七年级数学下册6.1平方根(第1课时)教案(新版)新人教版【精品教案】
- 格式:doc
- 大小:246.01 KB
- 文档页数:2
6.1 平方根(第1课时)教学目标1.了解算术平方根、平方根的概念,会用根号表示数的算术平方根、平方根.2.了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根.3.能用有理数估计一个无理数(平方根)的大致范围.教学重点平方根和算术平方根的概念.教学难点平方根和算术平方根的概念.教学内容一、情境导入学校要举行美术作品比赛,小欧想裁出一块面积为 25 dm2 的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?如果这块画布的面积是16 dm2,这个问题实际上是已知一个正数的平方,求这个正数的问题?这就要用到平方根的概念,也就是本章的主要学习内容.这节课我们先学习有关算术平方根的概念.二、新课教学学生思考后回答:边长应该取5 dm.教师:你是怎样算出画框的边长应取5 dm呢?(学生思考并交流解法)明确:这个问题相当于在等式x=25中求出正数x的值.一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.a的算术平方根记为a,读作“根号a”,a叫做被开方数.规定:0的算术平方根是0.也就是,在等式x 2=a (x ≥0)中,规定x =a . 2. 试一试:你能根据等式122=124说出124的算术平方根是多少吗?并用等式表示出来. 注意:求值时,要按照算术平方根的意义,写出应该满足的关系式,然后按照算术平方根的记法写出对应的值.例如25表示25的算术平方根.三、实例演练 例1 求下列各数的算术平方根:(1)100; (2)6449; (3)0.000 1. 解:(1)因为102=100,所以100的算术平方根是10,即100=10;(2)因为287⎪⎭⎫ ⎝⎛=6449,所以6449的算术方根是87,即876449=; (3)因为0.012=0.000 1,所以0.000 1的算术平方根是 0.01,即0001.0=0.01. 四、探究能否用两个面积为1 dm 2 的小正方形拼成一个面积为 2 dm 2的大正方形?如上图,把两个小正方形分别沿对角线剪开,将所得的4个直角三角形拼在一起,就得到一个面积为2 dm 2的大正方形.教师:同学们说得很好,还有其他的方法吗?(鼓励学生探究)学生思考,可以采用下列方法:把两个小正方形中的一个沿对角线剪成4部分,然后和另一个小正方形拼在一起,如下图.教师:说得好,你知道这个大正方形的边长是多少吗?设大正方形的边长为 x dm ,则x2=2. 由算术平方根的意义可知x=2,所以大正方形的边长是2dm.五、课堂小结1.这节课学习了什么呢?2.算术平方根的具体意义是怎么样的?3.怎样求一个正数的算术平方根六、布置作业教材P47习题6.1第1、2、3题.教学反思:。
6.1平方根(第1课时)教学目标1.了解算术平方根的概念,会用根号表示正数的算术平方根,并了解算术平方根的非负性;2.了解开方与乘方互为逆运算,会求某些非负数的算术平方根,能化简某些带根号的数,掌握计算根式范围的方法;3.通过学习算术平方根,提升学生的数感和符号感,发展抽象思维;4.通过解决实际生活中的问题,让学生体会数学与生活是紧密联系的.教学重点表示正数的算数平方根教学难点√2多大探究教学过程一、情景引入讲述数学史第一次数学危机:的出现,却在当时的数学界掀起了一场巨大风暴。
它直接动摇了毕达哥拉斯学派的数学信仰,使毕达哥拉斯学派为之大为恐慌。
实际上,这一伟大发现不但是对毕达哥拉斯学派的致命打击。
对于当时所有古希腊人的观念这都是一个极大的冲击。
这一结论的悖论性表现在它与常识的冲突上:任何量,在任何精确度的范围内都可以表示成有理数。
这不但在希腊当时是人们普遍接受的信仰,就是在今天,测量技术已经高度发展时,这个断言也毫无例外是正确的!可是为我们的经验所确信的,完全符合常识的论断居然被的存在而推翻了!这应该是多么违反常识,多么荒谬的事!它简直把以前所知道的事情根本推翻了。
更糟糕的是,面对这一荒谬人们竟然毫无办法。
这就在当时直接导致了人们认识上的危机,从而导致了西方数学史上一场大的风波,史称“第一次数学危机”。
二、新知探究活动一:算数平方根探究:问题1:学校要举行美术作品比赛,你想裁出一块面积为25 dm2的正方形画布,画上自己的得意之作参加比赛,这块正方形画布的边长应取多少?说一说,你是怎样算出来的?因为52=25,所以这个正方形画布的边长应取5 dm.问题2:完成表1:正方形的边长/dm 1 3 9 2 3正方形的面积/dm²1 9 81 49思考:你能从表1发现什么共同点吗?已知一个正数,求这个正数的平方,这是平方运算问题3:完成表2:正方形的面积/dm² 4 49 0.36964正方形的边长/dm 2 7 0.6 3 8思考:你能从表2发现什么共同点吗?表1与表2中两种运算有什么关系?已知一个正数的平方,求这个正数;互为逆运算归纳:一般地,如果一个正数x的平方等于a,即x²=a,那么这个正数x叫做a 的算术平方根。
(人教版)七年级下册数学配套教学设计:6.1 第1课时《算术平方根》一. 教材分析人教版七年级下册数学第6.1节《算术平方根》是学生在学习了有理数、整式乘法等基础知识后的拓展内容。
本节内容主要介绍算术平方根的定义、性质及求法,旨在让学生理解并掌握算术平方根的概念,能够熟练运用算术平方根解决实际问题。
教材通过例题和练习题的形式,帮助学生巩固知识,提高解题能力。
二. 学情分析学生在学习本节内容前,已经掌握了有理数、整式乘法等基础知识,具备一定的数学思维能力。
但部分学生对平方根的概念可能还较为模糊,需要通过实例和练习来加深理解。
此外,学生可能对算术平方根的求法存在困惑,需要教师进行耐心讲解和引导。
三. 教学目标1.理解算术平方根的定义和性质;2.学会求一个数的算术平方根;3.能够运用算术平方根解决实际问题;4.培养学生的数学思维能力和运算能力。
四. 教学重难点1.算术平方根的定义和性质;2.求一个数的算术平方根的方法;3.运用算术平方根解决实际问题。
五. 教学方法1.采用讲授法,讲解算术平方根的定义、性质和求法;2.运用示例法,展示求算术平方根的过程和应用;3.采用练习法,让学生通过练习题巩固所学知识;4.运用讨论法,引导学生探讨算术平方根在实际问题中的应用。
六. 教学准备1.准备PPT,展示算术平方根的相关概念和例题;2.准备练习题,巩固学生的学习效果;3.准备黑板,用于板书解题过程和重点知识。
七. 教学过程1.导入(5分钟)利用PPT展示平方根的概念,引导学生回顾已学知识。
然后提问:“平方根的概念是什么?它有什么性质?”学生回答后,教师总结并引入算术平方根的概念。
2.呈现(10分钟)教师讲解算术平方根的定义和性质,示例求一个数的算术平方根。
过程中,引导学生关注算术平方根的求法,并提问:“求一个数的算术平方根需要注意什么?如何操作?”学生回答后,教师总结并强调要点。
3.操练(10分钟)学生独立完成练习题,教师巡回指导。
6.1 平方根第1课时 算术平方根1.了解算术平方根的概念,会用根号表示一个数的算术平方根; 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)一、情境导入在我校举行的绘画比赛中,欢欢同学准备了一些正方形的画布,若知道画布的边长,你能计算出它们的面表 一 正方形的边长 1 2 0.5 23 正方形的面积140.2549表一:已知一个正数,求这个正数的平方.表 二 正方形的面积 1 4 0.36 49 正方形的边长120.67表二:已知一个正数的平方,求这个正数. 表一和表二中的两种运算有什么关系? 二、合作探究探究点一:算术平方根的概念【类型一】 求一个数的算术平方根求下列各数的算术平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可. 解:(1)∵82=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32;(3)∵0.62=0.36,∴0.36的算术平方根是0.6;(4)∵412-402=81,又∵92=81,∴81=9.而32=9,∴412-402的算术平方根是3.方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑;(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用.【类型二】 利用算术平方根的定义求值3+a 的算术平方根是5,求a 的值.解析:先根据算术平方根的定义,求出3+a 的值,再求a .解:因为52=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题. 探究点二:算术平方根的性质【类型一】含算术平方根式子的运算计算:49+9+16-225.解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.方法总结:解题时容易出现如9+16=9+16的错误. 【类型二】 算术平方根的非负性已知x ,y 为有理数,且x -13(y -2)2=0,求x -y 的值.解析:算术平方根和完全平方都具有非负性,即a ≥0,a 2≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1. 方法总结:算术平方根、绝对值和完全平方都具有非负性,即a ≥0,|a |≥0,a 2≥0,当几个非负数的和为0时,各数均为0.三、板书设计算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作a 性质:双重非负性⎩⎨⎧a ≥0a ≥0让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化。
人教版七年级下册:6.1 平方根第1课时算术平方根教学设计一、教学背景分析本节课是七年级数学教材下册的第一课时,主要内容为算术平方根。
学生在前几章已经学习了平方和平方根的概念,本节课将进一步扩展学生对平方根的认识。
通过这节课的学习,学生将能够理解算术平方根的概念和计算方法,并能够运用所学知识解决实际问题。
二、教学目标1. 知识目标•掌握算术平方根的概念和计算方法;•了解平方根的性质。
2. 能力目标•能够正确计算给定数的算术平方根;•能够应用所学知识解决相关问题。
3. 情感目标•培养学生对数学的兴趣和好奇心;•提高学生解决问题的能力和自信心。
三、教学重点和难点1. 教学重点•算术平方根的概念和计算方法。
2. 教学难点•理解平方根的性质,并能够运用所学知识解决实际问题。
四、教学过程设计1. 导入与引入通过提问的方式,复习平方和平方根的概念,并与学生探讨平方根与平方的关系。
示例问题:•什么是平方?什么是平方根?•如何表示一个数的平方?如何表示一个数的平方根?•平方根与平方有什么关系?2. 概念讲解通过示例和图表的方式,向学生介绍算术平方根的概念,并讲解算术平方根的计算方法。
示例:•什么是算术平方根?•如何计算一个数的算术平方根?3. 计算练习设计一些简单的计算练习题,让学生通过计算来巩固所学的算术平方根的计算方法。
示例题目:1.计算下列数的算术平方根:a)4b)9c)162.根据给定的算术平方根,求出对应的数:a)√9 = ?b)√16 = ?c)√25 = ?4. 拓展应用设计一些拓展应用题,让学生能够运用所学知识解决实际问题。
示例题目:1.在一个正方形花坛中,一棵树的根部到花坛的边缘的距离为3米。
试问这棵树离花坛的中心有多远?2.小明和小华分别种植了一块土地,小明种植的土地面积是小华种植的土地面积的4倍。
如果小明种植的土地面积是36平方米,那么小华种植的土地面积是多少?5. 总结与展望让学生总结本节课所学的知识点,并展望下节课的内容。
人教版数学七年级下册《6-1平方根第1课时》教学设计一. 教材分析人教版数学七年级下册《6-1平方根》是学生在学习算术平方根的基础上,进一步研究平方根的定义、性质及运算方法。
本节课主要让学生掌握平方根的定义,了解平方根的性质,学会求一个数的平方根,并能解决一些相关的实际问题。
二. 学情分析学生在之前的学习中已经掌握了算术平方根的概念,具备了一定的数学运算能力。
但对于平方根的定义、性质及运算方法可能还比较模糊,需要通过本节课的学习进一步理解和掌握。
三. 教学目标1.理解平方根的定义,掌握平方根的性质。
2.学会求一个数的平方根,并能解决一些相关的实际问题。
3.培养学生的数学运算能力,提高学生解决实际问题的能力。
四. 教学重难点1.平方根的定义及性质。
2.求一个数的平方根的方法。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学思维能力。
六. 教学准备1.PPT课件2.相关练习题及实际问题3.教学视频或案例七. 教学过程1.导入(5分钟)利用PPT课件展示一些生活中的实际问题,如物体表面的面积、温度变化等,引导学生思考这些实际问题与平方根的关系,激发学生的学习兴趣。
2.呈现(10分钟)介绍平方根的定义及性质,通过PPT课件及数学例题进行讲解,让学生直观地理解平方根的概念。
3.操练(10分钟)让学生分组讨论,尝试求解一些数的平方根,并总结求解方法。
教师在这个过程中给予适当的引导和指导,帮助学生掌握求解平方根的方法。
4.巩固(10分钟)出示一些练习题,让学生独立完成,检验学生对平方根定义和求解方法的掌握程度。
教师及时给予反馈和讲解,加深学生对知识点的理解。
5.拓展(10分钟)出示一些实际问题,如探究物体表面的面积、温度变化等,让学生运用所学知识解决。
引导学生将所学知识运用到实际生活中,提高学生的解决问题的能力。
6.小结(5分钟)对本节课的主要内容进行总结,强调平方根的定义和性质,让学生明确本节课的学习重点。
6.1 平方根
6.1 算术平方根(第一课时)
会用平方运算求某些非负数的算术平方根;
通过对实际生活中问题的解决,让学生体验数学与生活实际是紧密联系着的,
二宇宙速度:
呢?这就要用这节课我们先学习有关算术平方根的概念.征程上又迈出具有重大历史意义的
的计算实际上是已知幂和乘
练习:教
就是已知正方形的面积求正方形的
已知正方形的边长求它的面积的过
会这种互逆的过程,为后面的学叫做a的算术平方根.
思考:这里的数
们的值吗?
(4)0.
=
的思考过程.在开始阶段,宜让学生适当模仿,熟练后可以直接写
:
的大小.
、算术平方根的具体意义是
布置作业的算术平方根是
0.1
本节的第一个
的是这些完全平
的学习热情,所以章前图的学习不要省略.特别地应提醒学生这里求速度的问题实际上是已知幂和乘
能从根号很自然地联想到算术平方根的意义(应满足的一个等式)这是学好平方根概念的基本保证,
通过对两个小正方形拼成一个大正方形的探究活动,一方面是培养学生的动手能力和思维能力,调动学生的学习积极性,另一方面是使学生理解引人算术平方根符号的必要性,明确有些正数的算术。
6.1平方根教学设计(第1课时)一、 学习目标1. 经历算术平方根概念的形成过程,了解算术平方根的概念2. 会求某些正数(完全平方数)的算术平方根并会用符号表示 二、 重点和难点1. 重点:算术平方根的概念.2. 难点:算术平方根的概念. 三、 自主学习:活动1 学校要举行美术作品比赛,小鸥想裁出一块面积为 25平方分米的正方形画布, 画上自己的得意之作参加比赛,这块正方形画布的边长应取多少分米? (一) 说这块正方形画布的边长应取多少分米?你是怎么算出来的?答:这个实例中的问题、 填表中的问题实际上是一个问题, 什么问题?它们都是已知正方形面积求边长的问题.通过解决这个问题,我们就有了算术平方根的概念如果一个正数的平方等于 a ,那么这个正数叫做 a 的算术平方根.为了书写方便,我们 把a 的算术平方根记作 .a (板书:a 的算术平方根记作 a ).根号上图这根钓鱼杆似的符号叫做根号,a 叫做被开方数,a 表示a 的算术平方根.活动2 例1求下列各数的算术平方根:(要注意解题格式,解题格式要与课本上的相同)(1)100 ;49 (2); (3)0.0001.64活动3 练习1、求下列各式的值:(1) 1 =;(4) : 9 =; (6)、32 =.(5)Jo.01 =2、填空:(1) _______ 因为 ________________________________ 2=64,所以64的算术平方根是 ,即J64 = ;(2)_______ 因为____________________________________ 2=0.25,所以0.25的算术平方根是,即J0.25 = ______________________________________活动4 合作探究;1被开方数的大小与对应的算术平方根的大小之间有什么关系呢?2、-4有算术平方根吗?什么数才有算术平方根?(认真阅读课本) 活动5 例2:下列各式是否有意义,为什么?活动6当堂检测: 1判断题1的算术平方根是土 1 (2 2是 - 5 的算术平方根③一个正数的算术平方根总小于它本身( )④.-64的算平方根是8.(2填空①正数的算术平方根是 数,0的算术平方根是,算术平方根等于它本身的数是② -42的算术平方根是③1 的算术平方根的相反数的绝对值是49六、小结(1)什么是算术平方根? 如何求一个正数的算术平方根?(2)什么数才有算术平方根? 七、作业教科书41页练习第1、2题⑶因为2=16,所以16的算术平方根是4949(1) . -4;( 2)- ,4 ;( 3) . 一 32。
人教版数学七年级下册第16课时《6.1平方根(第1课时)》教学设计一. 教材分析《6.1平方根(第1课时)》是人教版数学七年级下册的教学内容。
本节课主要介绍平方根的概念、性质和求法。
通过本节课的学习,学生能够理解平方根的定义,掌握求一个数的平方根的方法,并能够应用平方根解决实际问题。
教材中安排了丰富的例题和练习题,以便学生能够充分理解和掌握平方根的相关知识。
二. 学情分析学生在七年级上册已经学习了有理数、乘法、除法等基础知识,对数学运算有一定的掌握。
但平方根的概念和性质较为抽象,学生可能难以理解。
因此,在教学过程中,需要结合学生的实际情况,采用生动形象的比喻和例子,帮助学生理解和掌握平方根的相关知识。
三. 教学目标1.理解平方根的概念,掌握求一个数的平方根的方法。
2.能够应用平方根解决实际问题。
3.培养学生的逻辑思维能力和运算能力。
四. 教学重难点1.平方根的概念和性质。
2.求一个数的平方根的方法。
五. 教学方法1.采用问题驱动法,引导学生主动探索和思考。
2.利用多媒体课件,生动形象地展示平方根的概念和性质。
3.通过例题和练习题,让学生动手实践,巩固所学知识。
4.采用小组讨论法,培养学生的合作意识和沟通能力。
六. 教学准备1.多媒体课件。
2.练习题和测试题。
3.学生分组名单。
七. 教学过程1.导入(5分钟)利用多媒体课件,展示一些生活中的实例,如气温的变化、物体运动的距离等,引导学生思考这些实例与平方根的关系。
然后提出问题:“你们听说过平方根吗?平方根是什么概念?”让学生回顾已学的知识,为新课的学习做好铺垫。
2.呈现(15分钟)介绍平方根的定义和性质,通过PPT展示平方根的示意图,让学生直观地感受平方根的概念。
同时,讲解平方根的求法,如求一个正整数的平方根,可以通过开平方的方法得到。
呈现一些例题,让学生跟随讲解的过程,理解并掌握平方根的求法。
3.操练(10分钟)根据呈现的内容,让学生动手实践,解决一些具体的平方根问题。
平方根
第1课时 算术平方根
1.了解算术平方根的概念,会用根号表示一个数的算术平方根; 2.根据算术平方根的概念求出非负数的算术平方根;(重点) 3.了解算术平方根的性质.(难点)
一、情境导入
在我校举行的绘画比赛中,欢欢同学准备了一些正方形的画布,若知道画布的边长,你能计3
表二:已知一个正数的平方,求这个正数. 表一和表二中的两种运算有什么关系? 二、合作探究
探究点一:算术平方根的概念
【类型一】 求一个数的算术平方根
求下列各数的算术平方根:
(1)64;(2)214
;(3)0.36;(4)412-402
.
解析:根据算术平方根的定义求非负数的算术平方根,只要找到一个非负数的平方等于这个非负数即可.
解:(1)∵82
=64,∴64的算术平方根是8; (2)∵(32)2=94=214,∴214的算术平方根是32;
(3)∵0.62
=0.36,∴0.36的算术平方根是0.6;
(4)∵412
-402
=81,又∵92
=81,∴81=9.而32
=9,∴412
-402
的算术平方根是3.
方法总结:(1)求一个数的算术平方根时,首先要弄清是求哪个数的算术平方根,分清求81与81的算术平方根的不同意义,不要被表面现象迷惑;(2)求一个非负数的算术平方根常借助平方运算,因此熟记常用平方数对求一个数的算术平方根十分有用. 变式训练:见《学练优》本课时练习“课堂达标训练”第7题 【类型二】 利用算术平方根的定义求值
3+a 的算术平方根是5,求a 的值.
解析:先根据算术平方根的定义,求出3+a 的值,再求a .
解:因为52
=25,所以25的算术平方根是5,即3+a =25,所以a =22. 方法总结:已知一个数的算术平方根,可以根据平方运算来解题. 变式训练:见《学练优》本课时练习“课后巩固提升”第10题 探究点二:算术平方根的性质
【类型一】
解析:首先根据算术平方根的定义进行开方运算,再进行加减运算. 解:49+9+16-225=7+5-15=-3.
方法总结:解题时容易出现如9+16=9+16的错误. 变式训练:见《学练优》本课时练习“课堂巩固提升”第8题 【类型二】
已知x 3(y -2)2
=0,求x -y 的值.
解析:算术平方根和完全平方都具有非负性,即a ≥0,a 2
≥0,由几个非负数相加和为0,可得每一个非负数都为0,由此可求出x 和y 的值,进而求得答案.
解:由题意可得x -1=0,y -2=0,所以x =1,y =2.所以x -y =1-2=-1.
方法总结:算术平方根、绝对值和完全平方都具有非负性,即a ≥0,|a |≥0,a 2
≥0,当几个非负数的和为0时,各数均为0.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题 三、板书设计
算术平方根⎩⎨⎧概念:非负数a 的算术平方根记作
a
性质:双重非负性⎩⎨⎧a ≥0
a ≥0
让学生正确、深刻地理解算术平方根的概念,需要由浅入深、不断深化.概念的形成
过程也是思维过程,加强概念形成过程的教学,对提高学生的思维水平是很有帮助的.概念教学过程中要做到:讲清概念,加强训练,逐步深化。