行的直线上,则k =+21λλ(||OC k =反之也成立,我们把直线AB 以及与AB 平行的直线称为基底系数等和线7、三角形各“心”的概念介绍重心:三角形的三条中线的交点,重心将中线长度分成2∶1;垂心:三角形的三条高线的交点,垂线与对应边垂直;内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心),内心到三角形三边的距离相等;外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心),外心到三角形各顶点的距离相等.三角形各“心”的向量表示(1)O 是△ABC 的重心⇔OA →+OB →+OC →=0.(2)O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →.(3)O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2).(4)O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0.注意:向量λ((AB →|AB →|+AC →|AC →|)(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).。
平面向量的基本定理及坐标表示全文共四篇示例,供读者参考第一篇示例:平面向量是我们在高中数学学习中接触到的一个重要知识点,它在几何学和代数学中都有着重要的作用。
平面向量本质上是有大小和方向的量,它可以用箭头表示出来,箭头的长度表示向量的大小,箭头的方向表示向量的方向。
而平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,下面我就来详细介绍一下。
一、平面向量的基本定理1. 平行向量的概念两个向量如果它们的方向相同或者相反,那么我们称这两个向量为平行向量。
平行向量的特点是它们的模相等,方向相同或者相反。
2. 向量的加法如果有两个向量a和b,它们的起点相同,那么我们可以通过平行四边形法则将这两个向量相加,即将向量b平移至向量a的终点,然后连接向量a的起点和向量b的终点,这条连接线就是向量a+b的结果。
3. 向量的数量积向量的数量积,也称为点积或内积,是两个向量的特殊乘积。
设有两个向量a和b,它们之间夹角为θ,那么a·b=|a||b|cosθ,其中|a|和|b|分别表示向量a和b的模长。
二、平面向量的坐标表示在平面直角坐标系中,我们可以用坐标表示一个向量。
设有一个向量a,它在平面直角坐标系中的起点为O(0,0),终点为A(x,y),那么我们可以用坐标(x,y)表示向量a。
在平面直角坐标系中,向量a与坐标轴之间的夹角为θ,那么向量a的方向角为θ。
根据三角函数的定义,我们有cosθ=x/|a|,sinθ=y/|a|,tanθ=y/x,这三个公式可以帮助我们求解向量的方向角。
对于向量的数量积和叉积,我们也可以通过向量的坐标表示来进行计算。
设向量a在坐标系中的起点为O(0,0),终点为A(x1,y1),向量b在坐标系中的起点为O(0,0),终点为B(x2,y2),那么向量a和向量b 的数量积为x1x2+y1y2,向量a和向量b的叉积为x1y2-x2y1。
平面向量的基本定理和坐标表示是我们学习平面向量的重要内容,通过深入理解这些知识点,我们可以更好地解决平面向量的相关问题,为我们的数学学习打下坚实的基础。
平面向量基本定理及坐标表示一.知识点总结1.平面向量基本定理:如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数1λ、2λ,使1122a e e λλ=+.(不共线的向量1e 、2e 作为这一平面内所有向量的一组基底)(1)平面内用来表示一个向量的基底有无数组;(2)若基底选取不同,则表示同一向量的实数21,λλ可以相同,也可以不同;(3)任意不共线的两个向量都可以作为基底。
2.向量的坐标表示与坐标运算:(1)平面向量的坐标表示:在坐标系下,平面上任何一点都可用一对实数(坐标)来表示 取x 轴、y 轴上两个单位向量i , j 作基底,则平面内作一向量a =x i +y j , 记作:a =(x, y) 称作向量a 的坐标(2).注意:①每一平面向量的坐标表示是唯一的;②设A(1x ,1y ) B(2x , 2y ) 则()1212,y y x x AB --= 结论:同理可得,一个向量的坐标等于表示此向量的有向线段终点的坐标减去始点的坐标。
(3).两个向量和与差的坐标分别等于这两个向量相应坐标的和与差。
(4).两个向量相等的充要条件是两个向量坐标相等。
(5).实数与向量积的坐标运算:已知a =(x, y)和实数λ,则λa =λ(x i +y j )=λx i +λy j ∴λa =(λx, λy) 结论:实数与向量的积的坐标,等于用这个实数乘原来的向量相应的坐标。
3.向量平行的坐标表示: 结论:a //b (b ≠0)的充要条件是01221=-y x y x .二.练习1.在梯形ABCD 中,AB //CD ,CD AB 2=,F E ,是BA DC ,的中点,b AB a AD ==,,是以b a ,为基底表示EF BC DC ,,。
2.已知ABCD 为矩形,且AB AD 2=,又ADE ∆为等腰直角三角形,F 为ED 的中点,2121,,,e e e EF e EA 以==为基底,表示向量BD AD AB AF ,,,.4.已知a =(x,3),b =(3,-1)且a ∥b ,则x 等于( )A .-1B .9C .-9D .15.已知A (3,-6),B (-5,2),且A 、B 、C 三点在一条直线上,则C 点坐标不可能是( )A .(-9,6)B .(-1,-2)C .(-7,-2)D .(6,-9)6.已知向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( )A .(-5,-10)B .(-4,-8)C .(-3,-6)D .(-2,-4)7.已知向量a =(2,3),b =(-1,2),若m a +n b 与a -2b 共线,则m n等于( )A. 12 B .2 C .-12D .-28.已知向量a =(x,1),b =(1,x )方向相反,则x =________. 9..已知M ={a |a =(1,2)+λ(3,4),λ∈R },N ={a |a =(-2,-2)+μ(4,5),μ∈R },则M ∩N =________.10.已知向量OA →=(k,12),OB →=(4,5),OC →=(10,k ),如果A 、B 、C 三点共线,则实数k =________.11.如果向量AB →=i -2j ,BC →=i +m j ,其中i 、j 分别是x 轴、y 轴正方向上的单位向量,试确定实数m 的值,使A 、B 、C 三点共线.10.已知点O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问:(1)t 为何值时,P 在x 轴上,P 在y 轴上,P 在第二象限?(2)四边形OABP 能否成为平行四边形,若能,求出t 的值,若不能,请说明理由.13.已知向量a =(3,4),b =(sin α,cos α),且a ∥b ,则tan α等于( )A. 34 B .-34 C. 43 D .-4314.已知A (2,3),B (6,-3),P 是靠近A 的线段AB 的一个三等分点,则点P 的坐标是________.15.已知向量AB →=(6,1),BC →=(x ,y ),CD →=(-2,-3),当BC →∥DA →时,求x ,y 应满足的关系式.16.设e 1,e 2是平面内一组基向量,且a =e 1+2e 2,b =-e 1+e 2,则向量e 1+e 2可以表示为另一组基向量a ,b 的线性组合,即e 1+e 2=________a +________b .17.已知点A (-1,2),B (2,8)以及AC →=13AB →,DA →=-13BA →,求点C ,D 的坐标和CD →的坐标. 18.已知A (1,1)、B (3,-1)、C (a ,b ).(1)若A 、B 、C 三点共线,求a 、b 的关系式;(2)若AC =2AB ,求点C 的坐标.19.下列向量中,不是单位向量的有: ( )(1)()θθsin ,cos -=a (2)()5lg ,2lg =b (3)()22,x xc -=(4)()x x d ,1-=A.1个B.2个C.3个D.4个。
6.3 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+=B .3λμ-=C .20λμ+=D .20λμ-=【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________. 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4B .4C .-1D .1【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2) B.(1,2) C.(5,6)D.(2,0)(2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4B .-4C .14D .14-(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6B .2-C .6-D .2【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭ D .3,--【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e =D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15-B .15C .75-D .753.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0B .()1,1C .()2,2--D .()2,24.已知()5,2a =-,()4,3b =-,(),c x y =,若220a b c -+=,则c 等于( ) A .(1,4)B .13,42⎛⎫⎪⎝⎭C .13,42⎛⎫-⎪⎝⎭D .13,42⎛⎫-- ⎪⎝⎭5.已知()13A ,,()41B -,,则与向量AB 共线的单位向量为( ) A .4355⎛⎫ ⎪⎝⎭,或4355⎛⎫- ⎪⎝⎭,B .3455⎛⎫- ⎪⎝⎭,或3455⎛⎫- ⎪⎝⎭, C .4355⎛⎫-- ⎪⎝⎭,或4355⎛⎫ ⎪⎝⎭, D .3455⎛⎫-- ⎪⎝⎭,或3455⎛⎫ ⎪⎝⎭, 6.设向量a =(1,4),b =(2,x ),c a b =+.若//a c ,则实数x 的值是( ) A .-4B .2C .4D .87.若(3,cos ),(3,sin ),a b αα==且a //b ,则锐角α=__________ . 8.已知O 为单位圆,A 、B 在圆上,向量OA ,OB 的夹角为60°,点C 在劣弧AB 上运动,若OC xOA yOB =+,其中,x y R ∈,则x y +的取值范围___________.9.在ABC 中,D 为BC 的中点,P 为AD 上的一点且满足3BA BC BP +=,则ABP △与ABC 面积之比为( ) A .14B .13C .23D .1610.已知ABC 所在的平面内一点P (点P 与点A ,B ,C 不重合),且523AP PO OB OC =++,则ACP △与BCP 的面积之比为( ) A .2:1B .3:1C .3:2D .4:36.3.1 平面向量的基本定理及坐标表示【知识一】平面向量基本定理1.平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e2.2.基底:若e 1,e 2不共线,我们把{e 1,e 2}叫做表示这一平面内所有向量的一个基底. 【知识二】平面向量的正交分解及坐标表示1.正交分解:把一个向量分解为两个互相垂直的向量,叫做把向量作正交分解.2.坐标表示:(1)在平面直角坐标系中,设与x 轴、y 轴方向相同的两个单位向量分别为i ,j ,取{i ,j }作为基底.对于平面内的任意一个向量a ,由平面向量基本定理可知,有且只有一对实数x ,y ,使得a =x i +y j .平面内的任一向量a 都可由x ,y 唯一确定,我们把有序数对(x ,y )叫做向量a 的坐标,记作a =(x ,y ).(2)在直角坐标平面中,i =(1,0),j =(0,1),0=(0,0). 【知识三】平面向量加、减运算的坐标表示 设a =(x 1,y 1),b =(x 2,y 2),已知点A (x 1,y 1),B (x 2,y 2),那么向量AB →=(x 2-x 1,y 2-y 1),即任意一个向量的坐标等于表示此向量的有向线段的终点的坐标减去起点的坐标. 【知识四】平面向量数乘运算的坐标表示1.数乘:已知a =(x ,y ),则λa =(λx ,λy ),即:实数与向量的积的坐标等于用这个实数乘原来向量的相应坐标.2.共线:设a =(x 1,y 1),b =(x 2,y 2),其中b ≠0.则a ,b 共线的充要条件是存在实数λ,使a =λb . 如果用坐标表示,可写为(x 1,y 1)=λ(x 2,y 2),当且仅当x 1y 2-x 2y 1=0时,向量a ,b (b ≠0)共线. 注意:向量共线的坐标形式极易写错,如写成x 1y 1-x 2y 2=0或x 1x 2-y 1y 2=0都是不对的,因此要理解并熟记这一公式,可简记为:纵横交错积相减.【例1-1】下列各组向量中,可以作为基底的是( ) A .()()120,0,1,2e e ==B .()()121,2,5,7e e =-=C .()()123,5,6,10e e ==D .()12132,3,,24e e ⎛⎫=-=-⎪⎝⎭【答案】B【解析】对A :因为零向量和任意向量平行,故A 中向量不可作基底; 对B :因为710-≠,故B 中两个向量不共线;对C :因为31056⨯=⨯,故C 中两个向量共线,故C 中向量不可作基底; 对D :因为312342⎛⎫⨯-=-⨯ ⎪⎝⎭,故D 中两个向量共线,故D 中向量不可作基底.故选:B. 【变式1-1】已知向量{a ,b }是一个基底,实数x ,y 满足(3x -4y )a +(2x -3y )b =6a +3b ,则x -y =________. 【答案】3【解析】因为{a ,b }是一个基底, 所以a 与b 不共线,由平面向量基本定理得⎩⎪⎨⎪⎧ 3x -4y =6,2x -3y =3,所以⎩⎪⎨⎪⎧x =6,y =3,所以x -y =3.【例1-2】如图,已知在梯形ABCD 中,AB ∥CD ,AB =2CD ,E ,F 分别是DC ,AB 的中点,设AD →=a ,AB →=b ,试用{a ,b }为基底表示DC →,EF →,FC →.【解析】因为DC ∥AB ,AB =2DC ,E ,F 分别是DC ,AB 的中点, 所以FC →=AD →=a ,DC →=AF →=12AB →=12b .EF →=ED →+DA →+AF →=-12DC →-AD →+12AB →=-12×12b -a +12b =14b -a .【变式1-2】如图,在正方形ABCD 中,设AB →=a ,AD →=b ,BD →=c ,则以{a ,b }为基底时,AC →可表示为________,以{a ,c }为基底时,AC →可表示为________.【答案】a +b 2a +c【解析】以{a ,b }为基底时,AC →=AB →+AD →=a +b ; 以{a ,c }为基底时,将BD →平移,使B 与A 重合, 再由三角形法则或平行四边形法则即得AC →=2a +c .【例1-3】在三角形ABC 中,M 为AC 的中点,若(),AB BM BC λμλμ=+∈R ,则下列结论正确的是( ) A .1λμ+= B .3λμ-=C .20λμ+=D .20λμ-=【答案】C【解析】因为M 为AC 的中点,所以1122BM BA BC =+,所以2AB BM BC =-+, 又(),AB BM BC λμλμ=+∈R ,所以2λ=-,1μ=,故选:C.【变式1-3】如图,已知OAB ,若点C 满足2AC CB =,(),OC xOA yOB x y R =+∈,则11x y+=( )A .14B .34C .92D .29【答案】C【解析】由2AC CB =得()2OC OA OB OC -=-,即1233OC OA OB =+, 又(),OC xOA yOB x y R =+∈,所以1323x y ⎧=⎪⎪⎨⎪=⎪⎩,因此1139322x y +=+=.故选:C. 【例2-1】如图,在平面直角坐标系xOy 中,OA =4,AB =3,∠AOx =45°,∠OAB =105°,OA →=a ,AB →=b .四边形OABC 为平行四边形.(1)求向量a ,b 的坐标; (2)求向量BA →的坐标; (3)求点B 的坐标.【解析】(1)作AM ⊥x 轴于点M ,则OM =OA ·cos 45° =4×22=22, AM =OA ·sin 45° =4×22=2 2. ∴A (22,22),故a =(22,22).∵∠AOC =180°-105°=75°,∠AOy =45°, ∴∠COy =30°. 又∵OC =AB =3,∴C ⎝⎛⎭⎫-32,332,∴AB →=OC →=⎝⎛⎭⎫-32,332,即b =⎝⎛⎭⎫-32,332.(2)BA →=-AB →=⎝⎛⎭⎫32,-332.(3)OB →=OA →+AB →=(22,22)+⎝⎛⎭⎫-32,332=⎝⎛⎭⎫22-32,22+332.∴点B 的坐标为⎝⎛⎭⎫22-32,22+332.【变式2-1】已知点M (5,-6),且MN →=(-3,6),则N 点的坐标为________.【答案】 (2,0)【解析】∵MN →=(-3,6),设N (x ,y ), 则MN →=ON →-OM →=(x -5,y +6)=(-3,6).∴⎩⎪⎨⎪⎧ x -5=-3,y +6=6,解得⎩⎪⎨⎪⎧x =2,y =0.即N (2,0). 【例2-2】已知()0,1A -,()0,3B ,则AB =( )A .2BC .4D .【解析】由题得AB =(0,4)所以||0(31)4AB =++.故选C【变式2-2】已知()3,2M -,()5,1N -,若NP MN =,则P 点的坐标为( ) A .(3,2)B .(3,-1)C .(7,0)D .(1,0)【解析】设点P 的坐标为(),x y ,则(5,1)NP x y =-+,(53,12)(2,1)MN =--+=,因为NP MN =,即(5,1)(2,1)x y -+=,所以5211x y -=⎧⎨+=⎩,解得70x y =⎧⎨=⎩,所以()7,0P .故选:C.【变式2-4】已知点()3,2A ,()5,1B ,则与AB 反方向的单位向量为( )A .⎝⎭B .⎛ ⎝⎭C .⎛ ⎝⎭D .⎝⎭【答案】B【解析】()3,2A ,()5,1B ,2,1AB,则22AB ==,所以与AB 反方向的单位向量为255,55AB AB.故选:B.【变式2-5】已知向量(),2a m =,()1,2b =-,若0a b +=,则实数m 的值为( ) A .-4 B .4C .-1D .1【答案】C【解析】由题意,向量(),2a m =,()1,2b =-,所以()()1,00,0a b m +=+=, 可得50m +=,解得1m =-.故选:C .【例3-1】(1)已知向量a =(1,2),2a +b =(3,2),则b 等于( ) A.(1,-2)B.(1,2)C.(5,6)D.(2,0)【答案】B【解析】由题意得b -a =(3,1)-(1,2)=(2,-1). (2)已知向量AB →=(2,4),AC →=(0,2),则12BC →等于( )A.(-2,-2)B.(2,2)C.(1,1)D.(-1,-1)【答案】D【解析】12BC →=12(AC →-AB →)=12(-2,-2)=(-1,-1).【变式3-1】已知a =(-1,2),b =(2,1),求: (1)2a +3b ;(2)a -3b ;(3)12a -13b .【解析】(1)2a +3b =2(-1,2)+3(2,1) =(-2,4)+(6,3)=(4,7). (2)a -3b =(-1,2)-3(2,1) =(-1,2)-(6,3)=(-7,-1). (3)12a -13b =12(-1,2)-13(2,1) =⎝⎛⎭⎫-12,1-⎝⎛⎭⎫23,13=⎝⎛⎭⎫-76,23. 【例3-2】已知点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,与向量AB 平行的向量的坐标可以是( )A .14,33⎛⎫ ⎪⎝⎭B .97,2⎛⎫ ⎪⎝⎭C .14,33⎛⎫-- ⎪⎝⎭D .(7,9)【答案】ABC【解析】由点()4,6A ,33,2B ⎛⎫- ⎪⎝⎭,则972,AB ⎛⎫=-- ⎪⎝⎭选项A . 91473023⎛⎫-⨯--⨯= ⎪⎝⎭,所以A 选项正确.选项B. 9977022⎛⎫-⨯--⨯= ⎪⎝⎭,所以B 选项正确. 选项C . ()91473023⎛⎫⎛⎫-⨯---⨯-= ⎪ ⎪⎝⎭⎝⎭,所以C 选项正确.选项D. 979702⎛⎫-⨯--⨯≠ ⎪⎝⎭,所以选项D 不正确故选:ABC 【例3-3】(1)已知非零向量a ,b ,c ,若()1,a x =,()4,1b =-,且//a c ,//b c 则x =( ) A .4 B .-4 C .14D .14-【答案】D【解析】由题意知//a c ,//b c ,所以//a b ;又(1,)a x =,(4,1)b =-,所以1(1)40x ⨯--=,解得14x =-.故选:D(2)若()0,2A ,()1,0B -,(),2-C m 三点共线,则实数m 的值是( ) A .6 B .2-C .6-D .2【答案】B【解析】因为三点()0,2A ,()1,0B -,(),2C m -共线,所以(1,2),(1,2)AB BC m =--=+- , 若()0,2A ,()1,0B -,(),2C m -三点共线,则AB 和BC 共线 可得:(1)(2)(2)(1)m --=-+,解得2m =-;故选:B 【变式3-2】与(1,3,2)a =-平行的一个向量的坐标是( )A .1,1,13⎛⎫ ⎪⎝⎭B .13,,122⎛⎫-- ⎪⎝⎭C .13,,122⎛⎫-- ⎪⎝⎭D .3,--【答案】C【解析】若向量b 与向量a 平行,则b a λ=,(1,3,2)a =-,则(,3,2)b λλλ=- 设向量(),,b x y z =,则x 与y 符号相同,y 与z 符号相反,所以可知A ,B ,D 不成立, 选项C :若12λ=-,则12x =-,32y =-,1z =,故C 正确.故选:C.【变式3-3】已知()3,a m →=,()21,1b m →=+,则“1m =”是“//a b →→”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】A【解析】由//a b →→可得()213m m +=,解得32m =-或1m =,所以“1m =”是“//a b →→” 充分不必要条件.故选:A.【变式3-4】已知向量()1,1a =,()2,1b =-,若()()2//a b a b λ+-,则实数λ=( ) A .8 B .8-C .2D .2-【答案】D【解析】由()1,1a =,()2,1b =-,可得()24,2a b λλλ+=+-,()1,2a b -=-, 因为()()2//a b a b λ+-,所以()()()24210λλ+--⨯-=,解得2λ=-.故选:D.课后练习题1.下列各组向量中,可以作为基底的是( ). A .()10,0e =,()21,2e =- B .()11,2e =-,()25,7e = C .()13,5e =,()26,10e = D .()12,3e =-,213,24e ⎛⎫=-⎪⎝⎭ 【答案】B【解析】因为()11,2e =-与()25,7e =不共线,其余选项中1e 、2e 均共线,所以B 选项中的两向量可以作为基底.故选:B2.在平行四边形ABCD 中,点E ,F 分别满足12BE BC =,13DF DC =.若λ=+BD AE μAF ,则实数λ+μ的值为( ) A .15- B .15C .75-D .75【答案】B【解析】由题意,设AB a AD b ,==,则在平行四边形ABCD 中,因为12BE BC =,13DF DC =,所以点E 为BC 的中点,点F 在线段DC 上,且2CF DF =, 所以1123AE a b AF a b =+=+,, 又因为BD AE AF λμ=+,且BD AD AB b a =-=-,所以11112332a b AE AF a b a b a b λμλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫-+=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,3.已知()1,1A ,()1,1B --,则向量AB 为( ) A .()0,0 B .()1,1C .()2,2--D .()2,2【答案】C【解析】由题意可得()()()1,11,12,2AB =---=--.故选:C.所以113112λμλμ⎧+=-⎪⎪⎨⎪+=⎪⎩,解得8595λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以15λμ+=。
平面向量的基本定理各位老师大家好,今天,我说课的内容是:人教B版必修4第二章第二节《平面向量的基本定理》第一课时,我将从教材分析、学生分析、教学方法和手段、教学过程以及教学评价五个方面进行分析一、说教材1.关于教材内容的分析(1)平面向量基本是共线向量基本定理的一个推广,将来还可以推广到空间向量,得到空间向量基本定理,这三个定理可以看成是在一定范围内向量分解的唯一性定理。
所以它是进一步研究向量问题的基础;是解决向量或利用向量解决问题的基本手段。
(2)平面向量基本定理揭示了平面向量的基本关系和基本结构,是进行向量运算的基本工具,它、也为平面向量坐标表示的学习打下基础。
(3)平面向量基本定理蕴涵了一种十分重要的数学思想——转化思想,因此,有着十分广阔的应用空间。
2.关于教学目标的确定根据教学内容的特点,依据新课程标准的具体要求,我从以下三个方面来确定本节课的教学目标。
1、①了解平面向量基本定理及其意义,会做出由一组基地所表示的向量②会把任意向量表示为一组基地的线性组合。
掌握线段中点的向量表达式2、通过对平面向量基本定理的归纳,抽象、概况,体验定理的产生和形成过程,提高学生抽象的能力和概括的能力3、通过对定理的应用增强向量的应用意识,进一步体会向量是处理几何问题的强有力的工具。
3.重点和难点的分析掌握了平面向量基本定理,可以使向量的运算完全代数化,将数与形紧密地结合起来,这样许多几何问题就转化为学生熟知的数量运算,这也是中学数学课中学习向量的目的之一,所以我认为对平面向量基本定理的应用是本节课的重点。
另外对向量基本定理的理解这一点对于初学者来说有一定难度,所以是本节的难点。
突破难点的关键是在充分理解向量的平行四边形法则的和向量共线的充要条件下多方位多角度的设计有关训练题从而加深对定理的理解。
二、说教学方法与教学手段结合新课标“以学生为本”的课堂教学原则和实际情况,确定新课教学模式为:质疑—合作—探究式。
此模式的流程为激发兴趣--发现问题,提出问题--自主探究,解决问题--自主练习,采用多媒体辅助教学,增强数学的直观性,实物投影的使用激发学生的求知欲。
三、说学情分析与学法指导学情分析:前几节课已经学习了向量的基本概念和基本运算,如共线向量、向量的加法、减法和数乘运算及向量共线的充要条件等;另外学生对向量的物理背景有了初步的了解。
如:力的合成与分解、位移、速度的合成与分解等,都为学习这节课作了充分准备。
学法指导:教师平等的参与学生的自主探究活动,通过启发、引导、激励来体现教师的主导作用,根据学生的认知情况和情感发展来调整整个学习活动的梯度和层次,引导学生全员、全过程参与,保证学生的认知水平和情感体验分层次向前推进。
四、关于教学过程设计的分析为了更好的突出教学重点,突破教学难点,完成教学目标,本节课的教学过程的实施我认为可以分为三个阶段也就是六个环节来进行:第一阶段,定理的导入与推导。
第二阶段,定理的应用与例题解析。
第三阶段,学生自我练习六个环节(1)创设情景,提出问题(2)自主探究,解决问题(3)自主练习,应用问题(4)课堂小结(5)作业布置:(6)板书(1)创设情景,复习回顾提出问题关于问题情境的创设我想可以这样来设计这一环节中设置了三个问题 1、向量加法的运算法则2、平行向量基本定理,教学过程中,以提问的方式完成对旧知识的复习巩固,其中平行向量基本定理强调系数惟一确定,说明用一个向量就可以表示平面内任何一个与其平行的向量. 为下一步新课的讲解作铺垫。
3、然后在平面内任意画出一个与其不平行的向量,引导学生思考问能不能只用前一个向量来表示?写成a=xb的形式呢?回答是否定的,.接下来设问:那该如何表示.联系物理当中速度的分解的模型,思考平面内的任意一个向量是否可以由两个不共线的向量来线性表示呢?提出问题同时点题.那么我就可以开展探究活动,然过度到第二节。
设计意图:(1)承上启下复习旧知。
复习向量共线的充要条件、向量加法的平行四边形法则。
(2)定理导入。
创设“最近发展区”,调动学生已有的知识和认知经验。
由平行四边形法则在力的分解中的应用导入向量的分解,从而进入定理的推导。
(2)自主探究,解决问题这一环节,是教学的重点,学生在富有启发性的问题下,自主作图,自主探究,不仅得出了定理,而且思维也得到了发展。
主要采用合作学习的形式利用设置的问题一步一步的启发学生思考,有层次、有启发性的五个问题可以进一步使学生的思维走向深入。
1.学生拿出网格,讨论该如何用e1,e2表示向量AB.CD.EF.GH.2.利用投影仪让学生观察,在平面内任意画出一个向量还能否用这两个向量来表示?表示成什么形式?3.仍利用投影仪在平面内任意画出两个不共线向量,问能否表示平面内的所有向量?4.让学生归纳讨论结果.5.利用几何画板演示,学生会从中观察到系数变化,这说明系数与向量之间应该是什么关系呢?从而将讨论结果进一步完善.设计目的:通过学生动手实践、观察、比较、抽象、概况得出定理,能增强学生的直观感知,让学生体会数学定理的产生以及形成的过程。
让学生体会由特殊到一般的思维方法,发展学生的理性思维能力另外关于平面向量基本定理,在教学中我想还要再引导学生关注定理中的关键字:1、我们把不共线向量e1,e2表示这一平面内所有向量的一组基底。
2、定理中e1,e2是两个不共线向量3、基地给定的前提下,分解式确定,即实数对a1,a2是唯一确定的4、平面内任一两个不共线的向量都可以作为一组基地。
即基底部唯一这一环节的设计意图:对定理的解析有利于对定理的正确把握,基地的不唯一性可让学生通过作图来体会,就是说这已基本的定理对平面内所有向量的研究都可以转化为对基底的研究,它的本质就是化多变量问题为双变量问题,它体现的数学思想就是转化的思想。
那么学习了平面向量基本定理接下来,应该指导学生学以致用。
(3)自主练习,科学应用这一环节主要是为了使学生更好的巩固定理,我们队例题进行剖析首先我通过以学生熟知的足球运动为问题情境来进行训练,可以建立数学与生活的联系,激发学生的学习兴趣,提高学习效率。
思考我们是否可以借助平面向量基本定理对足球运动时的速度进行分解呢?学生探讨之后说明可按水平方向和竖直方向进行分解。
进而过渡例题1,本节课的例1 是对平面向量基本定理的简单应用,同时还用到向量的减法,另外可以用三角形法则作图便于学生的理解在这里我设了两个问题来引导学生思考1、向量MA,MB与哪些向量有关?2、能否用向量a,b来表示向量AC,DB?用什么法则运算的?另外为了促使学生深入理解平面向量基本定理的内涵,同时认识到同一个平面基底不惟一.我将教材中的第一个例题变形为:在图中任选两个向量作为基底来表示其它向量。
(设计意图:通过分步提问,引导学生体会解题思路的形成过程,培养学生独立分析解决问题的能力,通过师生的共同探究让学生进一步体会到向量的基底不唯一,以及任何向量都可以用两个不共线的基底表示的思想)课堂练习:A,1、2设计意图:让学生及时巩固所学方法,为平面向量基本定理应用的基本模式:给定基底如何表示其他向量。
教材中的例2处理如下:第一问作为例题,在师生的共同分析下得出证明,教师示范、板书证明过程.第二问在第一问证明完毕后给出,改为:当P点满足以上向量等式时,证明A、B、P三点共线。
此问由学生独立完成。
两问证明完毕后,提出直线的向量参数方程式和线段中点向量表达式。
(设计意图:用极低表示OP,是例1的延伸,方法比较容易,因此让学生自己完成,而说明点p在L上,是证明A、B、P三点共线是本体的难点,教师要示范,强化应用技巧。
)课堂练习A 5设计目的:巩固所学知识,方法(4)课堂小结:教师引导学生思考,通过本节课的学习,你收获了什么?为什么还要向量基本定理呢?以帮助学生认识到坐标运算中思路明确、过程简洁的优势,同时有利于提高学生对新知识的认识层面。
设计意图:使学生养成归纳总结的习惯,不断提高自己的反思和建构能力(5)作业布置:为尊重学生的个体差异,满足多样化学习的需要,分两部分来布置作业,一部分是课本的习题,要求学生必做;另一部分是思考题,允许学生根据个人情况来完成。
【巩固作业】课本98页练习A第3题;105页练习B第2题。
【创新作业】用向量法证明三角形的中位线平行于第三边且等于第三边的一半(6)板书我说课的最后一部分是板书设计:教学过程中应用多媒体能直观生动的反映问题情境,形象的刻画事物的变化过程,但同时也存在弊端,如教学内容相互覆盖,不易持续保留,而板书恰恰可以弥补这些不足。
本节课的板书分两部分设计,一部分为重要的概念、可以在学生学习的过程中随时提供信息;另一部分为例题的书写,让学生对解题步骤有明确的认识,有利于课后顺利的完成作业。
五、教学体会本节课通过物理学中速度的分析引导学生类比才想到向量的分解教学,亲历概念的形成过程,模式的构建过程使学生在以下几个方面有较大的收获和启发:1.通过对平面向量基本定理的教学与分析,使学生对向量的工具性实质有了更深刻的理解,较好的调动了学生的积极性和主动性;2.学生的思维得到了有效的训练和提高。
在富有启发性的问题下,学生通过积极的思考,完成了对定理的自主探究,尤其在应用练习后,学生的思维又得到了进一步的提升。
平面向量的基本定理是向量正交分解的理论基础,用这基本定理可以容易的解决与向量有关的问题,现在课标中对向量的基本定理由理解变为了解,那么,我的体会是了解更适应数学基础课的要求,能适应所有学生的要求。
另外我觉得在教学中可以先给学生讲解正交分解,然后再将平面向量基本定理,这样处理时遵循从特殊到一般的研究规律3另外.本节教学采用“三主”的教学方法(“三主教学法”:教师主导、学生主体、思维主线)始终坚持以学生为主体,坚持探索、发现、反思的教学策略,引发了生动的、积极性的教学活动和和谐的课堂氛围;。