九年级数学反比例函数的图象与性质同步练习1
- 格式:doc
- 大小:334.00 KB
- 文档页数:4
人教版九年级数学中考反比例函数专项练习命题点1 图象与性质1.一台印刷机每年可印刷的书本数量 y(万册)与它的使用时间x(年)成反比例关系,当x =2时,y =20.则y 与x 的函数图象大致是(C)A B C D2.反比例函数y =mx 的图象如图所示,以下结论:①常数m <-1;②在每个象限内,y 随x的增大而增大;③若A(-1,h),B(2,k)在图象上,则h <k ;④若P(x ,y)在图象上,则P ′(-x ,-y)也在图象上.其中正确的是(C)A .①②B .②③C .③④D .①④3.如图,函数y =⎩⎪⎨⎪⎧1x (x >0),-1x (x <0)的图象所在坐标系的原点是(A)A .点MB .点NC .点PD .点Q4.定义新运算:a ⊕b =⎩⎪⎨⎪⎧ab(b >0),-ab(b <0). 例如:4⊕5=45,4⊕(-5)=45.则函数y =2⊕x(x≠0)的图象大致是(D)A B C D5.如图,若抛物线y =-x2+3与x 轴围成的封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k ,则反比例函数y =kx(x >0)的图象是(D)A B CD命题点2 反比例函数、一次函数与几何图形综合6.如图,四边形ABCD 是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y =mx (x>0)的图象经过点D ,点P 是一次函数y =kx +3-3k(k ≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算说明一次函数y =kx +3-3k(k ≠0)的图象一定经过点C ;(3)对于一次函数y =kx +3-3k(k ≠0),当y 随x 的增大而增大时,确定点P 横坐标的取值范围.(不必写出过程)解:(1)∵B(3,1),C(3,3),四边形ABCD 是平行四边形, ∴AD =BC =2,AD ∥BC ,BC ⊥x 轴.∴AD ⊥x 轴. 又∵A(1,0),∴D(1,2).∵点D 在反比例函数y =mx 的图象上,∴m =1×2=2.∴反比例函数的解析式为y =2x .(2)当x =3时,y =kx +3-3k =3,∴一次函数y =kx +3-3k(k ≠0)的图象一定过点C. (3)设点P 的横坐标为a ,则23<a <3.命题点3 反比例函数的实际应用(8年2考)7.(2019·杭州)方方驾驶小汽车匀速地从A 地行驶到B 地,行驶里程为480千米,设小汽车的行驶时间为t(单位:小时),行驶速度为v(单位:千米/小时),且全程速度限定为不超过120千米/小时.(1)求v 关于t 的函数解析式;(2)方方上午8点驾驶小汽车从A 地出发.①方方需在当天12点48分至14点(含12点48分和14点)间到达B 地,求小汽车行驶速度v 的范围;②方方能否在当天11点30分前到达B 地?说明理由.解:(1)∵vt =480,且全程速度限定为不超过120千米/小时,∴v 关于t 的函数解析式为v =480t(t ≥4).(2)①8点至12点48分时间长为245小时,8点至14点时间长为6小时.将t =6代入v =480t ,得v =80;将t =245代入v =480t,得v =100.∴小汽车行驶速度v 的范围为80≤v ≤100.②方方不能在当天11点30分前到达B 地.理由如下:8点至11点30分时间长为72小时,将t =72代入v =480t ,得v =9607.∵9607>120,超速了. 故方方不能在当天11点30分前到达B 地.基础训练1.(2019·柳州)反比例函数y =2x的图象位于(A)A .第一、三象限B .第二、三象限C .第一、二象限D .第二、四象限2.(2019·哈尔滨)点(-1,4)在反比例函数y =kx 的图象上,则下列各点在此函数图象上的是(A)A .(4,-1)B .(-14,1)C .(-4,-1)D .(14,2)3.(2019·邢台模拟)已知甲圆柱型容器的底面积为30 cm 2,高为8 cm ,乙圆柱型容器底面积为x cm 2.若将甲容器装满水,全部倒入乙容器中(乙容器没有水溢出),则乙容器水面高度y(cm)与x(cm 2)之间的大致图象是(C)A B C D4.(2019·唐山乐亭县模拟)若点(x 1,y 1),(x 2,y 2)都是反比例函数y =-6x 图象上的点,并且y 1<0<y 2,则下列结论中正确的是(A)A .x 1>x 2B .x 1<x 2C .y 随x 的增大而减小D .两点有可能在同一象限5.(2019·唐山滦南县一模)如图,正比例函数y =x 与反比例函数y =4x 的图象交于A ,B 两点,其中A(2,2),当y =x 的函数值大于y =4x的函数值时,x 的取值范围为(D)A .x >2B .x <-2C .-2<x <0或0<x <2D .-2<x <0或x >26.(2019·石家庄模拟)已知反比例函数y =kx 的图象过第二、四象限,则一次函数y =kx +k的图象大致是(B)A B C D7.(2019·唐山路北区模拟)已知点P(m ,n)是反比例函数y =-3x 图象上一点,当-3≤n <-1时,m 的取值范围是(A)A .1≤m <3B .-3≤m <-1C .1<m ≤3D .-3<m ≤-18.(原创)(2017·河北T15变式)将九年级某班40名学生的数学测试成绩分为5组,第1~4组的频率分别为0.3,0.25,0.15,0.2,第5组的频数记为k ,则反比例y =kx (x >0)的图象是(D)A B C D9.(原创)(2019·河北T12变式)如图,函数y =⎩⎪⎨⎪⎧m x (x >0),-m x (x<0)的图象如图所示,以下结论:①常数m >0;②在每个象限内,y 随x 增大而减小;③若点A(-2,a),B(3,b)在图象上,则a <b ;④若P(x ,y)在图象上,则P ′(-x ,y)也在图象上,其中正确的是(D)A .①②B .②③C .③④D .①④10.(2019·兰州)如图,矩形OABC 的顶点B 在反比例函数y =kx (x >0)的图象上,S矩形OABC=6,则k =6.11.(2019·北京)在平面直角坐标系xOy 中,点A(a ,b)(a >0,b >0)在双曲线y =k 1x 上,点A 关于x 轴的对称点B 在双曲线y =k 2x,则k 1+k 2的值为0.12.(2019·盐城)如图,一次函数y =x +1的图象交y 轴于点A ,与反比例函数y =kx (x >0)的图象交于点B(m ,2).(1)求反比例函数的解析式; (2)求△AOB 的面积.解:(1)∵点B(m ,2)在直线y =x +1上, ∴2=m +1,解得m =1. ∴点B 的坐标为(1,2).∵点B(1,2)在反比例函数y =kx (x >0)的图象上,∴2=k1,解得k =2.∴反比例函数的解析式是y =2x.(2)将x =0代入y =x +1,得y =1,则点A 的坐标为(0,1). ∵点B 的坐标为(1,2), ∴△AOB 的面积为12×1×1=12.能力提升13.(2019·石家庄新华区模拟)如图,在平面直角坐标系中,点A(0,2),点P 是双曲线y =kx (x >0)上的一个动点,作PB ⊥x 轴于点B ,当点P 的横坐标逐渐减小时,四边形OAPB 的面积将会(C)A .逐渐增大B .不变C .逐渐减小D .先减小后增大14.(2019·陕西)如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0).若一个反比例函数的图象经过点D ,交AC 于点M ,则点M 的坐标为(32,4).16.(2019·秦皇岛海港区模拟)如图,在平面直角坐标系中,▱ABCD 的顶点A(1,b),B(3,b),D(2,b +1).(1)点C 的坐标是(4,b +1)(用b 表示);(2)双曲线y =kx 过▱ABCD 的顶点B 和D ,求该双曲线的解析式;(3)如果▱ABCD 与双曲线y =4x(x >0)总有公共点,求b 的取值范围.解:(2)∵双曲线y =kx 过▱ABCD 的顶点B(3,b)和D(2,b +1),∴3b =2(b +1),解得b =2,即B(3,2),D(2,3). 则该双曲线解析式为y =6x .(3)将A(1,b)代入y =4x,得b =4;将C(4,b +1)代入y =4x,得b +1=1,即b =0.则▱ABCD 与双曲线y =4x(x >0)总有公共点时,b 的取值范围为0≤b ≤4.17.如图为某公园“水上滑梯”的侧面图,其中BC 段可看成是一段双曲线,建立如图的直角坐标系后,其中,矩形AOEB 为向上攀爬的梯子,OA =5米,进口AB ∥OD ,且AB =2米,出口C 点距水面的距离CD 为1米,则B ,C 之间的水平距离DE 的长度为(D)A .5米B .6米C .7米D .8米18.(1)探究新知:如图1,已知△ABC 与△ABD 的面积相等,试判断AB 与CD 的位置关系,并说明理由.(2)结论应用:①如图2,点M ,N 在反比例函数y =kx (x >0)的图象上,过点M 作ME ⊥y 轴,过点N 作NF ⊥x 轴,垂足分别为E ,F ,试证明:MN ∥EF ;②若①中的其他条件不变,只改变点M ,N 的位置,如图3所示,请判断MN 与EF 是否平行?解:(1)AB ∥CD.理由:过点C 作CG ⊥AB 于点G ,过点D 作DH ⊥AB 于点H , ∴∠CGA =∠DHB =90°.∴CG ∥DH. ∵△ABC 和△ABD 的面积相等, ∴CG =DH.∴四边形CGHD 是矩形.∴AB ∥CD.(2)①证明:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2),∵点M ,N 在反比例函数y =kx (x >0)的图象上,∴x 1y 1=k ,x 2y 2=k. ∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =x 2,NF =y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12x 2y 2=12k.∴S △EFM =S △EFN ,由(1)中的结论可知,MN ∥EF.②MN ∥EF ,理由:连接MF ,NE ,设M(x 1,y 1),N(x 2,y 2). ∵M ,N 在反比例函数y =kx (k >0)的图象上,∴x 1y 1=k ,x 2y 2=k.∵ME ⊥y 轴,NF ⊥x 轴,∴EM =x 1,OE =y 1,OF =-x 2,NF =-y 2. ∴S △EFM =12x 1·y 1=12k ,S △EFN =12(-x 2)(-y 2)=12k.∴S △EFM =S △EFN .由(1)中的结论可知,MN ∥EF.反比例函数中的面积问题1.(2019·枣庄)如图,在平面直角坐标系中,等腰Rt △ABC 的顶点A ,B 分别在x 轴、y 轴的正半轴上,∠ABC =90°,CA ⊥x 轴,点C 在函数y =kx (x >0)的图象上.若AB =1,则k的值为(A)A .1 B.22C. 2 D .22.如图,A ,B 两点在双曲线y =4x(x >0)上,分别经过A ,B 两点向x 轴作垂线段,已知S阴影=1,则S 1+S 2=(D)A .3B .4C .5D .63.(2019·黄冈)如图,一直线经过原点O ,且与反比例函数y =kx (k>0)相交于点A ,B ,过点A 作AC ⊥y 轴,垂足为C ,连接BC.若△ABC 面积为8,则k =8.4.如图,A ,B 是反比例函数y =2x 的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则(B)A .S =2B .S =4C .2<S <4D .S >45.(2019·郴州)如图,点A ,C 分别是正比例函数y =x 与反比例函数y =4x 的图象的交点,过A 点作AD ⊥x 轴于点D ,过C 点作CB ⊥x 轴于点B ,则四边形ABCD 的面积为8.6.如图,AB 是反比例函数y =3x 在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是1和3,则S △AOB =4.7.(2019·鸡西)如图,在平面直角坐标系中,点O 为坐标原点,▱OABC 的顶点A 在反比例函数y =1x (x >0)的图象上,顶点B 在反比例函数y =5x (x >0)的图象上,点C 在x 轴的正半轴上,则▱OABC 的面积是(C)A.32B.52C .4D .68.如图,在平面直角坐标系中,点A 是x 轴上任意一点,BC 平行于x 轴,分别交反比例函数y =3x (x >0),y =kx(x <0)的图象于B ,C 两点.若△ABC 的面积为2,则k 的值为-1.9.(2019·株洲)如图所示,在平面直角坐标系xOy 中,点A ,B ,C 为反比例函数y =k x (k >0)图象上不同的三点,连接OA ,OB ,OC ,过点A 作AD ⊥y 轴于点D ,过点B ,C 分别作BE ,CF 垂直x 轴于点E ,F ,OC 与BE 相交于点M ,记△AOD ,△BOM ,四边形CMEF 的面积分别为S 1,S 2,S 3,则(B)A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 2310.(2019·本溪)如图,在平面直角坐标系中,等边△OAB 的边OA 和菱形OCDE 的边OE 都在x 轴上,点C 在OB 边上,S △ABD =3,反比例函数y =kx (x >0)的图象经过点B ,则k 的值为3.。
2021-2022学年湘教版九年级数学上册《1.2反比例函数的图象与性质》能力提升专题训练(附答案)1.函数y=的图象大致是()A.B.C.D.2.已知反比例函数的解析式为y=,且图象位于第一、三象限,则a的取值范围是()A.a=1B.a≠1C.a>1D.a<13.若反比例函数y=(k≠0)的图象经过点(2,3),则该图象必经过点()A.(1,6)B.(﹣2,3)C.(2,﹣3)D.(﹣6,1)4.若点A(﹣3,y1),B(﹣1,y2),C(2,y3)都在反比例函数y=(k<0)的图象上,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y2<y1<y3C.y1<y2<y3D.y3<y2<y15.对于反比例函数y=﹣,下列说法正确的是()A.图象经过点(﹣2,﹣1)B.若点P(﹣2,y1)和点Q(6,y2)在该图象上,则y1<y2C.其图象既是轴对称图形又是中心对称图形D.y随x的增大而增大6.如图,矩形ABCD的中心位于直角坐标系的坐标原点O,其面积为8,反比例函数y=的图象经过点D,则m的值为()A.2B.4C.6D.87.如图,在△AOB中,S△AOB=2,AB∥x轴,点A在反比例函数y=的图象上,若点B 在反比例函数y=的图象上,则k的值为()A.﹣B.C.3D.﹣38.如图,A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,若S阴影=1.5,则S1+S2=()A.4B.5C.6D.79.如图,正比例函数y1=k1x(k1<0)的图象与反比例函数y2=(k2<0)的图象相交于A,B两点,点B的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2B.﹣2<x<0或x>2C.x<﹣2或0<x<2D.﹣2<x<0或0<x<210.如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.11.如图是三个反比例函数的图象的分支,其中k1,k2,k3的大小关系是.12.如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数y =(x<0)的图象经过点E,与AB交于点F,连接AE,若AF﹣AE=2,则k的值为.13.如图,在平面直角坐标系中,△ABC的边BC⊥y轴于点D,点B在双曲线y=(x<0)上,点C在双曲线y=(x>0)上,若△ABC的面积为9,OD=2AO,则k=.14.在平面直角坐标系中,A为反比例函数y=﹣(x>0)图象上一点,点B的坐标为(4,0),O为坐标原点,若△AOB的面积为6,则点A的坐标为.15.如图,点A是反比例函数y=(x<0)图象上一点,AC⊥x轴于点C且与反比例函数y=(x<0)的图象交于点B,AB=3BC,连接OA,OB.若△OAB的面积为6,则k1+k2=.16.如图,在平面直角坐标系中,直线AB经过点A(8,0)、B(0,6),反比例函数y=的图象与直线AB交于C、D两点,分别连接OC、OD.当△AOC、△COD、△DOB的面积都相等时,则k=.三.解答题(共4小题)17.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.18.如图,一次函数y=kx+1的图象与反比例函数y=的图象交于点A、B,点A在第一象限,过点A作AC⊥x轴于点C,AD⊥y轴于点D,点B的纵坐标为﹣2,一次函数的图象分别交x轴、y轴于点E、F,连接DB、DE,已知S△ADF=4,AC=3OF.(1)求一次函数与反比例函数的解析式;(2)求△DBE的面积;(3)直接写出反比例函数的值大于一次函数的值的x的取值范围.19.如图,已知点A(2,4)、B(4,a)都在反比例函数y=的图象上.(1)求k和a的值;(2)以AB为一边在第一象限内作▱ABCD,若点C的横坐标为8,且▱ABCD的面积为10,求点D的坐标.20.如图,反比例函数y=(k>0)与长方形OABC在第一象限相交于D、E两点,OA=2,OC=4,连接OD、OE、DE.记△OAD、△OCE的面积分别为S1、S2.(1)填空:①点B坐标为;②S1S2(填“>”、“<”、“=”);(2)当S1+S2=2时,求:k的值及点D、E的坐标;试判断△ODE的形状,并求△ODE 的面积.参考答案1.解:∵y=,k=2,∴该函数的图象是位于第一、三象限的双曲线,故选:B.2.解:∵反比例函数的解析式为y=,且图象位于第一、三象限,∴3a﹣3>0,解得a>1,故选:C.3.解:∵反比例函数y=(k≠0)的图象经过点(2,3),∴k=2×3=6,A选项中(1,6),1×6=6.故选:A.4.解:∵反比例函数中k<0,∴函数图象的两个分支分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣3<0,﹣1<0,∴点A(﹣3,y1),B(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣3<﹣1<0,∴0<y1<y2.∵2>0,∴点C(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故选:A.5.解:∵k=﹣2,∴A.图象经过点(﹣2,﹣1)不合题意;B.y1=1,y2=﹣,故不合题意;C.图象既是轴对称图形又是中心对称图形,符合题意;D.在每一象限内,y随x的增大而增大,故不合题意.6.解:∵矩形的中心为直角坐标系的原点O,∴矩形ABCD的面积是8,设D(x,y),则4xy=8,xy=2,反比例函数的解析式为y=,∴m=2.故选:A.7.解:设AB与y轴交于C,∵A在反比例函数y=的图象上,AB∥x轴,∴OC•AC=1,∴S△AOC=OC•AC=,∵S△AOB=2,∴S△BOC=,∴BC•OC=,∴BC•OC=3,∵点B在反比例函数y=的图象上且B在第二象限,∴k=﹣3,故选:D.8.解:∵A、B是曲线y=上的点,经过A、B两点向x轴、y轴作垂线段,∴S1+S阴影=S2+S阴影=5,又∵S阴影=1.5,∴S1=S2=5﹣1.5=3.5,故选:D.9.解:由反比例函数与正比例函数相交于点A、B,可得点A坐标与点B坐标关于原点对称.故点A的横坐标为﹣2.当y1>y2时,即正比例函数图象在反比例图象上方,观察图象可得,当x<﹣2或0<x<2时满足题意.故选:C.10.解:因为直线y=mx过原点,双曲线y=的两个分支关于原点对称,所以其交点坐标关于原点对称,一个交点坐标为(3,4),另一个交点的坐标为(﹣3,﹣4).故答案是:(﹣3,﹣4).11.解:由图象可得,k1>0,k2<0,k3<0,∵点(﹣1,﹣)在y2=的图象上,点(﹣1,)在y3=的图象上,∴﹣<,∴k2>k3,由上可得,k1>k2>k3,故答案为:k1>k2>k3.12.解:矩形ABCD中,AD=3,AB=8,E为CD的中点,∴DE=CE=4,∴AE==5,∵AF﹣AE=2,∴AF=7,∴BF=1,设E点坐标为(a,4),则F点坐标为(a﹣3,1),∵E,F两点在反比例函数y=(x<0)的图象上,∴4a=a﹣3,解得a=﹣1,∴E(﹣1,4),∴k=﹣1×4=﹣4,故答案为﹣4.13.解:如图,连接OB、OC,∵点B在双曲线y=(x<0)上,且BC⊥y轴,∴S△OBD==4,又∵OD=2AO,∴S△OBA=S△OBD=2,∴S△ABD=6,∴S△ACD=S△ABC﹣S△ABD=9﹣6=3,由OD=2AO可知S△OCD=2S△AOC,∴S△BCD=S△ACD=×3=2,∵点C在双曲线y=(x>0)上,且BC⊥y轴,∴=2,∴|k|=4,由函数图象可知k<0,∴k=﹣4.故答案为﹣4.14.解:设点A的坐标为(﹣,a),∵点B的坐标为(4,0).若△AOB的面积为6,∴S△AOB=4×|a|=6,解得:a=±3,∵x>0∴点A的坐标为2,﹣3).故答案为:(2,﹣3).15.解:∵S△AOB=AB•OC=6,S△BOC=BC•OC,AB=3BC,∴S△BOC=2,∴S△AOC=2+6=8,又∵|k1|=8,|k2|=2,k1<0,k2<0,∴k1=﹣16,k2=﹣4,∴k1+k2=﹣16﹣4=﹣20,故答案为:﹣20.16.解:设直线AB的解析式为y=kx+b,∵直线AB过点A(8,0)、B(0,6),∴,解得:,∴直线AB的解析式为y=﹣x+6;过点C分别作x轴的垂线,垂足是点F,当△AOC、△COD、△DOB的面积都相等时,有S△AOC=S△AOB,即OA×CF=OA×OB,×8×CF=×8×6,解得:CF=2,即C点的纵坐标为2,把C点的纵坐标代入y=﹣x+6中,﹣x+6=2,解得:x=,∴C(,2),反比例函数y=的图象经过点C,∴k=×2=故答案为.17.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.18.解:(1)对于y=kx+1,令x=0,则y=1,故点F(0,1),则OF=1,而AC=3OF=3,故点D(0,3),∵A的纵坐标为3,点A在反比例函数上,故点A(,3),S△ADF=×AD×DF=××(3﹣1)=4,解得m=12,故点A(4,3),反比例函数表达式为y=,将点B的纵坐标代入上式得,﹣2=,解得x=﹣6,故B(﹣6,﹣2),将点B的坐标代入y=kx+1得,﹣2=﹣6k+1,解得k=,故一次函数表达式为y=x+1;(2)对于y=x+1,令y=0,则x+1=0,解得x=﹣2,故点E(﹣2,0),△DBE的面积=S△DFB﹣S△DFE=×DF×(x E﹣x B)=×2×(﹣2+6)=4;(3)由(1)知,点A、B的坐标分别为(4,3)、(﹣6,﹣2),观察函数图象知,反比例函数的值大于一次函数的值的x的取值范围为:x<﹣6或0<x <4.19.解:(1)∵点A(2,4)在反比例函数y=的图象上,∴k=2×4=8,∵B(4,a)在反比例函数y=的图象上,∴a==2;(2)∵A(2,4),B(4,2),四边形ABCD是平行四边形,点C的横坐标为8,∴点D的横坐标为:8﹣(4﹣2)=6,设D(6,m),连接BD,过A作EF∥y轴,作DE⊥EF,BF⊥EF,如图所示:则E(2,m),F(2,2),∵▱ABCD的面积为10,∴S△ABD=×10=5,∵S梯形DEFB﹣S△DEA﹣S△AFB=S△ABD,或S梯形DEFB+S△DEA﹣S△AFB=S△ABD,∴(2+4)(m﹣2)﹣×4×(m﹣4)﹣×2×2=5,或(2+4)(m﹣2)+×4×(4﹣m)﹣×2×2=5,解得:m=5,∴点D的坐标为:(6,5).20.解:(1)①根据长方形OABC中,OA=2,OC=4,则点B坐标为(4,2),②∵反比例函数(k>0)与长方形OABC在第一象限相交于D、E两点,利用△OAD、△OCE的面积分别为S1=AD•AO,S2=•CO•EC,xy=k,得出,S1=AD•AO=k,S2=•CO•EC=k,∴S1=S2;(2)当S1+S2=2时,∵S1=S2,∴S1=S2=1=,∴k=2,∵S1=AD•AO=AD×2=1,∴AD=1,∵S2=•CO•EC=×4×EC=1,∴EC=,∵OA=2,OC=4,∴BD=4﹣1=3,BE=2﹣=,∴DO2=AO2+AD2=4+1=5,DE2=DB2+BE2=9+=,OE2=CO2+CE2=16+=,∴D的坐标为(1,2),E的坐标为(4,)∴DO2+DE2=OE2,∴△ODE是直角三角形,∵DO2=5,∴DO=,∵DE2=,∴DE=,∴△ODE的面积为:×DO×DE=××=,故答案为:(1)①(4,2);②=.。
中考数学总复习《反比例函数的性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.对于反比例函数y=2x,下列说法正确是()A.图象经过点(2,﹣1)B.图象位于第二、四象限C.图象是中心对称图形D.当x<0时,y随x的增大而增大2.对于反比例函数y=2x,下列说法不正确的是()A.当x<0时,y随x的增大而减小B.点(-2,-1)在它的图象上C.它的图象在第一、三象限D.当x>0时,y随x的增大而增大3.如图,过y轴上任意一点P,作x轴的平行线,分别与反比例函数y=4x和y=2x的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为()A.3B.4C.5D.64.已知反比例函数y=k x的图象如图所示,则一次函数y=kx+k的图象经过()A.第一、二、三象限B.第二、三、四象限C.第一、二、四象限D.第一、三、四象限5.若点M(﹣3,a),N(4,﹣6)在同一个反比例函数的图象上,则a的值为()A.8B.﹣8C.﹣7D.56.函数y=1x+√x的图象在()A.第一象限B.第一、三象限C.第二象限D.第二、四象限7.图所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是A.当x=3时,EC<EM B.当y=9时,EC>EMC.当x增大时,EC·CF的值增大。
D.当y增大时,BE·DF的值不变。
8.已知函数y=−k 2+1x的图象经过点P1(x1,y1),P2(x2,y2),如果x2<0<x1,那么()A.0<y2<y1B.y1>0>y2C.y2<y1<0D.y1<0<y29.已知双曲线y=k−1x向右平移2个单位后经过点(4,1),则k的值等于()A.1B.2C.3D.510.对于反比例函数y=k x(k≠0),下列说法正确的是()A.当k>0时,y随x增大而增大B.当k<0时,y随x增大而增大C.当k>0时,该函数图象在二、四象限D.若点(1,2)在该函数图象上,则点(2,1)也必在该函数图象上11.下列关于反比例函数y=8x的描述,正确的是()A.它的图象经过点(12,4)B.图象的两支分别在第二、四象限C.当x>2时,0<y<4D.x>0时,y随x的增大而增大12.反比例函数y= 1x的图象的两个分支分别位于()象限.A.一、二B.一、三C.二、四D.一、四二、填空题13.如图,已知点A、B在双曲线y= k x(x>0)上,AC△x轴于点C,BD△y轴于点D,AC与BD 交于点P,P是AC的中点,若△ABP的面积为3,则k=.14.如图,矩形ABCD的顶点A和对称中心在反比例函数y=k x(k≠0,x>0)的图象上,若矩形ABCD的面积为16,则k的值为.15.已知反比例函数y= k x(k为常数,k≠0)的图象位于第一、第三象限,写出一个符合条件的k的值为.16.若反比例函数y=﹣mx的图象经过点(﹣3,﹣2),则当x<0时,y随x的增大而.17.若点(4,m)与点(5,n)都在反比例函数y=8x(x≠0)的图象上,则m n(填>,<或=).18.如图,A(1,1),B(2,2),双曲线y= k x与线段AB有公共点,则k的取值范围是。
《反比例函数图像与性质》练习
(一)填空
1、当m 时,反比例函数12m y x -=的图象在一、三象限。
2、已知函数1m y x +=是反比例函数且图象在二、四象限内,则m=___________。
3.在反比例函数1m y x
-=的每一条曲线上,都随的增大而减小。
则x 的取值范围是______________; 4.已知函数25(1)m y m x
-=+是反比例函数且图像在第二、四象限内,则m 的值是_______________;
5、当k>0时,反比例函数1k y x +=的图象在 象限。
6、当k<0时,反比例函数k y x =的图象在 象限。
(二)根据图象完成下列填空
1、已知反比例函数12m y x -=的图象如图1所示,则m 。
2、已知点A(x 1,y 1)、B (x 2,y 2)、 C(x 3,y 3)在反比例函数5y x
=-
的图象上,并且x 1<x 2<0<x 3,则y 1、y 2、y 3的大小关系是___________:
O x 图1
y
(三)、下面给出了反比例函数x y 4=和x y 4-=得图象,你知道那个是x y 4-=的图像吗?为什么?
O x y 图B O x
y
图A。
27.2 反比例函数的图像与性质(1) 教学目标【知识与能力】1.会用描点法画出反比例函数y= 的图像.2.能用待定系数法求反比例函数的解析式.【过程与方法】1.经历画反比例函数的图像并观察函数图像的过程,进一步体会数形结合思想在数学中的应用.2.经历画反比例函数图像的探究过程,了解从特殊到一般的认识过程,培养学生观察、探究、归纳及动手能力.【情感态度价值观】1.经历观察、思考、交流等数学活动,获得探索数学知识和合作交流的方法和经验,体验数学活动中的探索性和创造性.2.在数学学习过程中,体验学习数学的成功感,领悟和感受数学美,发现学习的乐趣. 教学重难点【教学重点】用描点法画反比例函数的图像.【教学难点】探究反比例函数的图像特点的过程.课前准备多媒体课件教学过程一、新课导入:导入一:复习提问:1.以前学习一次函数时,用什么思路和方法研究的?(先根据函数解析式画出函数的图像,然后观察、分析、归纳得到函数的性质) 2.一次函数的图像是什么?(直线)3.画函数图像的基本步骤是什么?(列表、描点、连线)4.什么是待定系数法?如何用待定系数法求一次函数的解析式?【师生活动】 学生思考回答,教师对学生的答案进行点评.导入二:思考并回答下列问题:1.点(2,3)在正比例函数y =kx 的图像上,你能求出这个正比例函数的表达式吗?将点(2,3)代入y =kx ,得k =32,所以函数表达式为y =32x2.判断点(1,2)是否在正比例函数y=2x的图像上?点(-1,-2),(3,6)呢?你是如何判定的? (点(1,2)在函数y=2x的图像上;点(-1,-2),(3,6)也在函数y=2x的图像上;将点的坐标代入函数解析式,满足函数解析式,所以点在函数的图像上)教师归纳:判定点是否在函数图像上,将点的坐标代入函数解析式,判断是否满足函数解析式即可.[设计意图]通过复习画函数图像的基本步骤、判断点是否在函数图像上导入新课,为本节课的学习做好铺垫,通过复习研究一次函数的基本思路和方法,让学生用类比的方法自然地构建出新知识,降低本节课的学习难度,激发学生学习本节课的兴趣.二、新知构建:活动一:画反比例函数y=6x的图像.思路一教师引导思考:(1)该函数中自变量x的取值范围是什么?函数值y的取值范围是什么?(2)画函数图像列表时,取哪些x的值使函数图像完整、准确?(3)在课前准备的平面直角坐标系下描点.(师生共同完成列表)(4)如何用平滑的曲线连接各点?(5)从左到右连线时,图像与x轴、y轴有没有交点?为什么?(6)仅凭两个点的坐标,能画出反比例函数y=6x的图像吗?【课件展示】(1)列表:x…-6 -4 -3 -2 -1 1 2 3 4 6 …y=6x …-1 -1.5 -2 -3 -6 6 3 21.51 …(2)描点:以表中各组对应值作为点的坐标,在如图所示的直角坐标系中描出相应的点.(3)连线:用平滑的曲线顺次连接各点,就得到反比例函数y=6x的图像.【师生活动】教师引导,学生思考回答,并按照共同完成的表格数据画出函数图像,教师巡视过程中发现画图像时出现的典型错误,点拨画图像时的易错点.教师强调连线时从左到右依次用平滑曲线连接,由自变量x、函数值y的取值范围可得函数图像与两坐标轴没有交点,故画反比例函数图像时与画一次函数时不同,坐标轴把图像分成两部分.[设计意图]在教师提出的问题的引导下,师生合作,经历用描点法画函数图像的过程,培养学生动手操作能力,理解描点法画函数图像的本质,经历知识的形成过程,进一步体会数形结合思想.思路二任务要求:按照画函数图像的步骤,在课前准备的平面直角坐标系下,画出函数y=6x的图像.【师生活动】学生独立完成列表、描点、连线整个画图后,小组合作交流,发现组内成员的画图错误,并帮助改正,教师在巡视过程中及时发现常见典型错误,进行汇总,在展示完整画图过程后再展示典型画图错误.【课件展示】(1)列表:x…-6 -4 -3 -2 -1 1 2 3 4 6 …y=6x …-1 -1.5 -2 -3 -6 6 3 21.51 …教师强调:在x的取值范围内列出函数对应值表,取值不能太少,也不能只取正值. (2)描点:以表中各组对应值作为点的坐标,在如图所示的直角坐标系中描出相应的点.教师强调:描点时横纵坐标易混淆.(3)连线:用平滑的曲线顺次连接各点,就得到反比例函数y=6x的图像.教师强调:连线时用平滑曲线,不能画成折线,因为自变量x不等于0,所以画函数图像时,不能将左右两个图像连接起来.追问:1.观察画出的反比例函数y=6x的图像,它与坐标轴有交点吗?为什么?2.仅凭两个点的坐标,能画出反比例函数y =6x 的图像吗?【师生活动】 学生观察图像思考后,小组合作交流,教师巡视中帮助有困难的学生,对学生的回答进行点评.[设计意图] 通过动手操作,让学生自己经历画反比例函数图像的过程,进一步了解用描点的方法画图像的基本步骤,培养了学生动手操作能力,经历了知识的形成过程.通过小组合作交流,培养学生的合作精神,在讨论画图结果时互相纠错的过程,加深了学生对画函数图像的理解和认识.活动二:画出反比例函数y =-6x 的图像.【师生活动】 学生在课前准备的平面直角坐标系中独立完成画图,小组内交流所画图像是否正确,教师课件展示正确图像,强调画图像时的易错点.思考:比较反比例函数y =6x 与y =-6x的图像,指出它们的共同特征. (图像都是由两部分组成,分别位于两个不同的象限,且关于原点对称,两部分在单个象限内增减性一致等)【师生活动】 学生观察所画出的两个图像,指出共同特征,教师点评,课件展示双曲线的定义.【课件展示】 反比例函数y =k x(k 为常数,且k ≠0)的图像由分别位于两个象限内的两条曲线组成,这样的曲线叫做双曲线.[设计意图] 通过学生独立完成画反比例函数图像,巩固画函数图像的步骤,通过观察思考两个反比例函数图像的共同特征,为后边探究反比例函数性质做好铺垫.例题讲解(教材132页例1)已知点P (-6,8)在反比例函数y =k x的图像上. (1)求这个反比例函数的表达式.(2)判断点M (4,-12)和N (2,24)是否在这个反比例函数的图像上.【思考】1.函数图像上点的坐标与函数表达式之间的关系是什么?(函数图像上的点的坐标满足函数表达式,反之,满足函数表达式的点在该函数图像上) 2.待定系数法求反比例函数表达式时,需要几个点的坐标代入?(反比例函数表达式中有一个待定系数,所以将函数图像上一个点的坐标代入即可) 3.如何判断点是否在反比例函数图像上?(将点的坐标代入函数表达式,满足函数表达式,则该点在函数图像上,反之,则不在函数图像上)【师生活动】 学生独立思考后,小组合作交流,教师在巡视中帮助有困难的学生,给学生足够的时间思考归纳,并对学生的回答进行点评归纳.完成思考归纳后,学生独立完成解答并板书,教师规范书写格式.解:(1)把点P (-6,8)的坐标代入y =k x ,得8=k -6. 解得k =-48.所以这个反比例函数的表达式为y =-48x. (2)当x =4时,y =-484=-12. 当x =2时,y =-482=-24≠24. 所以,点M (4,-12)在这个反比例函数的图像上,点N (2,24)不在这个反比例函数的图像上.[设计意图] 通过例题加深学生对反比例函数表达式和图像之间关系的认识,是数形结合思想方法的深入应用,让学生感悟由“数”到“形”,又由“形”到“数”的过程,体会数形结合思想在数学中的应用;学生在教师的引导下逐步思考解决问题,提高学生分析问题、解决问题及归纳总结的能力.[知识拓展]1.反比例函数的图像是双曲线,它有两支,它的两个分支是断开的.2.反比例函数y =k x (k ≠0)的图像的两个分支关于原点对称.3.反比例函数的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交,这是因为x ≠0,y ≠0. 三、课堂小结:1.画反比例函数图像的步骤及注意事项.2.反比例函数的图像是两条曲线,它们关于原点对称.3.反比例函数y =6x 与y =-6x的图像特征. 4.待定系数法求反比例函数表达式.。
反比例函数——图像上点的坐标特征一.选择题(共16小题)1.如图,△ABC的三个顶点分别为A(1,2),B(2,5),C(6,1).若函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.2≤k≤494B.6≤k≤10C.2≤k≤6D.2≤k≤2522.如图,点A的坐标是(﹣2,0),点B的坐标是(0,6),C为OB的中点,将△ABC绕点B逆时针旋转90°后得到△A′BC′.若反比例函数y=kx的图象恰好经过A′B的中点D,则k的值是()A.9B.12C.15D.183.如图,在平面直角坐标系中,矩形ABCD的顶点A,D分别在x轴、y轴上,对角线BD∥x轴,反比例函数y=kx(k>0,x>0)的图象经过矩形对角线的交点E.若点A(2,0),D(0,4),则k的值为()A.16B.20C.32D.404.如图,在平面直角坐标系中,矩形ABCD的顶点A,C分别在x轴,y轴的正半轴上,点D (﹣2,3),AD =5,若反比例函数y =kx(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .3235.如图,已知点A 、B 分别在反比例函数y =1x(x >0),y =−4x(x >0)的图象上,且OA ⊥OB ,则OB OA的值为( )A .√2B .2C .√3D .46.已知点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上,且A ,B 两点关于y 轴对称.设点A 的坐标为(m ,n ),则m n+n m的值是( )A .﹣10B .﹣8C .﹣6D .47.如图,平面直角坐标系中,A (﹣8,0),B (﹣8,4),C (0,4),反比例函数y =kx 的图象分别与线段AB ,BC 交于点D ,E ,连接DE .若点B 关于DE 的对称点恰好在OA 上,则k =( )A .﹣20B .﹣16C .﹣12D .﹣88.如图,点D 是▱OABC 内一点,CD 与x 轴平行,BD 与y 轴平行,BD =√2,∠ADB =135°,S △ABD =2.若反比例函数y =kx (x >0)的图象经过A 、D 两点,则k 的值是( )A.2√2B.4C.3√2D.69.如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=kx的图象上,则k的值为()A.36B.48C.49D.6410.如图,在平面直角坐标系中,一次函数y=43x+4的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形ABCD,且点C在反比例函数y=kx(x<0)的图象上,则k的值为()A.﹣12B.﹣42C.42D.﹣2111.若点A(a﹣1,y1),B(a+1,y2)在反比例函数y=kx(k<0)的图象上,且y1>y2,则a的取值范围是()A.a<﹣1B.﹣1<a<1C.a>1D.a<﹣1或a>112.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=−12x的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 13.若点A(3,﹣4)、B(﹣2,m)在同一个反比例函数的图象上,则m的值为()A.6B.﹣6C.12D.﹣1214.已知A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=2x上的三点,若x1<x2<x3,y2<y1<y3,则下列关系式不正确的是()A.x1•x2<0B.x1•x3<0C.x2•x3<0D.x1+x2<015.已知点A(x1,y1),B(x2,y2),C(x3,y3)都在反比例函数y=kx(k<0)的图象上,且x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y2>y1>y3B.y3>y2>y1C.y1>y2>y3D.y3>y1>y216.若点A(﹣1,y1),B(2,y2),C(3,y3)在反比例函数y=−6x的图象上,则y1,y2,y3的大小关系是()A.y1>y2>y3B.y2>y3>y1C.y1>y3>y2D.y3>y2>y1二.填空题(共16小题)17.如图,四边形OABC是平行四边形,点C在x轴上,反比例函数y=kx(x>0)的图象经过点A(5,12),且与边BC交于点D.若AB=BD,则点D的坐标为.18.如图,在Rt△ABC中,∠ABC=90°,C(0,﹣3),CD=3AD,点A在反比例函数y=k x图象上,且y轴平分∠ACB,求k=.19.如图,矩形OABC的边OA,OC分别在x轴、y轴上,点B在第一象限,点D在边BC 上,且∠AOD=30°,四边形OA′B′D与四边形OABD关于直线OD对称(点A′和A,B′和B分别对应).若AB=1,反比例函数y=kx(k≠0)的图象恰好经过点A′,B,则k的值为.20.在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(1x,1y)称为点P的“倒影点”,直线y=﹣x+1上有两点A,B,它们的倒影点A′,B′均在反比例函数y=kx的图象上.若AB=2√2,则k=.21.如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=kx的图象上,OA=1,OC=6,则正方形ADEF的边长为.22.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=k1x上,点A关于x轴的对称点B在双曲线y=k2x,则k1+k2的值为.23.如图,已知直线y=−13x+1与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线y=kx(x>0)正好经过C,M两点,则直线AC的解析式为:.24.如图,将一个含30°角的三角尺ABC放在直角坐标系中,使直角顶点C与原点O重合,顶点A,B分别在反比例函数y=−4x和y=kx的图象上,则k的值为.25.在平面直角坐标系中,点A(﹣2,1),B(3,2),C(﹣6,m)分别在三个不同的象限.若反比例函数y=kx(k≠0)的图象经过其中两点,则m的值为.26.如图,在平面直角坐标系中,正方形ABCD的顶点A与D在函数y=kx(x>0)的图象上,AC⊥x轴,垂足为C,点B的坐标为(0,2),则k的值为.27.如图,已知矩形ABCD的顶点A、B分别落在双曲线y=kx上,顶点C、D分别落在y轴、x轴上,双曲线y=kx经过AD的中点E,若OC=3,则k的值为.28.如图,在平面直角坐标系中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A、B两点.正方形ABCD的顶点C、D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.29.如图,过原点的直线与反比例函数y=2x(x>0)、反比例函数y=6x(x>0)的图象分别交于A、B两点,过点A作y轴的平行线交反比例函数y=6x(x>0)的图象于C点,以AC为边在直线AC的右侧作正方形ACDE,点B恰好在边DE上,则正方形ACDE的面积为.30.设A,B,C,D是反比例函数y=kx图象上的任意四点,现有以下结论:①四边形ABCD可以是平行四边形;②四边形ABCD可以是菱形;③四边形ABCD不可能是矩形;④四边形ABCD不可能是正方形.其中正确的是.(写出所有正确结论的序号)31.如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数y=6x(x>0)的图象上,则矩形ABCD的周长为.32.已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y=2x的图象上,且x1<x2<0,则y1y2(填“>”或“<”).三.解答题(共7小题)33.如图,已知菱形ABCD的对称中心是坐标原点O,四个顶点都在坐标轴上,反比例函数y=kx(k≠0)的图象与AD边交于E(﹣4,12),F(m,2)两点.(1)求k,m的值;(2)写出函数y=kx图象在菱形ABCD内x的取值范围.34.如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数y=kx(k>0,x>0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理由;(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.35.阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数; (2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数. 例题:证明函数f (x )=6x (x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)﹣f (x 2)=6x 1−6x 2=6x 2−6x 1x 1x 2=6(x 2−x 1)x 1x 2. ∵0<x 1<x 2,∴x 2﹣x 1>0,x 1x 2>0. ∴6(x 2−x 1)x 1x 2>0.即f (x 1)﹣f (x 2)>0.∴f (x 1)>f (x 2).∴函数f (x )=6x(x >0)是减函数. 根据以上材料,解答下面的问题: 已知函数f (x )=1x 2+x (x <0), f (﹣1)=1(−1)2+(﹣1)=0,f (﹣2)=1(−2)2+(﹣2)=−74(1)计算:f (﹣3)= ,f (﹣4)= ; (2)猜想:函数f (x )=1x 2+x (x <0)是 函数(填“增”或“减”); (3)请仿照例题证明你的猜想. 36.已知反比例函数y =−3x.(1)若点(﹣t +52,﹣2)在此反比例函数图象上,求t 的值. (2)若点(x 1,y 1)和(x 2,y 2)是此反比例函数图象上的任意两点, ①当x 1>0,x 2>0,且x 1=x 2+2时,求y 2−y 1y 1y 2的值;②当x 1>x 2时,试比较y 1,y 2的大小.37.小明根据学习函数的经验,参照研究函数的过程与方法,对函数y=x−2x(x≠0)的图象与性质进行探究.因为y=x−2x=1−2x,即y=−2x+1,所以可以对比函数y=−2x来探究.列表:(1)下表列出y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣4﹣3﹣2﹣1−12121234…y=−2x…1223124﹣4﹣2﹣1−23−12…y=x−2x…325323m﹣3﹣10n12…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以y=x−2x相应的函数值为纵坐标,描出相应的点,如图所示:(2)请把y轴左边各点和右边各点,分别用一条光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①当x<0时,y随x的增大而;(填“增大”或“减小”)②函数y=x−2x的图象是由y=−2x的图象向平移个单位而得到.③函数图象关于点中心对称.(填点的坐标)38.小明根据学习函数的经验,对函数y=1x−1+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=1x−1+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…−32﹣1−1201232252372…y (3)5m130﹣1n2533275…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值1x−1+1>32时,x的取值范围是:.39.如图,边长为2的正方形ABCD的顶点A,B在x轴正半轴上,反比例函数y=kx在第一象限的图象经过点D,交BC于E.(1)当点E的坐标为(3,n)时,求n和k的值;(2)若点E是BC的中点,求OD的长.答案一.选择题(共16小题)1.【解答】解:反比例函数和三角形有交点的第一个临界点是交点为A , ∵过点A (1,2)的反比例函数解析式为y =2x , ∴k ≥2.随着k 值的增大,反比例函数的图象必须和线段BC 有交点才能满足题意, 经过B (2,5),C (6,1)的直线解析式为y =﹣x +7, {y =−x +7y =k x,得x 2﹣7x +k =0 根据△≥0,得k ≤494 综上可知2≤k ≤494. 故选:A .2.【解答】解:作A ′H ⊥y 轴于H .∵∠AOB =∠A ′HB =∠ABA ′=90°,∴∠ABO +∠A ′BH =90°,∠ABO +∠BAO =90°, ∴∠BAO =∠A ′BH , ∵BA =BA ′,∴△AOB ≌△BHA ′(AAS ), ∴OA =BH ,OB =A ′H ,∵点A 的坐标是(﹣2,0),点B 的坐标是(0,6), ∴OA =2,OB =6,∴BH =OA =2,A ′H =OB =6, ∴OH =4, ∴A ′(6,4), ∵BD =A ′D , ∴D (3,5),∵反比例函数y =kx的图象经过点D , ∴k =15. 故选:C .3.【解答】解:∵BD ∥x 轴,D (0,4), ∴B 、D 两点纵坐标相同,都为4, ∴可设B (x ,4).∵矩形ABCD 的对角线的交点为E , ∴E 为BD 中点,∠DAB =90°. ∴E (12x ,4).∵∠DAB =90°, ∴AD 2+AB 2=BD 2,∵A (2,0),D (0,4),B (x ,4), ∴22+42+(x ﹣2)2+42=x 2, 解得x =10, ∴E (5,4).∵反比例函数y =kx (k >0,x >0)的图象经过点E , ∴k =5×4=20. 故选:B .4.【解答】解:过D 作DE ⊥x 轴于E ,过B 作BF ⊥x 轴,BH ⊥y 轴, ∴∠BHC =90°,∵点D (﹣2,3),AD =5, ∴DE =3,∴AE =√AD 2−DE 2=4, ∵四边形ABCD 是矩形, ∴AD =BC ,∴∠BCD =∠ADC =90°,∴∠DCP +∠BCH =∠BCH +∠CBH =90°, ∴∠CBH =∠DCH ,∵∠DCP +∠CPD =∠APO +∠DAE =90°, ∠CPD =∠APO , ∴∠DCP =∠DAE , ∴∠CBH =∠DAE , ∵∠AED =∠BHC =90°,∴△ADE ≌△BCH (AAS ), ∴BH =AE =4, ∵OE =2, ∴OA =2, ∴AF =2,∵∠APO +∠P AO =∠BAF +∠P AO =90°, ∴∠APO =∠BAF , ∴△APO ∽△BAF , ∴OP AF=OA BF,∴12×32=2BF,∴BF =83, ∴B (4,83),∴k =323, 故选:D .5.【解答】解:过点A 作AM ⊥y 轴于点M ,过点B 作BN ⊥y 轴于点N , ∴∠AMO =∠BNO =90°, ∴∠AOM +∠OAM =90°, ∵OA ⊥OB ,∴∠AOM +∠BON =90°, ∴∠OAM =∠BON , ∴△AOM ∽△OBN ,∵点A ,B 分别在反比例函数y =1x (x >0),y =−4x(x >0)的图象上, ∴S △AOM :S △BON =1:4, ∴AO :BO =1:2, ∴OB :OA =2. 故选:B .6.【解答】解:∵点A 的坐标为(m ,n ),A 、B 两点关于y 轴对称, ∴B (﹣m ,n ),∵点A 在双曲线y =−2x 上,点B 在直线y =x ﹣4上, ∴n =−2m,﹣m ﹣4=n ,即mn =﹣2,m +n =﹣4,∴原式=(m+n)2−2mn mn=16+4−2=−10. 故选:A .7.【解答】解:过点E 作EG ⊥OA ,垂足为G ,设点B 关于DE 的对称点为F ,连接DF 、EF 、BF ,如图所示: 则△BDE ≌△FDE ,∴BD =FD ,BE =FE ,∠DFE =∠DBE =90° 易证△ADF ∽△GFE ∴AF EG=DF FE,∴AF :EG =BD :BE ,∵A (﹣8,0),B (﹣8,4),C (0,4), ∴AB =OC =EG =4,OA =BC =8, ∵D 、E 在反比例函数y =kx的图象上, ∴E (k4,4)、D (﹣8,−k 8)∴OG =EC =−k 4,AD =−k8, ∴BD =4+k8,BE =8+k4 ∴BD BE=4+k 88+k 4=12=DF FE=AF EG,∴AF =12EG =2,在Rt △ADF 中,由勾股定理:AD 2+AF 2=DF 2 即:(−k8)2+22=(4+k8)2解得:k=﹣12故选:C.8.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=√2,∵S△ABD=12BD⋅AE=2,BD=√2,∴AE=2√2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2√2,∴D的纵坐标为3√2,设A(m,√2),则D(m﹣2√2,3√2),∵反比例函数y=kx(x>0)的图象经过A、D两点,∴k=√2m=(m﹣2√2)×3√2,解得m=3√2,∴k=√2m=6.故选:D.9.【解答】解:过P 分别作AB 、x 轴、y 轴的垂线,垂足分别为C 、D 、E ,如图, ∵A (0,4),B (3,0), ∴OA =4,OB =3, ∴AB =√32+42=5,∵△OAB 的两个锐角对应的外角角平分线相交于点P , ∴PE =PC ,PD =PC , ∴PE =PC =PD , 设P (t ,t ),则PC =t ,∵S △P AE +S △P AB +S △PBD +S △OAB =S 矩形PEOD ,∴12×t ×(t ﹣4)+12×5×t +12×t ×(t ﹣3)+12×3×4=t ×t ,解得t =6, ∴P (6,6),把P (6,6)代入y =kx得k =6×6=36. 故选:A .10.【解答】解:∵当x =0时,y =0+4=4, ∴A (0,4), ∴OA =4;∵当y =0时,0=43x +4, ∴x =﹣3,∴B (﹣3,0), ∴OB =3;过点C 作CE ⊥x 轴于E ,∵四边形ABCD 是正方形, ∴∠ABC =90°,AB =BC ,∵∠CBE +∠ABO =90°,∠BAO +∠ABO =90°, ∴∠CBE =∠BAO . 在△AOB 和△BEC 中, {∠CBE =∠BAO ∠BEC =∠AOB BC =AB, ∴△AOB ≌△BEC (AAS ), ∴BE =AO =4,CE =OB =3, ∴OE =3+4=7,∴C 点坐标为(﹣7,3),∵点C 在反比例函数y =kx (x <0)的图象上, ∴k =﹣7×3=﹣21. 故选:D .11.【解答】解:∵k <0,∴在图象的每一支上,y 随x 的增大而增大, ①当点(a ﹣1,y 1)、(a +1,y 2)在图象的同一支上, ∵y 1>y 2, ∴a ﹣1>a +1, 此不等式无解;②当点(a ﹣1,y 1)、(a +1,y 2)在图象的两支上, ∵y 1>y 2,∴a ﹣1<0,a +1>0, 解得:﹣1<a <1, 故选:B .12.【解答】解:当x=﹣3,y1=−12−3=4;当x=﹣2,y2=−12−2=6;当x=1,y3=−121=−12,所以y3<y1<y2.故选:B.13.【解答】解:设反比例函数的解析式为y=k x,把A(3,﹣4)代入得:k=﹣12,即y=−12 x,把B(﹣2,m)代入得:m=−12−2=6,故选:A.14.【解答】解:∵反比例函数y=2x中,2>0,∴在每一象限内,y随x的增大而减小,∵x1<x2<x3,y2<y1<y3,∴点A,B在第三象限,点C在第一象限,∴x1<x2<0<x3,∴x1•x2>0,x1•x3<0,x2•x3<0,x1+x2<0,故选:A.15.【解答】解:∵反比例函数y=x(k<0)的图象分布在第二、四象限,在每一象限y随x的增大而增大,而x1<x2<0<x3,∴y3<0<y1<y2.即y2>y1>y3.故选:A.16.【解答】解:∵点A(﹣1,y1)、B(2,y2)、C(3,y3)在反比例函数y=−6x的图象上,∴y1=−6−1=6,y2=−62=−3,y3=−63=−2,又∵﹣3<﹣2<6,∴y1>y3>y2.故选:C.二.填空题(共16小题)17.【解答】解法1:如图,连接AD并延长,交x轴于E,由A(5,12),可得AO=√52+122=13,∴BC =13,∵AB ∥CE ,AB =BD ,∴∠CED =∠BAD =∠ADB =∠CDE , ∴CD =CE ,∴AB +CE =BD +CD =13,即OC +CE =13, ∴OE =13, ∴E (13,0),由A (5,12),E (13,0),可得AE 的解析式为y =−32x +392, ∵反比例函数y =kx(x >0)的图象经过点A (5,12), ∴k =12×5=60,∴反比例函数的解析式为y =60x ,解方程组{y =−32x +392y =60x ,可得{x =5y =12,{x =8y =152, ∴点D 的坐标为(8,152).解法2:如图,过D 作DH ⊥x 轴于H ,过A 作AG ⊥x 轴于G , ∵点A (5,12),∴OG =5,AG =12,AO =13=BC ,∵∠AOG =∠DCH ,∠AGO =∠DHC =90°, ∴△AOG ∽△DCH ,∴可设CH =5k ,DH =12k ,CD =13k , ∴BD =13﹣13k , ∴OC =AB =13﹣13k , ∴OH =13﹣13k +5k =13﹣8k , ∴D (13﹣8k ,12k ),∵反比例函数y =kx (x >0)的图象经过点A (5,12)和点D , ∴5×12=(13﹣8k )×12k , 解得k =58,k =1(舍去), ∴D 的坐标为(8,152).故答案为:(8,152).18.【解答】解:过A 作AE ⊥x 轴,垂足为E ,∵C (0,﹣3),∴OC =3,∵∠AED =∠COD =90°,∠ADE =∠CDO∴△ADE ∽△CDO ,∴AE CO =DE OD =AD CD =13, ∴AE =1;又∵y 轴平分∠ACB ,CO ⊥BD ,∴BO =OD ,∵∠ABC =90°,∴∠OCD =∠DAE =∠ABE ,∴△ABE ∽△DCO ,∴AE OD =BE OC设DE =n ,则BO =OD =3n ,BE =7n ,∴13n =7n 3, ∴n =√77∴OE =4n =4√77∴A (4√77,1)∴k =4√77×1=4√77. 故答案为:4√77.19.【解答】解:∵四边形ABCO 是矩形,AB =1,∴设B (m ,1),∴OA =BC =m ,∵四边形OA ′B ′D 与四边形OABD 关于直线OD 对称,∴OA ′=OA =m ,∠A ′OD =∠AOD =30°,∴∠A ′OA =60°,过A ′作A ′E ⊥OA 于E ,∴OE =12m ,A ′E =√32m ,∴A ′(12m ,√32m ), ∵反比例函数y =k x (k ≠0)的图象恰好经过点A ′,B ,∴12m •√32m =m , ∴m =4√33,∴k =4√33. 故答案为:4√33.20.【解答】解:(方法一)设点A (a ,﹣a +1),B (b ,﹣b +1)(a <b ),则A ′(1a ,11−a ),B ′(1b ,11−b ),∵AB =√(b −a)2+[(−b +1)−(−a +1)]2=√2(b −a)2=√2(b ﹣a )=2√2,∴b ﹣a =2,即b =a +2.∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{b =a +2k =1a(1−a)=1b(1−b), 解得:k =−43.(方法二)∵直线y =﹣x +1上有两点A 、B ,且AB =2√2,∴设点A 的坐标为(a ,﹣a +1),则点B 的坐标为(a +2,﹣a ﹣1),点A ′的坐标为(1a ,11−a ),点B ′的坐标为(1a+2,−1a+1).∵点A ′,B ′均在反比例函数y =k x 的图象上,∴{11−a =ak −1a+1=k(a +2), 解得:{a =−12k =−43. 故答案为:−43.21.【解答】解:∵OA =1,OC =6,∴B 点坐标为(1,6),∴k =1×6=6,∴反比例函数解析式为y =6x ,设AD =t ,则OD =1+t ,∴E 点坐标为(1+t ,t ),∴(1+t )•t =6,整理为t 2+t ﹣6=0,解得t 1=﹣3(舍去),t 2=2,∴正方形ADEF 的边长为2.故答案为:2.22.【解答】解:∵点A (a ,b )(a >0,b >0)在双曲线y =k1x 上,∴k 1=ab ;又∵点A 与点B 关于x 轴的对称,∴B (a ,﹣b )∵点B 在双曲线y =k 2x 上, ∴k 2=﹣ab ;∴k 1+k 2=ab +(﹣ab )=0;故答案为:0.23.【解答】解:在y =−13x +1中,令x =0,得y =1,令y =0,x =3,∴A (3,0),B (0,1),∴OA =3,OB =1,过C 作CE ⊥y 轴于E ,∵四边形ABCD 是矩形,∴∠CBA =90°,∴∠CBE +∠OBA =∠OBA +∠BAO =90°,∴∠CBE =∠BAO ,∵∠BEC =∠AOB =90°,∴△BCE ∽△ABO ,∴OB OA =CE BE =13, 设CE =x ,则BE =3x ,∴C (x ,3x +1),∵矩形ABCD 对称中心为M ,∴M (x+32,3x+12), ∵双曲线y =k x (x >0)正好经过C ,M 两点,∴x (3x +1)=x+32⋅3x+12, 解得:x 1=1,x 2=−13(舍)∴C (1,4),设直线AC 的解析式为:y =kx +b ,把A (3,0)和C (1,4)代入得:{3k +b =0k +b =4, 解得:{k =−2b =6, ∴直线AC 的解析式为:y =﹣2x +6,故答案为:y =﹣2x +6.24.【解答】解:过A 作AE ⊥y 轴于E 过B 作BF ⊥y 轴于F ,∵∠AOB =90°,∠ABC =30°,∴tan30°=OA OB =√33, ∵∠OAE +∠AOE =∠AOE +∠BOF =90°,∴∠OAE =∠BOF ,∴△AOE ∽△BOF ,∴AE OF =OE BF =OA OB =√33, 设A (m ,−4m ),∴AE =﹣m ,OE =−4m,∴OF =√3AE =−√3m ,BF =√3OE =−4√3m , ∴B (4√3m ,√3m ), ∴k =√3m •4√3m=12. 故答案为:12.25.【解答】解:∵点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限,点A(﹣2,1)在第二象限,∴点C (﹣6,m )一定在第三象限,∵B (3,2)在第一象限,反比例函数y =k x(k ≠0)的图象经过其中两点,∴反比例函数y =k x (k ≠0)的图象经过B (3,2),C (﹣6,m ),∴3×2=﹣6m ,∴m =﹣1,故答案为:﹣1.26.【解答】解:连接BD ,与AC 交于点O ′,∵四边形ABCD 是正方形,AC ⊥x 轴,∴BD 所在对角线平行于x 轴,∵B (0,2),∴O ′C =2=BO ′=AO ′=DO ′,∴点A 的坐标为(2,4),∴k =2×4=8,故答案为:8.27.【解答】解:设A 点坐标为(a ,b ),则k =ab ,y =ab x,如图, 过点A 作AM ⊥x 轴于点M ,过点B 作BN ⊥y 轴于点N ,过点E 作EF ⊥x 轴于点F , ∵四边形ABCD 是矩形,∴AD =BC ,∠ADM +∠CDO =90°,∠BCN +∠DCO =90°,∵∠CDO +∠DCO =90°,∴∠ADM +∠BCN =90°,∵∠ADM +∠DAM =90°,∴∠BCN =∠DAM ,在△ADM 和△CBN 中,{∠DAM =∠BCN ∠AMD =∠CNB =90°AD =CB,∴△ADM ≌△CBN (AAS ),∴CN =AM =b ,BN =MD ,∴ON=3﹣b,即y B=b﹣3,且B在y=abx图象上,∴B(abb−3,b﹣3),∴BN=DM=|x B|=ab3−b,∵点E是AD的中点,∴MF=ab6−2b,OF=a+ab6−2b,OD=a+ab3−b,∴E(a+ab6−2b,12b),∵双曲线y=kx经过AD的中点E,∴(a+ab6−2b)•12b=ab,解得b=2,∴A(a,2),B(﹣2a,﹣1,D(3a,0),而C(0,﹣3),且矩形ABCD有AC=BD,∴(a﹣0)2+(2+3)2=(﹣2a﹣3a)2+(﹣1﹣0)2,解得a=1或a=﹣1(舍去),∴A(1,2),代入y=kx得:k=2.故答案为:2.28.【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠ADE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=kx上,∴y=5 x,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;29.【解答】解:设直线AB的解析式为y=kx,A(m,2m ),B(n,6n),C(m,6m)∴{2m =km6 n =kn,∴k=2m2=6n2,∴n=√3m,∵AC=AE,即6m −2m=n﹣m,∴4m=√3m−m,解得:4m2=√3−1,∵S正方形=AC2=(4m )2=4×4m2=4(√3−1)=4√3−4;30.【解答】解:如图,过点O任意作两条直线分别交反比例函数的图象于A,C,B,D,得到四边形ABCD.由对称性可知,OA =OC ,OB =OD ,∴四边形ABCD 是平行四边形,当直线AC 和直线BD 关于直线y =x 对称时,此时OA =OC =OB =OD ,即四边形ABCD 是矩形.∵反比例函数的图象在一,三象限,∴直线AC 与直线BD 不可能垂直,∴四边形ABCD 不可能是菱形或正方形,故选项①④正确,故答案为:①④.31.【解答】解:∵四边形ABCD 是矩形,点A 的坐标为(2,1),∴点D 的横坐标为2,点B 的纵坐标为1,当x =2时,y =62=3,当y =1时,x =6,则AD =3﹣1=2,AB =6﹣2=4,则矩形ABCD 的周长=2×(2+4)=12,故答案为:12.32.【解答】解:在反比例函数y =2x 中k =2>0,∴x <0时,y 的值随着x 的增加而减小,∵x 1<x 2<0,∴y 1>y 2.故答案为:>.三.解答题(共7小题)33.【解答】解:(1)∵点E (﹣4,12)在y =k x 上, ∴k =﹣2,∴反比例函数的解析式为y =−2x ,∵F (m ,2)在y =−2x上, ∴m =﹣1.(2)函数y =k x 图象在菱形ABCD 内x 的取值范围为:﹣4<x <﹣1或1<x <4.34.【解答】解:(1)过点P 作x 轴垂线PG ,连接BP ,∵P 是正六边形ABCDEF 的对称中心,CD =2,∴BP =2,G 是CD 的中点,∴PG =√3,∴P (2,√3),∵P 在反比例函数y =k x 上,∴k =2√3,∴y =2√3x ,由正六边形的性质,A (1,2√3),∴点A 在反比例函数图象上;(2)D (3,0),E (4,√3),设DE 的解析式为y =mx +b ,∴{3m +b =04m +b =√3, ∴{m =√3b =−3√3, ∴y =√3x ﹣3√3,联立方程{y =2√3x y =√3x −3√3解得x =3+√172, ∴Q 点横坐标为3+√172;(3)A (1,2√3),B (0,√3),C (1,0),D (3,0),E (4,√3),F (3,2√3), 设正六边形向左平移m 个单位,向上平移n 个单位,则平移后点的坐标分别为 ∴A (1﹣m ,2√3+n ),B (﹣m ,√3+n ),C (1﹣m ,n ),D (3﹣m ,n ),E (4﹣m ,√3+n ),F (3﹣m ,2√3+n ),①将正六边形向左平移两个单位后,E (2,√3),F (1,2√3);则点E 与F 都在反比例函数图象上;②将正六边形向右平移一个单位,再向上平移√3个单位后,C (2,√3),B (1,2√3) 则点B 与C 都在反比例函数图象上;35.【解答】解:(1)∵f(x)=1x2+x(x<0),∴f(﹣3)=1(−3)2−3=−269,f(﹣4)=1(−4)2−4=−6316故答案为:−269,−6316(2)∵﹣4<﹣3,f(﹣4)<f(﹣3)∴函数f(x)=1x2+x(x<0)是增函数故答案为:增(3)设x1<x2<0,∵f(x1)﹣f(x2)=1x12+x1−1x22−x2=(x1﹣x2)(1−x1+x2x12x22)∵x1<x2<0,∴x1﹣x2<0,x1+x2<0,∴f(x1)﹣f(x2)<0∴f(x1)<f(x2)∴函数f(x)=1x2+x(x<0)是增函数36.【解答】解:(1)把点(﹣t+52,﹣2)代入反比例函数y=−3x得,(﹣t+52)×(﹣2)=﹣3,解得,t=1;(2)①当x1>0,x2>0,且x1=x2+2时,这两个点在第四象限,y2−y1 y1y2=1y1−1y2=−x13+x23=x2−x13=−23;②根据函数的图象可知,Ⅰ)当0>x1>x2时,y1>y2>0,Ⅱ)当x1>0>x2时,y1<0<y2,Ⅲ)当x1>x2>0时,0>y1>y2,37.【解答】解:(1)x=−12时,y=−2x+1=5,∴m=5,x =3时,y =−2x +1=13,∴n =13;故答案为:5,13; (2)把y 轴左边各点和右边各点,分别用条光滑曲线顺次连接起来,如图:(3)根据图象可得:①在y 轴左边,y 随x 增大而增大,故答案为:增大;②函数y =x−2x 的图象是由y =−2x 的图象向上平移1个单位得到的, 故答案为:上,1;③函数图象关于点 (0,1)中心对称,故答案为:(0,1).38.【解答】解:(1)由分式的分母不为0得:x ﹣1≠0,∴x ≠1;故答案为:x ≠1.(2)当x =﹣1时,y =1x−1+1=12,当x =32时,y =1x−1+1=3, ∴m =12,n =3, 故答案为:12,3. (3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值1x−1+1>32时,x的取值范围是1<x<3,故答案为:1<x<3.39.【解答】解:(1)∵正方形ABCD的边长为2,点E的坐标为(3,n),∴OB=3,AB=AD=2,∴D(1,2),∵反比例函数y=kx在第一象限的图象经过点D,∴k=1×2=2,∴反比例函数的解析式为:y=2 x,∵反比例函数y=kx在第一象限的图象交BC于E,∴n=2 3;(2)设D(x,2),∵点E是BC的中点,∴E(x+2,1),∵反比例函数y=kx在第一象限的图象经过点D、点E,∴2x=x+2,解得x=2,∴D(2,2),∴OA=AD=2,∴OD=√OA2+AD2=2√2.。
第一章 反比例函数§1.1反比例函数(1)一.自学导航:1.如果1xy =,那么x y 和成 关系。
2.一般地,如果两个变量y 与x 的关系可以表示成 ( ) 的形式,那么称y 是x 的 函数。
3. 也可以写成1(0)y kx x -=≠。
二、问题探究:问题一:正确理解反比例函数的表达式。
例1.下列函数中,属于反比例函数的是( )A .3x y =- B . 12y x = C .23y x =+ D .2y x =三、综合运用:1.下列函数中,属于反比例函数的是( )A .3y x =B . 2x y =- C .2y x=- D .122=+y x 2.如果反比例函数m y x=经过点(3,﹣2),那么m 的值是( ) A .6 B .﹣6C .23- D .1 3.函数11+=x y 中自变量x 的取值范围是. A .x ≠﹣1 B .x >﹣1C .x ≠1D .x ≠04. 已知函数13m y x +=是反比例函数,那么m 的值是 。
5. 点(-3,5)在反比例函数xk y =的图象上,则k 的值是 。
6. 反比例函数xy 23=中,常数k 的值应该是 。
7.从下列式子中写出y 关于x 的函数的解析式,并且指出其中哪些是一次函数,哪些是反比例函数?⑴.3x y += ⑵. 3xy =⑶.15xy =- ⑷.15x y -=-8.若3231m y x n -=-+-是反比例函数,那么,试求35n y m x =-+的表达式。
§1.1 反比例函数(2)一.自学导航:一般地,如果两个变量y与x 的关系可以表示成 ( )的形式,那么称y 是x 的 函数。
二、问题探究:问题一:根据实际问题中的变量关系,建立反比例函数的模型。
例1. 当矩形的面积2100cm 的为时,它的相邻两条边长()y cm 和()x cm 有什么关系?y 是x 的反比例函数吗?问题二:根据实际问题中反比例函数两个变量的实际意义,求出自变量的取值范围。
中考数学复习----反比例函数之定义、图像与性质知识点总结与练习题(含答案解析)知识点总结1. 反比例函数的定义:形如()0≠=k xky 的函数叫做反比例函数。
有时也用k xy =或1−=kx y 表示。
2. 反比例函数的图像:反比例函数的图像是双曲线。
3. 反比例函数的性质与图像:反比例函数()0≠=k xky k 的符号0>k0<k所在象限一、三象限二、四象限大致图像增减性在一个支上(每一个象限内),y 随x 的增大而减小。
在一个支上(每一个象限内),y 随x 的增大而增大。
对称性图像关于原点对称练习题1.(2022•黔西南州)在平面直角坐标系中,反比例函数y =xk(k ≠0)的图像如图所示,则一次函数y =kx +2的图像经过的象限是( ) A .一、二、三 B .一、二、四C .一、三、四D .二、三、四【分析】先根据反比例函数的图像位于二,四象限,可得k <0,由一次函数y =kx +2中,k <0,2>0,可知它的图像经过的象限. 【解答】解:由图可知:k <0,∴一次函数y =kx +2的图像经过的象限是一、二、四. 故选:B .2.(2022•上海)已知反比例函数y =xk(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图像上的为( ) A .(2,3)B .(﹣2,3)C .(3,0)D .(﹣3,0)【分析】根据反比例函数的性质判断即可.【解答】解:因为反比例函数y =(k ≠0),且在各自象限内,y 随x 的增大而增大, 所以k <0,A .2×3=6>0,故本选项不符合题意;B .﹣2×3=﹣6<0,故本选项符合题意;C .3×0=0,故本选项不符合题意;D .﹣3×0=0,故本选项不符合题意; 故选:B .3.(2022•广东)点(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =x4图像上,则y 1,y 2,y 3,y 4中最小的是( ) A .y 1B .y 2C .y 3D .y 4【分析】根据k >0可知增减性:在每一象限内,y 随x 的增大而减小,根据横坐标的大小关系可作判断. 【解答】解:∵k =4>0,∴在第一象限内,y 随x 的增大而减小,∵(1,y 1),(2,y 2),(3,y 3),(4,y 4)在反比例函数y =图像上,且1<2<3<4, ∴y 4最小. 故选:D .4.(2022•云南)反比例函数y =x6的图像分别位于( ) A .第一、第三象限 B .第一、第四象限 C .第二、第三象限D .第二、第四象限【分析】根据反比例函数的性质,可以得到该函数图像位于哪几个象限,本题得以解决.【解答】解:反比例函数y =,k =6>0, ∴该反比例函数图像位于第一、三象限, 故选:A .5.(2022•镇江)反比例函数y =xk(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,写出符合条件的k 的值 (答案不唯一,写出一个即可). 【分析】先根据已知条件判断出函数图像所在的象限,再根据系数k 与函数图像的关系解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过A (x 1,y 1)、B (x 2,y 2)两点,当x 1<0<x 2时,y 1>y 2,∴此反比例函数的图像在二、四象限, ∴k <0,∴k 可为小于0的任意实数,例如,k =﹣1等. 故答案为:﹣1.6.(2022•福建)已知反比例函数y =xk的图像分别位于第二、第四象限,则实数k 的值可以是 .(只需写出一个符合条件的实数)【分析】根据图像位于第二、四象限,易知k <0,写一个负数即可. 【解答】解:∵该反比例图像位于第二、四象限, ∴k <0,∴k 取值不唯一,可取﹣3, 故答案为:﹣3(答案不唯一).7.(2022•成都)在平面直角坐标系xOy 中,若反比例函数y =xk 2−的图像位于第二、四象限,则k 的取值范围是 .【分析】根据反比例函数的性质列不等式即可解得答案. 【解答】解:∵反比例函数y =的图像位于第二、四象限,∴k ﹣2<0, 解得k <2, 故答案为:k <2.8.(2022•襄阳)二次函数y =ax 2+bx +c 的图像如图所示,则一次函数y =bx +c 和反比例函数y =xa在同一平面直角坐标系中的图像可能是( ) A . B .C .D .【分析】根据二次函数图像开口向下得到a <0,再根据对称轴确定出b ,根据与y 轴的交点确定出c <0,然后确定出一次函数图像与反比例函数图像的情况,即可得解. 【解答】解:∵二次函数图像开口方向向下, ∴a <0,∵对称轴为直线x =﹣>0,∴b >0,∵与y 轴的负半轴相交, ∴c <0,∴y =bx +c 的图像经过第一、三、四象限, 反比例函数y =图像在第二四象限, 只有D 选项图像符合. 故选:D .9.(2022•菏泽)根据如图所示的二次函数y =ax 2+bx +c 的图像,判断反比例函数y =xa与一次函数y =bx +c 的图像大致是( )A .B .C .D .【分析】先根据二次函数的图像,确定a 、b 、c 的符号,再根据a 、b 、c 的符号判断反比例函数y =与一次函数y =bx +c 的图像经过的象限即可. 【解答】解:由二次函数图像可知a >0,c <0, 由对称轴x =﹣>0,可知b <0,所以反比例函数y =的图像在一、三象限,一次函数y =bx +c 图像经过二、三、四象限. 故选:A .10.(2022•安顺)二次函数y =ax 2+bx +c (a ≠0)的图像如图所示,则一次函数y =ax +b 和反比例函数y =xc(c ≠0)在同一直角坐标系中的图像可能是( ) A . B .C .D .【分析】直接利用二次函数图像经过的象限得出a ,b ,c 的取值范围,进而利用一次函数与反比例函数的性质得出答案.【解答】解:∵二次函数y =ax 2+bx +c 的图像开口向上, ∴a >0,∵该抛物线对称轴位于y 轴的右侧, ∴a 、b 异号,即b <0. ∵抛物线交y 轴的负半轴,∴c <0,∴一次函数y =ax +b 的图像经过第一、三、四象限,反比例函数y =(c ≠0)在二、四象限. 故选:A .11.(2022•西藏)在同一平面直角坐标系中,函数y =ax +b 与y =axb(其中a ,b 是常数,ab ≠0)的大致图像是( )A .B .C .D .【分析】根据a 、b 的取值,分别判断出两个函数图像所过的象限,要注意分类讨论. 【解答】解:若a >0,b >0,则y =ax +b 经过一、二、三象限,反比例函数y =(ab ≠0)位于一、三象限,若a >0,b <0,则y =ax +b 经过一、三、四象限,反比例函数数y =(ab ≠0)位于二、四象限, 若a <0,b >0,则y =ax +b 经过一、二、四象限,反比例函数y =(ab ≠0)位于二、四象限, 若a <0,b <0,则y =ax +b 经过二、三、四象限,反比例函数y =(ab ≠0)位于一、三象限, 故选:A .12.(2022•张家界)在同一平面直角坐标系中,函数y =kx +1(k ≠0)和y =xk(k ≠0)的图像大致是( )A.B.C.D.【分析】分k>0或k<0,根据一次函数与反比例函数的性质即可得出答案.【解答】解:当k>0时,一次函数y=kx+1经过第一、二、三象限,反比例函数y=位于第一、三象限;当k<0时,一次函数y=kx+1经过第一、二、四象限,反比例函数y=位于第二、四象限;故选:D.13.(2022•绥化)已知二次函数y=ax2+bx+c的部分函数图像如图所示,则一次函数y=ax+b2﹣4ac与反比例函数y=xc ba++24在同一平面直角坐标系中的图像大致是()A.B.C.D.【分析】由二次函数y=ax2+bx+c的部分函数图像判断a,b2﹣4ac及4a+2b+c的符号,即可得到答案.【解答】解:∵二次函数y=ax2+bx+c的部分函数图像开口向上,∴a>0,∵二次函数y =ax 2+bx +c 的部分函数图像顶点在x 轴下方,开口向上, ∴二次函数y =ax 2+bx +c 的图像与x 轴有两个交点,b 2﹣4ac >0, ∴一次函数y =ax +b 2﹣4ac 的图像位于第一,二,三象限,由二次函数y =ax 2+bx +c 的部分函数图像可知,点(2,4a +2b +c )在x 轴上方, ∴4a +2b +c >0, ∴y =的图像位于第一,三象限,据此可知,符合题意的是B , 故选:B .14.(2022•贺州)已知一次函数y =kx +b 的图像如图所示,则y =﹣kx +b 与y =xb的图像为( )A .B .C .D .【分析】本题形数结合,根据一次函数y =kx +b 的图像位置,可判断k 、b 的符号;再由一次函数y =﹣kx +b ,反比例函数y =中的系数符号,判断图像的位置.经历:图像位置﹣系数符号﹣图像位置.【解答】解:根据一次函数y =kx +b 的图像位置,可判断k >0、b >0. 所以﹣k <0.再根据一次函数和反比例函数的图像和性质, 故选:A .15.(2022•广西)已知反比例函数y =xb(b ≠0)的图像如图所示,则一次函数y =cx ﹣a (c ≠0)和二次函数y =ax 2+bx +c (a ≠0)在同一平面直角坐标系中的图像可能是( )A .B .C .D .【分析】本题形数结合,根据反比例函数y =(b ≠0)的图像位置,可判断b >0;再由二次函数y =ax 2+bx +c (a ≠0)的图像性质,排除A ,B ,再根据一次函数y =cx ﹣a (c ≠0)的图像和性质,排除C .【解答】解:∵反比例函数y =(b ≠0)的图像位于一、三象限, ∴b >0;∵A 、B 的抛物线都是开口向下,∴a <0,根据同左异右,对称轴应该在y 轴的右侧, 故A 、B 都是错误的.∵C 、D 的抛物线都是开口向上,∴a >0,根据同左异右,对称轴应该在y 轴的左侧, ∵抛物线与y 轴交于负半轴, ∴c <0由a >0,c <0,排除C . 故选:D .16.(2022•滨州)在同一平面直角坐标系中,函数y =kx +1与y =﹣xk(k 为常数且k ≠0)的图像大致是( )A .B .C .D .【分析】根据一次函数和反比例函数的性质即可判断.【解答】解:当k >0时,则﹣k <0,一次函数y =kx +1图像经过第一、二、三象限,反比例函数图像在第二、四象限,所以A 选项正确,C 选项错误;当k <0时,一次函数y =kx +1图像经过第一、二,四象限,所以B 、D 选项错误. 故选:A .17.(2022•德阳)一次函数y =ax +1与反比例函数y =﹣xa在同一坐标系中的大致图像是( )A .B .C .D .【分析】根据一次函数与反比例函数图像的特点,可以从a >0,和a <0,两方面分类讨论得出答案.【解答】解:分两种情况:(1)当a >0,时,一次函数y =ax +1的图像过第一、二、三象限,反比例函数y =﹣图像在第二、四象限,无选项符合;(2)当a <0,时,一次函数y =ax +1的图像过第一、二、四象限,反比例函数y =﹣图像在第一、三象限,故B 选项正确. 故选:B .18.(2022•阜新)已知反比例函数y =x k (k ≠0)的图像经过点(﹣2,4),那么该反比例函数图像也一定经过点( )A .(4,2)B .(1,8)C .(﹣1,8)D .(﹣1,﹣8)【分析】先把点(﹣2,4)代入反比例函数的解析式求出k 的值,再对各选项进行逐一判断即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(﹣2,4),∴k =﹣2×4=﹣8,A 、∵4×2=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;B 、∵1×8=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误;C 、﹣1×8=﹣8,∴此点在反比例函数的图像上,故本选项正确;D 、(﹣1)×(﹣8)=8≠﹣8,∴此点不在反比例函数的图像上,故本选项错误. 故选:C .19.(2022•襄阳)若点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =x2的图像上,则y 1,y 2的大小关系是( )A .y 1<y 2B .y 1=y 2C .y 1>y 2D .不能确定 【分析】根据反比例函数图像上点的坐标特征即可求解.【解答】解:∵点A (﹣2,y 1),B (﹣1,y 2)都在反比例函数y =的图像上,k =2>0,∴在每个象限内y 随x 的增大而减小,∵﹣2<﹣1,∴y 1>y 2,故选:C .20.(2022•海南)若反比例函数y =xk (k ≠0)的图像经过点(2,﹣3),则它的图像也一定经过的点是( )A .(﹣2,﹣3)B .(﹣3,﹣2)C .(1,﹣6)D .(6,1) 【分析】将(2,﹣3)代入y =(k ≠0)即可求出k 的值,再根据k =xy 解答即可.【解答】解:∵反比例函数y =(k ≠0)的图像经过点(2,﹣3),∴k =2×(﹣3)=﹣6,A 、﹣2×(﹣3)=6≠﹣6,故A 不正确,不符合题意;B 、(﹣3)×(﹣2)=6≠﹣6,故B 不正确,不符合题意;C 、1×(﹣6)=﹣6,故C 正确,符合题意,D 、6×1=6≠﹣6,故D 不正确,不符合题意.故选:C .21.(2022•武汉)已知点A (x 1,y 1),B (x 2,y 2)在反比例函数y =x6的图像上,且x 1<0<x 2,则下列结论一定正确的是( )A .y 1+y 2<0B .y 1+y 2>0C .y 1<y 2D .y 1>y 2 【分析】先根据反比例函数y =判断此函数图像所在的象限,再根据x 1<0<x 2判断出A (x 1,y 1)、B (x 2,y 2)所在的象限即可得到答案.【解答】解:∵反比例函数y =中的6>0,∴该双曲线位于第一、三象限,且在每一象限内y 随x 的增大而减小,∵点A (x 1,y 1),B (x 2,y 2)在反比例函数y =的图像上,且x 1<0<x 2,∴点A 位于第三象限,点B 位于第一象限,∴y 1<y 2.故选:C .22.(2022•天津)若点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =x8的图像上,则x 1,x 2,x 3的大小关系是( )A .x 1<x 2<x 3B .x 2<x 3<x 1C .x 1<x 3<x 2D .x 2<x 1<x 3 【分析】根据函数解析式算出三个点的横坐标,再比较大小.【解答】解:点A (x 1,2),B (x 2,﹣1),C (x 3,4)都在反比例函数y =的图像上, ∴x 1==4,x 2==﹣8,x 3==2. ∴x 2<x 3<x 1,故选:B .23.(2022•淮安)在平面直角坐标系中,将点A (2,3)向下平移5个单位长度得到点B ,若点B 恰好在反比例函数y =xk 的图像上,则k 的值是 .【分析】点A (2,3)向下平移5个单位长度得到点B (2,﹣2),代入y =利用待定系数法即可求得k 的值.【解答】解:将点A (2,3)向下平移5个单位长度得到点B ,则B (2,﹣2), ∵点B 恰好在反比例函数y =的图像上,∴k =2×(﹣2)=﹣4,故答案为:﹣4.24.(2022•北京)在平面直角坐标系xOy 中,若点A (2,y 1),B (5,y 2)在反比例函数y =xk (k >0)的图像上,则y 1 y 2(填“>”“=”或“<”). 【分析】先根据函数解析式中的比例系数k 确定函数图像所在的象限,再根据各象限内点的坐标特征及函数的增减性解答.【解答】解:∵k >0,∴反比例函数y =(k >0)的图像在一、三象限,∵5>2>0,∴点A (2,y 1),B (5,y 2)在第一象限,y 随x 的增大而减小,∴y 1>y 2,故答案为:>.。
反比例函数的图像与性质时间:100分钟总分:100一、选择题〔本大题共10小题,共30.0分〕1.二次函数y=ax2+bx+c的图象如下,那么一次函数y=ax−2b与反比例函数y =c在同一平面直角坐标系中的图象x大致是()A. B.C. D.2.如图,△ABC的三个顶点分别为A(1,2),B(4,2),C(4,4).假设反在第一象限内的图象与△ABC有交点,那么k的比例函数y=kx取值范围是()A. 1≤k≤4B. 2≤k≤8C. 2≤k≤16D. 8≤k≤163.假设A(3,y1),B(−2,y2),C(−1,y3)三点都在函数y=−1的图象上,那么y1,y2,xy3的大小关系是()A. y1<y2<y3B. y1>y2>y3C. y1=y2=y3D. y1<y3<y24.在双曲线y=1−k的任一支上,y都随x的增大而增大,那么k的值可以是()xA. 2B. 0C. −2D. 15.假设反比例函数y=2k+1的图象位于第一、三象限,那么k的取值可以是()xA. −3B. −2C. −1D. 06.如图,AB⊥x轴,B为垂足,双(x>0)与△AOB的两曲线y=kx条边OA,AB分别相交于C,D两点,OC=CA,△ACD的面积为3,那么k等于()A. 2B. 3C. 4D. 6第 1 页7.一次函数y1=kx+b(k≠0)与反比例函数y2=mx(m≠0),在同一直角坐标系中的图象如下图,假设y1<y2,那么x的取值范围是()A. −2<x<0或x>1B. x>1C. x<−2或0<x<1D. −2<x<18.如图,反比例函数y=kx(x>0),那么k的取值范围是()A. 1<k<2B. 2<k<3C. 2<k<4D. 2≤k≤49.如图,A,B两点在反比例函数y=k1x 的图象上,C,D两点在反比例函数y=k2x的图象上,AC⊥y轴于点E,BD⊥y轴于点F,AC=2,BD=1,EF=3,那么k1−k2的值是()A. 6B. 4C. 3D. 210.反比例函数y=ax (a>0,a为常数)和y=2x在第一象限内的图象如下图,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x 的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,那么点B是MD的中点.其中正确结论的个数是()A. 0B. 1C. 2D. 3二、填空题〔本大题共9小题,共27.0分〕11.如图,点A在双曲线y=1x 上,点B在双曲线y=3x上,且AB//x轴,C、D在x轴上,假设四边形ABCD为矩形,那么它的面积为______ .(x<0)12.如图,在平面直角坐标系中,点A是函数y=kx图象上的点,过点A 作y 轴的垂线交y 轴于点B,点C在x轴上,假设△ABC的面积为1,那么k的值为______ .13.如图,四边形OABC是平行四边形,点C在x轴上,(x>0)的图象经过点A(5,12),且与反比例函数y=kx边BC交于点D.假设AB=BD,那么点D的坐标为______ .14.如图,在平面直角坐标系中,点A在第二象限内,点B在x轴上,∠AOB=30∘,AB=BO,反比例函数y=k(x<0)的图象经过点A,假设S△ABO=√3,那么k的x值为______ .15.点A(1,m),B(2,n)在反比例函数y=−2的图象上,那么m与n的大小关系为______.x(a为常数)的图象,在每一个象限内,y随x的增大而减小,16.假如反比例函数y=a+3x写出一个符合条件的a的值为______.17.矩形ABCD的四个顶点均在反比例函数y=1的图象上,且点A的横坐标是2,那x么矩形ABCD的面积为______.(x<0)的图象上,过18.如图,假设点P在反比例函数y=−3x点P作PM⊥x轴于点M,PN⊥y轴于点N,那么矩形PMON的面积为______.19.反比例函数的图象经过点A(3,4),那么当−6<x<−3时,y的取值范围是______.三、计算题〔本大题共3小题,共27.0分〕20.如图,在Rt△OAB中,∠OAB=90∘,OA=AB,且△OAB(x>0)的图象经过点B,求点B的面积为9,函数y=kx的坐标及该反比例函数的表达式.第 3 页21.如图,在Rt△AOB中,∠ABO=90∘,OB=4,AB=8,且反比例函数y=k在第一象限内的图象分别交OA、xAB于点C和点D,连结OD,假设S△BOD=4,(1)求反比例函数解析式;(2)求C点坐标.),过点P作x轴的平行线交y轴于22.如图,点P的坐标为(2,32(x>0)于点N;作PM⊥AN交双曲线y=点A,交双曲线y=kxk(x>0)于点M,连接AM.PN=4.x(1)求k的值.(2)求△APM的面积.四、解答题〔本大题共2小题,共16.0分〕(x>0) 23.如图,在平面直角坐标系中,菱形OBCD的边OB在x轴上,反比例函数y=kx 的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为(4,2).(1)求反比例函数的表达式;(2)求点F的坐标.24.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例(k>0)的图象与BC边交于点E.函数y=kx(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EFA的面积最大,最大面积是多少?答案和解析【答案】1. C2. C3. A4. A5. D6. C7. C8. C9. D10. D11. 212. −2)13. (8,15214. −3√315. m<n第 5 页16. −2 17. 15218. 319. −4<y <−220. 解:∵∠OAB =90∘,OA =AB ,∴12⋅OA ⋅OA =9,∴OA =3√2, ∴B(3√2,3√2),把B(3√2,3√2)代入y =kx 得k =3√2⋅3√2=18, ∴反比例函数解析式为y =18x .21. 解:(1)∵S △BOD =12k ,∴12k =4,解得k =8, ∴反比例函数解析式为y =8x ;(2)设直线OA 的解析式为y =ax ,把A(4,8)代入得4a =8,解得a =2, 所以直线OA 的解析式为y =2x , 解方程组{y =8xy=2x得{y =4x=2或{y =−4x=−2,所以C 点坐标为(2,4).22. 解:(1)∵点P 的坐标为(2,32),∴AP =2,OA =32. ∵PN =4,∴AN =6, ∴点N 的坐标为(6,32).把N(6,32)代入y =k x 中,得k =9.(2)∵k =9,∴y =9x . 当x =2时,y =92. ∴MP =92−32=3. ∴S △APM =12×2×3=3.23. 解:(1)∵反比例函数y =kx 的图象经过点A ,A点的坐标为(4,2), ∴k =2×4=8,∴反比例函数的解析式为y =8x ;(2)过点A 作AM ⊥x 轴于点M ,过点C 作CN ⊥x 轴于点N , 由题意可知,CN =2AM =4,ON =2OM =8, ∴点C 的坐标为C(8,4),设OB =x ,那么BC =x ,BN =8−x , 在Rt △CNB 中,x 2−(8−x)2=42, 解得:x =5,∴点B 的坐标为B(5,0),设直线BC 的函数表达式为y =ax +b ,直线BC 过点B(5,0),C(8,4), ∴{5a +b =08a +b =4,解得:{a =43b =−203,∴直线BC 的解析式为y =43x −203,根据题意得方程组{y =34x −203y =8x,解此方程组得:{x =−1y =−8或{x =6y =43 ∵点F 在第一象限, ∴点F 的坐标为F(6,43).24. 解:(1)∵在矩形OABC 中,OA =3,OC =2,∴B(3,2),∵F 为AB 的中点, ∴F(3,1),∵点F 在反比例函数y =kx (k >0)的图象上, ∴k =3,∴该函数的解析式为y =3x (x >0);(2)由题意知E ,F 两点坐标分别为E(k2,2),F(3,k3), ∴S △EFA =12AF ⋅BE =12×13k(3−12k), =12k −112k 2=−112(k 2−6k +9−9) =−112(k −3)2+34,在边AB 上,不与A ,B 重合,即0<k3<2,解得0<k <6,∴当k=3时,S有最大值.S最大值=34.【解析】1. 解:二次函数y=ax2+bx+c的图象开口向下可知a<0,对称轴位于y轴左侧,a、b异号,即b>0.图象经过y轴正半可知c>0,由a<0,b>0可知,直线y=ax−2b经过一、二、四象限,由c>0可知,反比例函数y=cx的图象经过第一、三象限,应选:C.先根据二次函数的图象开口向下可知a<0,再由函数图象经过y轴正半可知c>0,利用排除法即可得出正确答案.此题考察的是二次函数的图象与系数的关系,反比例函数及一次函数的性质,熟知以上知识是解答此题的关键.2. 解:∵△ABC是直角三角形,∴当反比例函数y=kx经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=16,∴2≤k≤16.应选C.由于△ABC是直角三角形,所以当反比例函数y=kx经过点A时k最小,经过点C时k 最大,据此可得出结论.此题考察的是反比例函数的性质,熟知反比例函数图象上点的坐标特点是解答此题的关键.3. 【分析】此题考察了反比例函数的性质,主要是它的增减性,相对其它性质,这个知识比拟难理解,利用数形结合的思想更容易一些;注意反比例函数的图象,在每一分支,y随x的增大而增大或减小.因为反比例函数的系数为−1,那么图象的两个分支在二、四象限,且每一分支,y随x的增大而增大,作出判断;也可以依次将x的值代入计算求出对应的y值,再比拟.【解答】解:∵k=−1<0,∴反比例函数的两个分支在二、四象限,且每一分支,y随x的增大而增大,∵3>0,∴y1<0,∵−2<−1<0,∴0<y2<y3,∴y1<0<y2<y3,应选A.4. 解:∵y都随x的增大而增大,∴此函数的图象在二、四象限,∴1−k<0,∴k>1.故k可以是2(答案不唯一),应选A.先根据反比例函数的增减性判断出1−k的符号,再求出k的取值范围即可.第 7 页此题主要考察反比例函数的性质的知识点,此题属开放行题目,答案不唯一,解答此题的关键是根据题意判断出函数图象所在的象限,再根据反比例函数的性质解答即可.5. 【分析】此题考察的是反比例函数的性质,熟知反比例函数的图象与系数的关系是解答此题的关键.先根据反比例函数的性质列出关于k的不等式,求出k的取值范围,进而可得出结论.【解答】解:∵反比例函y=2k+1的图象位于第一、三象限,x∴2k+1>0,解得k>−1,2∴k的值可以是0.应选D.6. 解:连接OD,过点C作CE⊥x轴,∵OC=CA,∴OE:OB=1:2;设△OBD面积为x,根据反比例函数k的意义得到三角形OCE面积为x,∵△COE∽△AOB,∴三角形COE与三角形BOA面积之比为1:4,∵△ACD的面积为3,∴△OCD的面积为3,∴三角形BOA面积为6+x,即三角形BOA的面积为6+x=4x,解得x=2,∴1|k|=2,2∵k>0,∴k=4,应选:C.由反比例函数k的几何意义得到三角形OCE与三角形OAC面积相等,由相似三角形面积之比等于相似比得到三角形ODE与三角形OBA面积之比,设三角形OAC面积为x,列出关于x的方程,求出方程的解确定出三角形OAC与三角形OCB面积之比即可此题属于反比例函数综合题,涉及的知识有:相似三角形的断定与性质,以及反比例函数k的几何意义,纯熟掌握反比例函数k的几何意义是解此题的关键.7. 解:由函数图象可知,当x<−2或0<x<1时,一次函数的图象在二次函数图象的下方.应选C.直接根据函数图象可得出结论.此题考察的是反比例函数的性质,根据题意利用数形结合求出不等式的解集是解答此题的关键.8. 解:∵A(2,2),B(2,1),∴当双曲线经过点A时,k=2×2=4;当双曲线经过点B时,k=2×1=2,∴2<k<4.应选C.直接根据A、B两点的坐标即可得出结论.此题考察的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定合适此函数的解析式是解答此题的关键.9. 解:连接OA、OC、OD、OB,如图:由反比例函数的性质可知S△AOE=S△BOF =12|k1|=12k1,S△COE=S△DOF =1 2|k2|=−12k2,∵S△AOC=S△AOE+S△COE,∴12AC⋅OE=12×2OE=OE=12(k1−k2)…①,∵S△BOD=S△DOF+S△BOF,∴12BD⋅OF=12×(EF−OE)=12×(3−OE)=32−12OE=12(k1−k2)…②,由①②两式解得OE=1,那么k1−k2=2.应选:D.由反比例函数的性质可知S△AOE=S△BOF=12k1,S△COE=S△DOF=−12k2,结合S△AOC=S△AOE+S△COE和S△BOD=S△DOF+S△BOF可求得k1−k2的值.此题考察反比例函数图象上的点的坐标特征,解题的关键是利用参数,构建方程组解决问题,属于中考常考题型.10. 解:①由于A、B在同一反比例函数y=2x图象上,那么△ODB与△OCA的面积相等,都为12×2=1,正确;②由于矩形OCMD、三角形ODB、三角形OCA为定值,那么四边形MAOB的面积不会发生变化,正确;③连接OM,点A是MC的中点,那么△OAM和△OAC的面积相等,∵△ODM的面积=△OCM的面积=a2,△ODB与△OCA的面积相等,∴△OBM与△OAM的面积相等,∴△OBD和△OBM面积相等,∴点B一定是MD的中点.正确;应选:D.①由反比例系数的几何意义可得答案;②由四边形OAMB的面积=矩形OCMD面积−(三角形ODB面积+面积三角形OCA),解答可知;③连接OM,点A是MC的中点可得△OAM和△OAC的面积相等,根据△ODM的面积=△OCM的面积、△ODB与△OCA的面积相等解答可得.此题考察了反比例函数y=kx(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y第 9 页轴垂线,所得矩形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.11. 解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线y=1x上,∴四边形AEOD的面积为1,∵点B在双曲线y=3x上,且AB//x轴,∴四边形BEOC的面积为3,∴矩形ABCD的面积为3−1=2.故答案为:2.根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.此题主要考察了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.12. 解:∵AB⊥y轴,∴AB//CO,∴三角形AOB的面积=12AB⋅OB,∵S三角形ABC =12AB⋅OB=1,∴|k|=2,∵k<0,∴k=−2,故答案为−2.根据条件得到三角形ABO的面积=12AB⋅OB,由于三角形ABC的面积=12AB⋅OB=1,得到|k|=2,即可得到结论.此题考察了反比例函数系数k的几何意义,明确三角形AOB的面积=S三角形ABC是解题的关键.13. 解:∵反比例函数y=kx(x>0)的图象经过点A(5,12),∴k=12×5=60,∴反比例函数的解析式为y=60x,设D(m,60m),由题可得OA的解析式为y=125x,AO//BC,∴可设BC的解析式为y=125x+b,把D(m,60m )代入,可得125m+b=60m,∴b=60m −125m,∴BC的解析式为y=125x+60m−125m,令y=0,那么x=m−25m ,即OC=m−25m,∴平行四边形ABCO中,AB=m−25m,如下图,过D作DE⊥AB于E,过A作AF⊥OC于F,那么△DEB∽△AFO,∴DBDE =AOAF,而AF=12,DE=12−60m,OA=√52+122=13,∴DB=13−65m,∵AB=DB,∴m−25m =13−65m,解得m1=5,m2=8,又∵D在A的右侧,即m>5,∴m=8,∴D的坐标为(8,152).故答案为:(8,152).先根据点A(5,12),求得反比例函数的解析式为y=60x ,可设D(m,60m),BC的解析式为y=12 5x+b,把D(m,60m)代入,可得b=60m−125m,进而得到BC的解析式为y=125x+60m−12 5m,据此可得OC=m−25m=AB,过D作DE⊥AB于E,过A作AF⊥OC于F,根据△DEB∽△AFO,可得DB=13−65m ,最后根据AB=BD,得到方程m−25m=13−65m,进而求得D的坐标.此题主要考察了反比例函数图象上点的坐标特征以及平行四边形的性质的运用,解决问题的关键是作辅助线构造相似三角形,根据平行四边形的对边相等以及相似三角形的对应边成比例进展计算,解题时注意方程思想的运用.14. 解:过点A作AD⊥x轴于点D,如下图.∵∠AOB=30∘,AD⊥OD,∴ODAD=cot∠AOB=√3,∵∠AOB=30∘,AB=BO,∴∠AOB=∠BAO=30∘,∴∠ABD=60∘,第 11 页∴BDAD =cot∠ABD=√33,∵OB=OD−BD,∴OBOD =OD−BDOD=(√3−√33)AD√3AD=23,∴S△ABOS△ADO =23,∵S△ABO=√3,∴S△ADO=12|k|=3√32,∵反比例函数图象在第二象限,∴k=−3√3故答案为:−3√3.过点A作AD⊥x轴于点D,由∠AOB=30∘可得出ODAD=√3,再根据BA=BO可得出∠ABD=60∘,由此可得出BDAD =√33,根据线段间的关系即可得出线段OB、OD间的比例,结合反比例函数系数k的几何意义以及S△ABO=√3即可得出结论.此题考察了反比例函数系数k的几何意义、特殊角的三角函数值以及比例的计算,解题的关键是根据线段间的关系找出OB、OD间的比例.此题属于中档题,难度不大,解决该题型题目时,根据特殊角的三角函数值找出线段间的关系是关键.15. 解:∵反比例函数y=−2x中k=−2<0,∴此函数的图象在二、四象限内,在每个象限内,y随x的增大而增大,∵0<1<2,∴A、B两点均在第四象限,∴m<n.故答案为m<n.由反比例函数y=−2x可知函数的图象在第二、第四象限内,可以知道在每个象限内,y 随x的增大而增大,根据这个断定那么可.此题考察的是反比例函数图象上点的坐标特点,先根据题意判断出反比例函数图象所在的象限是解答此题的关键.16. 解:根据反比例函数的性质,在每一个象限内y随x的增大而减小的反比例函数只要符合a+3>0,即a>−3即可,故答案可以是:−2.利用反比例函数的性质解答.此题主要考察反比例函数y=kx,当k>0时,在每一个象限内,y随x的增大而减小;当k>0时,在每一个象限,y随x的增大而减小.17. 解法1:如下图,根据点A在反比例函数y=1x的图象上,且点A的横坐标是2,可得A(2,12),第 13 页根据矩形和双曲线的对称性可得,B(12,2),D(−12,−2),由两点间间隔 公式可得,AB =√(2−12)2+(12−2)2=32√2,AD =√(2+12)2+(12+2)2=52√2,∴矩形ABCD 的面积=AB ×AD =32√2×52√2=152;解法2:如下图,过B 作BE ⊥x 轴,过A 作AF ⊥x 轴,根据点A 在反比例函数y =1x 的图象上,且点A 的横坐标是2,可得A(2,12), 根据矩形和双曲线的对称性可得,B(12,2), ∵S △BOE =S △AOF =12,又∵S △AOB +S △AOF =S △BOE +S 梯形ABEF , ∴S △AOB =S 梯形ABEF =12(12+2)×(2−12)=158,∴矩形ABCD 的面积=4×158=152,故答案为:152.先根据点A在反比例函数y=1x 的图象上,且点A的横坐标是2,可得A(2,12),再根据B(12,2),D(−12,−2),运用两点间间隔公式求得AB和AD的长,即可得到矩形ABCD的面积.也可以根据A,B的坐标求得△AOB的面积,进而得到矩形的面积.此题主要考察了反比例函数图象上点的坐标特征以及矩形的性质的综合应用,解决问题的关键是画出图形,根据反比例函数系数k的几何意义以及矩形的性质求得矩形的面积.18. 解:设PN=a,PM=b,∵P点在第二象限,∴P(−a,b),代入y=3x中,得k=−ab=−3,∴矩形PMON的面积=PN⋅PM=ab=3,故答案为:3.设PN=a,PM=b,根据P点在第二象限得P(−a,b),根据矩形的面积公式即可得到结论.此题考察了反比例函数系数k的几何意义.过反比例函数图象上一点作x轴、y轴的垂线,所得矩形的面积为反比例函数系数k的绝对值.19. 解:设反比例函数关系式为y=kx(k≠0),∵图象经过点A(3,4),∴k=12,∴y=12x,当x=−6时,y=−2,当x=−3时,y=−4,∴当−6<x<−3时,−4<y<−2,故答案为:−4<y<−2.设反比例函数关系式为y=kx (k≠0),利用待定系数法可得反比例函数关系式y=12x,根据反比例函数的性质可得在图象的每一支上,y随自变量x的增大而减小,然后求出当x=−6时,y=−2,当x=−3时,y=−4,进而可得答案.此题主要考察了反比例函数的性质,以及待定系数法求反比例函数解析式,对于反比例函数y=kx,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.20. 利用三角形面积公式得到12⋅OA⋅OA=9,那么OA=3√2,从而得到B点坐标,然后把B点坐标代入y=kx中求出k的值得到反比例函数解析式.此题考察了用待定系数法求反比例函数的解析式:先设出含有待定系数的反比例函数解析式y=xk(k为常数,k≠0);再把条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;接着解方程,求出待定系数;然后写出解析式.21. (1)根据反比例函数y=kx (k≠0)系数k的几何意义得到S△BOD=12k=4,求出k即可确定反比例函数解析式;(2)先利用待定系数法确定直线AC的解析式,然后把正比例函数解析式和反比例函数解析式组成方程,解方程组即可得到C点坐标.此题考察了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.22. (1)根据P的坐标为(2,32),PN=4先求出点N的坐标为(6,32),从而求出k=9.(2)由k可求得反比例函数的解析式y=9x .根据点M的横坐标求出其纵坐标y=92,得出MP=92−32=3,从而求得S△APM=12×2×3=3.主要考察了待定系数法求反比例函数的解析式和反比例函数y=kx中k的几何意义.这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.23. (1)将点A的坐标代入到反比例函数的一般形式后求得k值即可确定函数的解析式;(2)过点A作AM⊥x轴于点M,过点C作CN⊥x轴于点N,首先求得点B的坐标,然后求得直线BC的解析式,求得直线和双曲线的交点坐标即可.此题考察了反比例函数图象上的点的特点、待定系数法确定反比例函数的解析式等知识,解题的关键是可以根据点C的坐标确定点B的坐标,从而确定直线的解析式.24 (1)当F为AB的中点时,点F的坐标为(3,1),由此代入求得函数解析式即可;(2)根据图中的点的坐标表示出三角形的面积,得到关于k的二次函数,利用二次函数求出最值即可.此题属于反比例函数综合题,涉及的知识有:坐标与图形性质,待定系数法确定反比例解析式,以及二次函数的性质,纯熟掌握待定系数法是解此题的关键.第 15 页。
函数——反比例函数1一.选择题(共8小题)1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B.C.D.2.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A.B.C.D.3.在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.4.反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A.B.C.D.5.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A.B.C.D.6.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣17.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1 D.k<18.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1) B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称 D.当x<0时,y随x的增大而减小二.填空题(共8小题)9如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是_________ .10双曲线y=所在象限内,y的值随x值的增大而减小,则满足条件的一个数值k为_________ .11.若函数y=的图象在同一象限内,y随x增大而增大,则m的值可以是_________ (写出一个即可).12.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是_________ .13.如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB 交反比例函数y=的图象于点C,则△OAC的面积为_________ .14.如图,反比例函数y=(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为_________ .15.如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为_________ .16.如图,反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为_________ .三.解答题(共9小题)17.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△PO Q的面积为8,求k的值.18.已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).19.如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB 于点E.(1)k的值为_________ ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.20.已知反比函数y=,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.21如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.22.如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.23如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.24已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.25.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?函数——反比例函数1参考答案与试题解析一.选择题(共8小题)1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是()A.B C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据反比例函数的比例系数可得经过的象限,一次函数的比例系数和常数项可得一次函数图象经过的象限.解答:解:当k>0时,反比例函数图象经过一三象限;一次函数图象经过第一、二、三象限,故A、C错误;当k<0时,反比例函数经过第二、四象限;一次函数经过第二、三、四象限,故B错误,D 正确;故选:D.点评:考查反比例函数和一次函数图象的性质:(1)反比例函数y=:当k>0,图象过第一、三象限;当k<0,图象过第二、四象限;(2)一次函数y=kx+b:当k>0,图象必过第一、三象限,当k<0,图象必过第二、四象限.当b>0,图象与y轴交于正半轴,当b=0,图象经过原点,当b<0,图象与y轴交于负半轴.2.在同一平面直角坐标系中,函数y=mx+m与y=(m≠0)的图象可能是()A. B. C.D.考点:反比例函数的图象;一次函数的图象.专题:压轴题.分析:先根据一次函数的性质判断出m取值,再根据反比例函数的性质判断出m的取值,二者一致的即为正确答案.解答:解:A、由函数y=mx+m的图象可知m>0,由函数y=的图象可知m>0,故A 选项正确;B、由函数y=mx+m的图象可知m<0,由函数y=的图象可知m>0,相矛盾,故B选项错误;C、由函数y=mx+m的图象y随x的增大而减小,则m<0,而该直线与y轴交于正半轴,则m >0,相矛盾,故C选项错误;D、由函数y=mx+m的图象y随x的增大而增大,则m>0,而该直线与y轴交于负半轴,则m <0,相矛盾,故D选项错误;故选:A.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.3.在同一直角坐标系中,函数y=kx+1与y=﹣(k≠0)的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:先根据一次函数图象与系数的关系得到k的范围,然后根据k的范围判断反比例函数图象的位置.解答:解:A、对于y=kx+1经过第一、三象限,则k>0,﹣k<0,所以反比例函数图象应该分布在第二、四象限,所以A选项错误;B、一次函数y=kx+1与y轴的交点在x轴上方,所以B选项错误;C、对于y=kx+1经过第二、四象限,则k<0,﹣k>0,所以反比例函数图象应该分布在第一、三象限,所以C选项错误;D、对于y=kx+1经过第二、四象限,则k<0,﹣k>0,所以反比例函数图象应该分布在第一、三象限,所以D选项正确.故选:D.点评:本题考查了反比例函数图象:反比例函数y=(k≠0)为双曲线,当k>0时,图象分布在第一、三象限;当k<0时,图象分布在第二、四象限.也考查了一次函数图象.4.反比例函数y=与一次函数y=kx﹣k+2在同一直角坐标系中的图象可能是()A. B.C.D.考点:反比例函数的图象;一次函数的图象.专题:数形结合.分析:根据反比例函数所在的象限判定k的符号,然后根据k的符号判定一次函数图象所经过的象限.解答:解:A、如图所示,反比例函数图象经过第一、三象限,则k>0,所以一次函数图象必定经过第一、三象限,与图示不符,故本选项错误;B、如图所示,反比例函数图象经过第二、四象限,则k<0.﹣k+2>0,所以一次函数图象经过第一、二、四象限,与图示不符,故本选项错误;C、如图所示,反比例函数图象经过第二、四象限,则k<0.﹣k+2>0,所以一次函数图象经过第一、二、四象限,与图示不符,故本选项错误;D、如图所示,反比例函数图象经过第一、三象限,则k>0,所以一次函数图象必定经过第一、三象限,与图示一致,故本选项正确;故选:D.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.5.已知一次函数y=kx+b的图象如图,那么正比例函数y=kx和反比例函数y=在同一坐标系中的图象大致是()A.B.C.D.考点:反比例函数的图象;一次函数的图象;一次函数图象与系数的关系.分析:根据一次函数图象可以确定k、b的符号,根据k、b的符号来判定正比例函数y=kx和反比例函数y=图象所在的象限.解答:解:如图所示,∵一次函数y=kx+b的图象经过第一、三、四象限,∴k>0,b<0.∴正比例函数y=kx的图象经过第一、三象限,反比例函数y=的图象经过第二、四象限.综上所述,符合条件的图象是C选项.故选:C.点评:本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的性质才能灵活解题.6.反比例函数y=在每个象限内的函数值y随x的增大而增大,则m的取值范围是()A.m<0 B.m>0 C.m>﹣1 D.m<﹣1考点:反比例函数的性质.专题:计算题.分析:根据反比例函数的性质得m+1<0,然后解不等式即可.解答:解:根据题意得m+1<0,解得m<﹣1.故选:D.点评:本题考查了反比例函数的性质:反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.7.在反比例函数的图象的每一条曲线上,y都随x的增大而减小,则k的取值范围是()A.k>1 B.k>0 C.k≥1D.k<1考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,当反比例函数的系数大于0时,在每一支曲线上,y都随x的增大而减小,可得k﹣1>0,解可得k的取值范围.解答:解:根据题意,在反比例函数图象的每一支曲线上,y都随x的增大而减小,即可得k﹣1>0,解得k>1.故选:A.点评:本题考查了反比例函数的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.8.关于反比例函数y=的图象,下列说法正确的是()A.图象经过点(1,1) B.两个分支分布在第二、四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小考点:反比例函数的性质.专题:常规题型.分析:根据反比例函数的性质,k=2>0,函数位于一、三象限,在每一象限y随x 的增大而减小.解答:解:A、把点(1,1)代入反比例函数y=得2≠1不成立,故A选项错误;B、∵k=2>0,∴它的图象在第一、三象限,故B选项错误;C、图象的两个分支关于y=﹣x对称,故C选项错误.D、当x>0时,y随x的增大而减小,故D选项正确.故选:D.点评:本题考查了反比例函数y=(k≠0)的性质:①当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x 的增大而增大.二.填空题(共8小题)9.如图,一次函数y=mx与反比例函数y=的图象交于A、B两点,过点A作AM⊥x轴,垂足为M,连接BM,若S△ABM=3,则k的值是 3 .考点:反比例函数系数k的几何意义;反比例函数图象的对称性.专题:计算题;数形结合.分析:由反比例函数图象的对称性和反比例函数系数k的几何意义可得:△ABM的面积为△AOM面积的2倍,S△ABM=2S△AOM=|k|.解答:解:由题意得:S△ABM=2S△AOM=3,S△AOM=|k|=,则k=3.故答案为:3.点评:主要考查了反比例函数中k的几何意义及反比例函数的对称性,体现了数形结合的思想.10.双曲线y=所在象限内,y的值随x值的增大而减小,则满足条件的一个数值k为3(答案不唯一).考点:反比例函数的性质.专题:开放型.分析:首先根据反比例函数的性质可得k+1>0,再解不等式即可.解答:解:∵双曲线y=所在象限内,y的值随x值的增大而减小,∴k+1>0,解得:k>﹣1,∴k可以等于3(答案不唯一).故答案为:3(答案不唯一).点评:此题主要考查了反比例函数的性质,关键是掌握对于反比例函数(k≠0),当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.11.若函数y=的图象在同一象限内,y随x增大而增大,则m的值可以是0 (写出一个即可).考点:反比例函数的性质.专题:开放型.分析:根据反比例函数图象的性质得到m﹣1<0,通过解该不等式可以求得m的取值范围,据此可以取一个m值.解答:解:∵函数y=的图象在同一象限内,y随x增大而增大,∴m﹣1<0,解得 m<1.故m可以取0,﹣1,﹣2等值.故答案为:0.点评:本题考查了反比例函数的性质.对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大.12.下列关于反比例函数y=的三个结论:①它的图象经过点(7,3);②它的图象在每一个象限内,y随x的增大而减小;③它的图象在二、四象限内.其中正确的是①②.考点:反比例函数的性质.分析:根据反比例函数图象上点的坐标特点可得①正确;根据反比例函数的性质:当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x的增大而减小可得②正确,③错误.解答:解:①∵7×3=21,∴它的图象经过点(7,3),故①正确;②∵k=21>0,∴它的图象在每一个象限内,y随x的增大而减小,故②正确;③它的图象应在第一三象限,故③错误;故答案为:①②.点评:此题主要考查了反比例函数的性质,关键是掌握反比例函数图象上的点的坐标特征:横纵坐标之积=k.13.如图,点A是反比例函数y=的图象上﹣点,过点A作AB⊥x轴,垂足为点B,线段AB 交反比例函数y=的图象于点C,则△OAC的面积为 2 .考点:反比例函数系数k的几何意义.专题:代数几何综合题.分析:由于AB⊥x轴,根据反比例函数k的几何意义得到S△AOB=3,S△COB=1,然后利用S△AOC=S△AOB﹣S△COB进行计算.解答:解:∵AB⊥x轴,∴S△AOB=×|6|=3,S△COB=×|2|=1,∴S△AOC=S△AOB﹣S△COB=2.故答案为:2.点评:本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.如图,反比例函数y=(x>0)的图象交Rt△OAB的斜边OA于点D,交直角边AB于点C,点B在x轴上.若△OAC的面积为5,AD:OD=1:2,则k的值为8 .考点:反比例函数系数k的几何意义.分析:根据反比例函数系数k的几何意义以及相似三角形的性质得出S△ODE=S△OBC=k,S△AOB=k+5,=,进而求出即可.解答:解:过D点作x轴的垂线交x轴于E点,∵△ODE的面积和△OBC的面积相等=,∵△OAC的面积为5,∴△OBA的面积=5+,∵AD:OD=1:2,∴OD:OA=2:3,∵DE∥AB,∴△ODE∽△OAB,∴=()2,即=,解得:k=8.点评:本题考查反比例函数的综合运用,关键是知道反比例函数图象上的点和坐标轴构成的三角形面积的特点以及根据面积转化求出k的值.15.如图,M为反比例函数y=的图象上的一点,MA垂直y轴,垂足为A,△MAO的面积为2,则k的值为 4 .考点:反比例函数系数k的几何意义.专题:计算题.分析:根据反比例函数比例系数k的几何意义得到|k|=2,然后去绝对值得到满足条件的k的值.解答:解:∵MA垂直y轴,∴S△AOM=|k|,∴|k|=2,即|k|=4,而k>0,∴k=4.故答案为4.点评:本题考查了反比例函数比例系数k的几何意义:在反比例函数y=的图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.16.如图,反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为y= .考点:反比例函数系数k的几何意义.专题:数形结合.分析:根据题意设点A坐标(x,),由D为斜边OA的中点,可得出D(x,),从而得出过点D的反比例函数的解析式.解答:解:设点A坐标(x,),∵反比例函数y=的图象经过Rt△OAB的顶点A,D为斜边OA的中点,∴D(x,),∴过点D的反比例函数的解析式为y=,故答案为:y=.点评:本题考查了反比例函数系数k的几何意义,本知识点是中考的重要考点,同学们应高度关注.三.解答题(共9小题)17.如图,在平面直角坐标系中,过点M(0,2)的直线l与x轴平行,且直线l分别与反比例函数y=(x>0)和y=(x<0)的图象交于点P、点Q.(1)求点P的坐标;(2)若△POQ的面积为8,求k的值.考点:反比例函数图象上点的坐标特征;反比例函数系数k的几何意义.专题:计算题.分析:(1)由于PQ∥x轴,则点P的纵坐标为2,然后把y=2代入y=得到对应的自变量的值,从而得到P点坐标;(2)由于S△POQ=S△OMQ+S△OMP,根据反比例函数k的几何意义得到|k|+×|6|=8,然后解方程得到满足条件的k的值.解答:解:(1)∵PQ∥x轴,∴点P的纵坐标为2,把y=2代入y=得x=3,∴P点坐标为(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=8,∴|k|=10,而k<0,∴k=﹣10.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了反比例函数系数k的几何意义.18.已知反比例函数y=的图象经过点M(2,1)(1)求该函数的表达式;(2)当2<x<4时,求y的取值范围(直接写出结果).考点:待定系数法求反比例函数解析式;反比例函数的性质.专题:待定系数法.分析:(1)利用待定系数法把(2,1)代入反比例函数y=中可得k的值,进而得到解析式;(2)根据y=可得x=,再根据条件2<x<4可得2<<4,再解不等式即可.解答:解:(1)∵反比例函数y=的图象经过点M(2,1),∴k=2×1=2,∴该函数的表达式为y=;(2)∵y=,∴x=,∵2<x<4,∴2<<4,解得:<y<1.点评:此题主要考查了待定系数法求反比例函数解析式,以及反比例函数的性质,关键是正确确定函数解析式.19.如图,在平面直角坐标系中,点O为坐标系原点,矩形OABC的边OA,OC分别在x轴和y轴上,其中OA=6,OC=3.已知反比例函数y=(x>0)的图象经过BC边上的中点D,交AB 于点E.(1)k的值为9 ;(2)猜想△OCD的面积与△OBE的面积之间的关系,请说明理由.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义;反比例函数图象上点的坐标特征;矩形的性质.专题:几何综合题.分析:(1)根据题意得出点D的坐标,从而可得出k的值;(2)根据三角形的面积公式和点D,E在函数的图象上,可得出S△OCD=S△OAE,再由点D为BC 的中点,可得出S△OCD=S△OBD,即可得出结论.解答:解:∵OA=6,OC=3,点D为BC的中点,∴D(3,3).∴k=3×3=9,故答案为9;(2)S△OCD=S△OBE,理由是:∵点D,E在函数的图象上,∴S△OCD=S△OAE=,∵点D为BC的中点,∴S△OCD=S△OBD,即S△OBE=,∴S△OCD=S△OBE.点评:本题考查了用待定系数法求反比例函数的解析式、反比例函数系数k的几何意义、反比例函数图象上点的特征以及矩形的性质,是一道综合题,难度中等.20.已知反比函数y=,当x=2时,y=3.(1)求m的值;(2)当3≤x≤6时,求函数值y的取值范围.考点:待定系数法求反比例函数解析式;反比例函数的性质.专题:代数综合题.分析:(1)把x、y的值代入反比例函数解析式,通过方程来求m的值;(2)根据反比例函数图象的性质进行解答.解答:解:(1)把x=2时,y=3代入y=,得3=,解得:m=﹣1;(2)由m=﹣1知,该反比例函数的解析式为:y=.当x=3时,y=2;当x=6时,y=1.∴当3≤x≤6时,由于y随x的增大而减小,所以函数值y的取值范围是:1≤y≤2.点评:本题考查了反比例函数的性质,待定系数法求反比例函数解析式.(1)题,实际上是把已知条件(自变量与函数的对应值)代入解析式,得到待定系数的方程.21.如图,反比例函数y=(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若△AOB的面积为6,求直线AB的解析式.考点:待定系数法求反比例函数解析式;待定系数法求一次函数解析式.专题:数形结合;待定系数法.分析:(1)利用待定系数法把A(1,3)代入反比例函数y=可得k的值,进而得到解析式;(2)根据△AOB的面积为6求出B点坐标,再设直线AB的解析式为y=kx+b,把A、B两点代入可得k、b的值,进而得到答案.解答:解:(1)∵反比例函数y=(k为常数,且k≠0)经过点A(1,3),∴3=,解得:k=3,∴反比例函数解析式为y=;(2)设B(a,0),则BO=a,∵△AOB的面积为6,∴•a•3=6,解得:a=4,∴B(4,0),设直线AB的解析式为y=kx+b,∵经过A(1,3),B(4,0),∴,解得,∴直线AB的解析式为y=﹣x+4.点评:此题主要考查了待定系数法求一次函数解析式和反比例函数解析式,关键是正确求出B点坐标.22.如图,函数y=的图象过点A(1,2).(1)求该函数的解析式;(2)过点A分别向x轴和y轴作垂线,垂足为B和C,求四边形ABOC的面积;(3)求证:过此函数图象上任意一点分别向x轴和y轴作垂线,这两条垂线与两坐标轴所围成矩形的面积为定值.考点:待定系数法求反比例函数解析式;反比例函数系数k的几何意义.分析:(1)将点A的坐标代入反比例函数解析式,即可求出k值;(2)由于点A是反比例函数上一点,矩形ABOC的面积S=|k|.(3)设图象上任一点的坐标(x,y),根据矩形的面积公式,可得出结论.解答:解:(1)∵函数y=的图象过点A(1,2),∴将点A的坐标代入反比例函数解析式,得2=,解得:k=2,∴反比例函数的解析式为y=;(2)∵点A是反比例函数上一点,∴矩形ABOC的面积S=AC•AB=|xy|=|k|=2.(3)设图象上任一点的坐标(x,y),∴过这点分别向x轴和y轴作垂线,矩形面积为|xy|=|k|=2,∴矩形的面积为定值.点评:本题主要考查了待定系数法求反比例函数解析式和反比例函数y=中k的几何意义,注意掌握过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.23.如图,在平面直角坐标系xOy中,已知一次函数y=kx+b的图象经过点A(1,0),与反比例函数(x>0)的图象相交于点B(2,1).(1)求m的值和一次函数的解析式;(2)结合图象直接写出:当x>0时,不等式的解集.考点:反比例函数与一次函数的交点问题.专题:计算题;数形结合.分析:(1)将B的坐标代入反比例函数解析式中,求出m的值,将A和B的坐标分别代入一次函数解析式中,得到关于k与b的方程组,求出方程组的解集得到k与b的值,确定出一次函数解析式;(2)由B的横坐标为2,将x轴正半轴分为两部分,找出一次函数在反比例函数图象上方时x的范围,即为所求不等式的解集.解答:解:(1)∵反比例函数y=(x>0)的图象经过点B(2,1),∴将B坐标代入反比例解析式得:m=1×2=2,∵一次函数y=kx+b的图象经过点A(1,0)、B(2,1)两点,∴将A和B坐标代入一次函数解析式得:,解得:,∴一次函数的解析式为y=x﹣1;(2)由图象可知:当x>0时,不等式kx+b>的解集为x>2.点评:此题考查了一次函数与反比例函数的交点,以及待定系数法的运用,利用了数形结合的思想,灵活运用数形结合思想是解本题第二问的关键.24.已知:如图,反比例函数y=的图象与一次函数y=x+b的图象交于点A(1,4)、点B(﹣4,n).(1)求一次函数和反比例函数的解析式;(2)求△OAB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.考点:反比例函数与一次函数的交点问题.专题:代数几何综合题.分析:(1)把A的坐标代入反比例函数解析式求出A的坐标,把A的坐标代入一次函数解析式求出即可;(2)求出直线AB与y轴的交点C的坐标,分别求出△ACO和△BOC的面积,然后相加即可;(3)根据A、B的坐标结合图象即可得出答案.解答:解:(1)把A点(1,4)分别代入反比例函数y=,一次函数y=x+b,得k=1×4,1+b=4,解得k=4,b=3,∴反比例函数的解析式是y=,一次函数解析式是y=x+3;(2)如图,设直线y=x+3与y轴的交点为C,当x=﹣4时,y=﹣1,∴B(﹣4,﹣1),当x=0时,y=+3,∴C(0,3),∴S△AOB=S△AOC+S△BOC==;(3)∵B(﹣4,﹣1),A(1,4),∴根据图象可知:当x>1或﹣4<x<0时,一次函数值大于反比例函数值.点评:本题考查了一次函数和反比例函数的交点问题,用待定系数法求出一次函数的解析式,三角形的面积,一次函数的图象等知识点,题目具有一定的代表性,是一道比较好的题目,用了数形结合思想.25.如图,一次函数y=kx+b(k≠0)的图象过点P(﹣,0),且与反比例函数y=(m≠0)的图象相交于点A(﹣2,1)和点B.(1)求一次函数和反比例函数的解析式;(2)求点B的坐标,并根据图象回答:当x在什么范围内取值时,一次函数的函数值小于反比例函数的函数值?考点:反比例函数与一次函数的交点问题.专题:数形结合;待定系数法.分析:(1)根据待定系数法,可得函数解析式;(2)根据二元一次方程组,可得函数图象的交点,根据一次函数图象位于反比例函数图象的下方,可得答案.解答:解:(1)一次函数y=kx+b(k≠0)的图象过点P(﹣,0)和A(﹣2,1),∴,解得,∴一次函数的解析式为y=﹣2x﹣3,反比例函数y=(m≠0)的图象过点A(﹣2,1),∴,解得m=﹣2,∴反比例函数的解析式为y=﹣;(2),解得,或,∴B(,﹣4)由图象可知,当﹣2<x<0或x>时,一次函数的函数值小于反比例函数的函数值.点评:本题考查了反比例函数与一次函数的交点问题,待定系数法是求函数解析式的关键.。
第六章反比例函数第2节反比例函数的图像和性质课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.已知点A(2,y1),B(1,y2)都在反比例函数y=4x的图象上,则()A.y1<y2B.y1>y2C.y1=y2D.不能确定2.已知点()11,A x y,()22,B x y,()33,C x y都在反比例函数kyx=()0k<的图像上,且123x x x<<<,则1y,2y,3y的大小关系是()A.213y y y>>B.321y y y>>C.123y y y>>D.312y y y>> 3.如图,已知点A是反比例函数()6y xx=>的图像上一点,AB∥x轴交另一个反比例函数()0ky xx=>的图像于点B,C为x轴上一点,若S△ABC=2,则k的值为()A.4B.2C.3D.14.若0ab<,则正比例函数y ax=与反比例函数byx=在同一坐标系中的大致图象可能是()A.B.C.D.5.如图,反比例函数y=2x的图象经过矩形OABC的边AB的中点D,则矩形OABC 的面积为()A .1B .2C .4D .86.面积为2的直角三角形一直角边长为x ,另一直角边长为y ,则y 与x 的变化规律用图象大致表示为( )A .B .C .D .7.若双曲线y=3k x-在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A .k <3B .k≥3C .k >3D .k≠38.在反比例函数13my x-=的图象上有两点()11,A x y ,()22,B x y ,当120x x <<时,12y y <,则实数m 取值范围是( )A .0m <B .13m <C .0m >D .13m >9.如图,在平面直角坐标系中,点P (1,4)、Q (m ,n )在函数(x >0)的图象上,当m >1时,过点P 分别作x 轴、y 轴的垂线,垂足为点A ,B ;过点Q 分别作x 轴、y 轴的垂线,垂足为点C 、D .QD 交PA 于点E ,随着m 的增大,四边形ACQE 的面积( )A.减小B.增大C.先减小后增大D.先增大后减小10.函数4yx=和1yx=在第一象限内的图象如图所示,点P是4yx=的图象上一动点,作PC∥x轴于点C,交1yx=的图象于点A,作PD∥y轴于点D,交1yx=的图象于点B,给出如下结论:∥∥ODB与∥OCA的面积相等;∥PA与PB始终相等;∥四边形PAOB的面积大小不会发生变化;∥PA=3AC,其中正确的结论序号是()A.∥∥B.∥∥∥C.∥∥∥D.∥∥评卷人得分二、填空题11.已知反比例函数3myx-=,当0x>时,y随x增大而减小,则m的取值范围是_____________.12.如图,正比例函数(0)y mx m=≠与反比例函数(0)ny nx=≠的图象交于,A B两点,若点A的坐标为3,22⎛⎫- ⎪⎝⎭,则点B的坐标为_____________________.13.如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x轴的负半轴上,点C 在y 轴的正半轴上,点F 在AB上,点B、E 在反比例函数y=kx(k 为常数,k ≠0)的图象上,正方形ADEF 的面积为4,且BF =2AF ,则k 值为_____.14.某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p (kPa )是气体体积()3m V 的反比例函数,其图像如图所示.则其函数解析式为_________.15.如图,反比例函数y =xk(x >0)的图象经过矩形OABC 的边AB 的中点D ,若矩形OABC 的面积为8,则k =_____.16.双曲线y 1,y 2在第一象限的图象如图,已知y 1=4x,过y 1上的任意一点A 作x 轴的平行线交y 2于点B ,交y 轴于点C ,若S △AOB =12,则y 2的表达式是___________.17.已知(﹣1,y 1),(2,y 2),(3,y 3)在反比例函数y =21k x--的图象上,则函数值y 1,y 2,y 3的从大到小的关系是_____.18.如图,A ,B 是反比例函数y=4x在第一象限内的图象上的两点,且A ,B 两点的横坐标分别是2和4,则∥OAB 的面积是_____.19.(2013年四川自贡4分)如图,在函数()8y x>0x=的图象上有点P 1、P 2、P 3…、P n 、P n+1,点P 1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P 1、P 2、P 3…、P n 、P n+1分别作x 轴、y 轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S 1、S 2、S 3…、S n ,则S 1= ___,S n =___.(用含n 的代数式表示)评卷人 得分三、解答题 20.如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于点()1,6A -,(),2B a .求一次函数和反比例函数的解析式.21.如图,一次函数y=kx+b的图象与x轴,y轴分别相交于A,B两点,且与反比例函数y=﹣8x的图象在第二象限交于点C,如果点A为的坐标为(2,0),B是AC的中点.(1)求点C的坐标及k、b的值.(2)求出一次函数图象与反比例函数图象的另一个交点的坐标,并直接写出当8kx bx+>-时,x的取值范围.22.已知反比例函数y=kx(k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA∥x轴于点A,CD∥x轴于点D(1)求这个反比函数的表达式;(2)求∥ACD的面积.23.如图在平面直角坐标系xOy中,函数y1=4x(x>0)的图象与一次函数y2=kx-k 的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx-k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB 的面积是6,请写出点P的坐标.24.如图,一次函数5y x=-+的图像与反比例函数kyx=()0k≠在第一象限内的图像交于()1,A n和()4,B m两点.(1)求反比例函数的表达式;(2)在第一象限内,当一次函数5y x=-+的值大于反比例函数kyx=()0k≠的值时,写出自变量x的取值范围;(3)求AOB面积.25.如图,一次函数y=ax+b与反比例函数y=kx(x>0)的图像在第一象限交于A、B 两点,点B坐标为(4,2),连接OA、OB,过点B作BD∥y轴,垂足为D,交OA于点C,且OC=CA.(1)求反比例函数和一次函数的表达式;(2)根据图像直接说出不等式ax+b-kx<0的解集为______;(3)求∥ABC的面积.参考答案:1.A 【解析】 【分析】利用反比例函数4y x=的图象分布在一、三象限,在每个单独的象限内y 随x 的增大而减小,利用2>1得出y 1<y 2即可. 【详解】解:∥反比例函数4y x=的图象分布在一、三象限,在每个单独的象限内y 随x 的增大而减小,而A (2,y 1),B (1,y 2)都在第一象限, ∴在第一象限内,y 随x 的增大而减小, ∥2>1, ∥y 1<y 2, 故选:A . 【点睛】本题主要考查了反比例函数的性质,当k >0时,图象分布在一、三象限,在每个单独的象限内,y 随x 的增大而减小,当k <0时,图象分布在二、四象限,在每个单独的象限内,y 随x 的增大而增大,由x 的值的变化得出y 的值的变化情况;也可以把x 的值分别代入到关系式中求出y 1和y 2的值,然后再做比较即可. 2.A 【解析】 【分析】首先画出反比例函数ky x=()0k <,利用函数图像的性质得到当1230x x x <<<时,1y ,2y ,3y 的大小关系.【详解】解: 反比例函数ky x=()0k <, ∴ 反比例函数图像在第二、四象限,观察图像:当1230x x x <<<时, 则213y y y >>. 故选A . 【点睛】本题考查的是反比例函数的图像与性质,掌握反比例函数的图像与性质是解题的关键. 3.B 【解析】 【分析】延长AB 交y 轴于点D ,连接OA 、OB ,如图,则AD∥y 轴,由反比例函数系数k 的几何意义可得:3AODS=,12BODSk =,易得S △AOB = S △ABC =2,于是可得关于k 的方程,解方程即得答案. 【详解】解:延长AB 交y 轴于点D ,连接OA 、OB ,如图,则AD∥y 轴, ∥3AODS=,12BODSk =(k >0), ∥S △ABC =2,AB∥x 轴, ∥S △AOB =2,∥1322k -=,解得:k=2.故选:B .【点睛】本题考查了反比例函数系数k的几何意义,属于常考题型,熟练掌握系数k的几何意义是解题关键.4.B【解析】【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【详解】解:∥ab<0,∥分两种情况:=的图象过原点、第一、三象限,反比例函数图象(1)当a>0,b<0时,正比例函数y ax在第二、四象限,无此选项;=的图象过原点、第二、四象限,反比例函数图象(2)当a<0,b>0时,正比例函数y ax在第一、三象限,选项B符合.故选:B.【点睛】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.5.C【解析】【分析】由反比例函数的系数k的几何意义可知:2OA AD=,然后可求得OA AB的值,从而可求得矩形OABC的面积.【详解】解:反比例函数2yx =,2OA AD∴=.D是AB的中点,2AB AD∴=.∴矩形的面积2224OA AB AD OA===⨯=.故选:C.【点睛】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.6.C【解析】【详解】解:∥12xy=2,∥xy=4,∥y=4x(x>0,y>0),当x=1时,y=4,当x=4时,y=1,故选:C.【点睛】考点:函数的图象.7.C【解析】【分析】根据反比例函数的性质可解.【详解】解:∥双曲线3kyx-=在每一个象限内,y随x的增大而减小,∥k-3>0 ∥k>3故选:C.【点睛】本题考查了反比例函数的性质,掌握反比例函数ky x=,当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小; 当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大. 8.D 【解析】 【分析】根据当x 1<x 2<0时,有y 1<y 2,可得双曲线在第二象限,k <0,列出不等式求解即可. 【详解】根据题意,1-3m <0,解得13m >. 故选:D . 【点睛】本题考查了反比例函数图象上点的坐标特征,较为简单. 9.B 【解析】 【详解】AC=m ﹣1,CQ=n ,则S 四边形ACQE =AC•CQ=(m ﹣1)n=mn ﹣n . ∥()1,4P ,Q (m ,n )在函数(x >0)的图象上,∥mn=k=4(常数),∥S 四边形ACQE =AC•CQ=(m ﹣1)n=4﹣n , ∥当m >1时,n 随m 的增大而减小, ∥S 四边形ACQE =4﹣n 随m 的增大而增大. 故选B .考点:反比例函数系数k 的几何意义. 10.C 【解析】 【分析】设点P 的坐标为(m ,4)(0)m m >,则1(,)A m m ,(,0)C m ,(4m B ,4)m ,4(0,)D m.∥根据反比例函数系数k 的几何意义即可得出ODBOCA S S ∆∆=;∥由点的坐标可找出3PA m=,34m PB =,由此可得出只有2m =时PA PB =;∥利用分割图形法求图形面积结合反比例系数k 的几何意义即可得知该结论成立;∥结合点的坐标即可找出3PA m=,1AC m =,由此可得出该结论成立.问题得解. 【详解】解:设点P 的坐标为(m ,4)(0)m m >,则1(,)A m m ,(,0)C m ,(4m B ,4)m ,4(0,)D m. ∥11122ODB S ∆=⨯=,11122OCA S ∆=⨯=, ODB ∴∆与OCA ∆的面积相等,故∥成立;∥413PA m m m=-=,344m m PB m =-=,令PA PB =,即334mm =, 解得:2m =.∴当2m =时,PA PB =,∥不正确;∥114322ODB OCAOCPD PAOB S S S S ∆∆=--=--=矩形四边形.∴四边形PAOB 的面积大小不会发生变化,故∥正确;∥413PA m m m=-=,110AC m m =-=,313m m=⨯, 3PA AC ∴=,故∥正确.综上可知:正确的结论有∥∥∥. 故选:C 【点睛】本题考查了反比例函数图象上点的坐标特征、反比例函数系数k 的几何意义以及利用分割图形法求图形面积,根据反比例函数图象上点的坐标特征表示出各点的坐标是关键. 11.3m > 【解析】 【分析】根据反比例函数kyx=,当x>0,k>0时,y随x增大而减小列不等式求解即可.【详解】解:∥反比例函数kyx=,当k<0时,y随x增大而减小∥m-3>0,即3m>.故答案为3m>.【点睛】本题主要查了反比例函数的性质,根据反比例函数的性质列出不等式m-3>0是解答本题的关键.12.3,2 2⎛⎫- ⎪⎝⎭【解析】【分析】先根据正比例函数与反比例函数的图象特征可得点A、B关于原点对称,再根据点坐标关于原点对称的变化规律即可得.【详解】由正比例函数与反比例函数的图象特征得:点A、B关于原点对称点坐标关于原点对称的变化规律:横、纵坐标均变为相反数点A的坐标为3,22⎛⎫- ⎪⎝⎭∴点B的坐标为3,2 2⎛⎫- ⎪⎝⎭故答案为:3,22⎛⎫-⎪⎝⎭.【点睛】本题考查了正比例函数与反比例函数的图象特征、点坐标关于原点对称的变化规律,掌握正比例函数与反比例函数的图象特征是解题关键.13.-6.【解析】【分析】先由正方形ADEF的面积为4,得出边长为2,BF=2AF=4,AB=AF+BF=2+4=6.再设B点坐标为(t,6),则E点坐标(t﹣2,2),根据点B、E在反比例函数y=kx的图象上,利用根据反比例函数图象上点的坐标特征得k =6t =2(t ﹣2),即可求出k =﹣6. 【详解】解:∥正方形ADEF 的面积为4, ∥正方形ADEF 的边长为2,∥BF =2AF =4,AB =AF +BF =2+4=6. 设B 点坐标为(t ,6),则E 点坐标(t ﹣2,2), ∥点B 、E 在反比例函数y =kx的图象上, ∥k =6t =2(t ﹣2), 解得t =﹣1,k =﹣6. 故答案为﹣6. 【点睛】本题考查反比例函数中k 的几何意义,注意,此题函数图像在第二象限,则k <0. 14.96P V=【解析】 【分析】根据“气压×体积=常数”可知:先求得常数的值,再表示出气体体积V 和气压p 的函数解析式. 【详解】 设kP V =,那么点(1.6,60)在此函数解析式上,则k =1.6×60=96, ∥96P V=. 故答案为:96P V=. 【点睛】解答该类问题的关键是确定两个变量之间的函数关系,然后利用待定系数法求出它们的关系式. 15.4 【解析】 【分析】设D 的坐标是()a b ,,则B 的坐标是()2a b ,,根据D 在反比例函数图象上,即可求得ab的值,从而求得k的值.【详解】设D的坐标是()a b,,则B的坐标是()2a b,,∥OABC8S=矩形∥28ab=,∥D在kyx=上,∥1842k ab==⨯=.故答案是:4.【点睛】本题主要考查的是反比例函数k的几何意义,掌握反比例函数系数k的几何意义是解题的关键.16.y2=5x【解析】【分析】先设双曲线y2的解析式为y2=kx,根据S△BOC-S△AOC=S△AOB,列出方程,求出k的值,从而得出双曲线y2的解析式.【详解】解:设双曲线y2的解析式为y2=kx,由题意得:S△BOC-S△AOC=S△AOB,即:2k-42=12,解得;k=5;则双曲线y2的解析式为y2=5x.【点睛】本题考查反比例函数系数k的几何意义,用到的知识点是三角形的面积与反比例函数系数的关系,关键是根据关系列出方程. 17.y 1>y 3>y 2 【解析】 【分析】先根据反比例函数的解析式判断出函数图象所在的象限及其增减性,再由各点横坐标的值即可得出结论. 【详解】解:∥﹣k 2﹣1=2(1)k +<0,∥反比例函数图象分布在第二、四象限,在每一象限y 随x 的增大而增大, ∥(﹣1,y 1)在第二象限, ∥y 1>0,∥(2,y 2),(3,y 3)都在第四象限,且2<3, ∥y 2<y 3<0, ∥y 2<y 3<y 1.故答案为:y 1>y 3>y 2. 【点睛】本题考查反比例函数图象所在的象限及其增减性,当k<0时函数图象两个分支分别在第二、四象限内,每一象限内y 随x 的增大而增大;当k>0时函数图象两个分支分别在第一、三象限内,每一象限内y 随x 的增大而减小.熟练掌握反比例函数的性质是解题的关键. 18.3 【解析】 【分析】先根据反比例函数图象上点的坐标特征及A ,B 两点的横坐标,求出A (2,2),B (4,1).再过A ,B 两点分别作AC∥x 轴于C ,BD∥x 轴于D ,根据反比例函数系数k 的几何意义得出S △AOC =S △BOD =12×4=2.根据S 四边形AODB =S △AOB +S △BOD =S △AOC +S 梯形ABDC ,得出S △AOB =S 梯形ABDC ,利用梯形面积公式求出S 梯形ABDC =12(BD+AC )•CD=12(1+2)×2=3,从而得出S △AOB =3. 【详解】解:∥A,B是反比例函数y=4x在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,∥当x=2时,y=2,即A(2,2),当x=4时,y=1,即B(4,1).如图,过A,B两点分别作AC∥x轴于C,BD∥x轴于D,则S△AOC=S△BOD=12×4=2.∥S四边形AODB=S△AOB+S△BOD=S△AOC+S梯形ABDC,∥S△AOB=S梯形ABDC,∥S梯形ABDC=12(BD+AC)•CD=12(1+2)×2=3,∥S△AOB=3.故答案是:3.【点睛】主要考查了反比例函数y=kx中k的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=12|k|.19.4()81n n+【解析】【详解】当x=2时,P1的纵坐标为4,当x=4时,P2的纵坐标为2当x=6时,P3的纵坐标为43,当x=8时,P4的纵坐标为1,当x=10时,P5的纵坐标为:45,…∥()188S 2424221211⎡⎤=⨯-==-⎢⎥⨯⨯+⎢⎥⎣⎦();()24288S 22223322221⎡⎤=⨯-=⨯=-⎢⎥⨯⨯+⎢⎥⎣⎦();()24188S 21223323231⎡⎤=⨯-=⨯=-⎢⎥⨯⨯+⎢⎥⎣⎦();…()()n 888S 22n 2n 1n n 1⎡⎤=-=⎢⎥++⎢⎥⎣⎦. 20.一次函数的解析式为:28y x =+,反比例函数的解析式为:6y x=-【解析】 【分析】先将()1,6A -代入反比例函数解析式中求出m 的值,进一步求出点B 的坐标,然后将A 和B 点的坐标代入一次函数中求解即可. 【详解】解:∥()1,6A -在反比例函数m y x=上 ∥61=-m,解得6m =-, 又(),2B a 在反比例函数6y x=-上∥62=-a,解得3a =-,即()3,2-B将()1,6A -和()3,2-B 代入一次函数y kx b =+中,得623=-+⎧⎨=-+⎩k b k b ,解之得28=⎧⎨=⎩k b 故一次函数的解析式为:28y x =+. 故答案为:28y x =+,6y x=-.【点睛】此题主要考查了待定系数法求一次函数解析式与反比例函数解析式,函数图像经过一点,则将这点的坐标代入函数解析式中求解即可.21.(1)C (﹣2,4);k 1b 2=-⎧⎨=⎩;(2)另一个交点坐标为(4,﹣2),x 的取值范围为x <﹣2或0<x <4.【解析】【分析】(1)由A (2,0)利用平行线等分线段定理,可求出点C 的横坐标,代入反比例函数关系式,可求其纵坐标;用两点法确定一次函数的关系式,即待定系数法确定函数的关系式,求出k 、b 的值;(2)可将两个函数的关系式联立成方程组,解出方程组的解,若有两组解,说明两个函数的图象有两个交点,根据图象可以直观看出一次函数值大于反比例函数值时,自变量的取值范围.【详解】(1)过点C 作CD ∥x 轴,垂足为D ,∥CD ∥OB ,∥AO AB OD BC =, 又∥B 是AC 的中点.∥AB =BC ,∥OA =OD∥A (2,0),∥OA =OD =2,当x =﹣2时,y =﹣82-=4,∥C (﹣2,4)把A (2,0),C (﹣2,4)代入y =kx +b 得:2024k b k b +=⎧⎨-+=⎩解得:12k b =-⎧⎨=⎩, ∥一次函数的关系式为:y =﹣x +2;因此:C (﹣2,4),k =﹣1,b =2.(2)由题意得:28-y x y x =-+⎧⎪⎨=⎪⎩解得:121224,42x x y y =-=⎧⎧⎨⎨==-⎩⎩; ∥一个交点C (﹣2.4)∥另一个交点E (4,﹣2); 当8-kx b x+>时,即:y 一次函数>y 反比例函数,由图象可以直观看出自变量x 的取值范围:x <﹣2或0<x <4.因此:另一个交点坐标为(4,﹣2),x 的取值范围为x <﹣2或0<x <4.【点睛】 反比例函数图象上的点坐标的特征,待定系数法求函数的关系式,解方程组以及数形结合思想的应用是解题关键.22.(1 )6y x=;(2)6. 【解析】【详解】试题分析:(1)将B 点坐标代入y =k x 中,求得k 值,即可得反比例函数的解析式;(2)分别求得点C 、点A 、点D 的坐标,即可求得∥ACD 的面积.试题解析:(1)将B 点坐标代入y =中,得=2,解得k =6,∥反比例函数的解析式为y =.(2)∥点B 与点C 关于原点O 对称,∥C 点坐标为(-3,-2).∥BA ∥x 轴,CD ∥x 轴,∥A点坐标为(3,0),D点坐标为(-3,0).∥S△ACD=AD·CD=×[3-(-3)]×|-2|=623.(1)y=2x-2 ;(2)P(-2,0)或(4,0)【解析】【分析】(1)将A点坐标代入y=4x(x>0),求出m的值为2,再将(2,2)代入y=kx-k,求出k的值,即可得到一次函数的解析式;(2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【详解】解:(1)将A(m,2)代入y=4x(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx-k得,2k-k=2,解得k=2,则一次函数解析式为y=2x-2;(2)∥一次函数y=2x-2与x轴的交点为C(1,0),与y轴的交点为B(0,-2),S△ABP=S△ACP+S△BPC,∥12×2CP+12×2CP=6,解得CP=3,则P点坐标为(-2,0)或(4,0).【点睛】本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键.24.(1)y=4x;(2)1<x<4;(3)152.【解析】【分析】(1)把A点坐标代入一次函数解析式可求得n的值,再代入反比例函数解析式可求得k,即可得出反比例函数的表达式;(2)根据A,B点的横坐标,结合图象可直接得出满足条件的x的取值范围;(3)设一次函数与x轴交于点C,可求得C点坐标,利用S△AOB=S△AOC-S△BOC可求得∥ABO的面积.【详解】解:(1)∥点A在一次函数图象上,∥n=-1+5=4,∥A(1,4),∥点A在反比例函数图象上,∥k=4×1=4,∥反比例函数的表达式为y=4x;(2)结合图象可知当一次函数值大于反比例函数值时,x的取值范围为1<x<4;(3)如图,设一次函数与x轴交于点C,在y=-x+5中,令y=0可求得x=5,∥C(5,0),即OC=5,将B(4,m)代入y=-x+5,得m=1,∥点B的坐标为(4,1).∥S△AOB=S△AOC-S△BOC=12×5×4-12×5×1=152.故∥AOB的面积为152.【点睛】本题是反比例函数与一次函数的综合题,主要考查函数图象的交点问题,掌握两函数图象的交点坐标满足每个函数解析式是解题的关键.25.(1)y=-x+6;y=8x;(2)0<x<2或x>4;(3)S△ABC=3.【解析】【分析】(1)此处由题意可先求出反比例函数表达式,再根据CO=CA设出A点坐标求出A点坐标,代入即可求出一次函数表达式.(2)此处根据数形结合找出一次函数与反比例函数关系即可.(3)此题可先求出C点坐标,根据A,B,C三点坐标求面积即可.【详解】(1)如图,过点A作AF∥x轴交BD于E,∥点B(4,2)在反比例函数y=kx的图象上,∥k=4×2=8,∥反比例函数的表达式为y=8x,∥B(4,2),∥EF=2,∥BD∥y轴,OC=CA,∥AE=EF=12AF,∥AF=4,∥点A的纵坐标为4,∥点A在反比例函数y=8x的图象上,∥A(2,4),∥4a+b=2;2a+b=4,∥a=-1b=6,∥一次函数的表达式为y=-x+6;(2)0<x<2或x>4.(3)如图1,过点A作AF∥x轴于F交OB于G,∥A(2,4),∥直线OA的解析式为y=2x,∥C(1,2),∥A(2,4),∥AE=4-2=2,BC=4-1=3,∥S△ABC=12×2×3=3.【点睛】本题考查一次函数与反比例函数图形位置关系,牵涉到面积问题,难度一般,是中考中经常出现的题型.。
反比例函数(选择题:较难)1、如图,每个底边为2的等腰三角形顶角的顶点都在反比例函数(x>0)的图像上,第1个等腰三角形顶角的顶点横坐标为1,第2个等腰三角形的顶点横坐标为3,……以此类推,用含n的式子表示第n 个等腰三角形底边上的高为()A. B. C. D.2、已知点A在函数y1=-(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上.若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.则这两个函数图象上的“友好点”对数的情况为()A.有1对或2对 B.只有1对C.只有2对 D.有2对或3对3、在同一直角坐标系中,一次函数的图象与反比例函数的图象有且只有一个交点,则b 的值为 ( )A. 4 B.2 C. D.4、若,两点均在函数的图像上,且<,则-的值为()A.正数 B.负数 C.零 D.非负数5、若点M、N是一次函数y1=﹣x+5与反比例函数y2=(k≠0,x>0)图象的两个交点,其中点M的横坐标为1,下列结论:①一次函数y1=﹣x+5的图象不经过第三象限;②点N的纵坐标为1;③若将一次函数y1=﹣x+5的图象向下平移1个单位,则与反比例函数y2=(k≠0,x>0)图象有且只有一个交点;④当1<x<4时,y1<y2.其中结论正确的个数是()A.4个 B.3个 C.2个 D.1个6、如图,函数y=k(x+1)与y=在同一坐标系中,图象只能是下图中的()A. B.C. D.7、反比例函数y= (a>0,a为常数)和y=在第一象限内的图象如图所示,点M在y=的图象上,MC⊥x轴于点C,交y=的图象于点A;MD⊥y轴于点D,交y=的图象于点B.当点M在y=的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0个 B.1个 C.2个 D.3个8、如图E,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x 的函数解析式是()A.y=﹣ B. y=﹣C. y=﹣D. y=﹣9、如图,直线和双曲线交于,两点,是线段上的点(不与,重合),过点,,分别向轴作垂线,垂足分别是,,,连接,,,设面积是,面积是,面积是,则().A. B.C. D.10、在平面直角坐标系中双曲线经过△CDB顶点B,边BC过坐标原点O,点D在x轴的正半轴上,且∠BDC=90°,现将△CDB绕点B顺时针旋转得到对应△AOB如图所示,此时AB∥x轴,OA=.则k的值是()A.- B. C.﹣3 D.311、如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1 B.2﹕ C.2﹕1 D.29﹕1412、如图,两个反比例函数y1=(其中k1>0)和y2=在第一象限内的图象依次是C1和C2,点P在C1上.矩形PCOD交C2于A、B两点,OA的延长线交C1于点E,EF⊥x轴于F点,且图中四边形BOAP的面积为6,则EF:AC为()A.﹕1 B.2﹕C.2﹕1 D.29﹕1413、一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20,则y与x的函数图象大致是()A. B. C. D.14、如图,两个反比例函数y=和y= (其中k1>k2>0)在第一象限内的图象依次是C l和C2,设点P在C1上,PC⊥x轴于点C,交C1于点A,PD上y轴于点D,交C2于点B,则四边形PAOB的面积为( )A.k l+k2 B.k l-k2 C.k l·k2 D.15、(2015秋•重庆校级期中)已知如图,菱形ABCD的四个顶点均在坐标轴上,对角线AC、BD交于原点O,DF⊥AB交AC于点G,反比例函数y=(x>0)经过线段DC的中点E,若BD=4,则AG的长为()A. B.+2 C.2+1 D.+116、(2015秋•滦县期末)如图,函数y=和y=的图象分别是l1和l2,设点P在l1上,PC⊥x轴,垂足为C,交l2于点A,PD⊥y轴,垂足为D,交l2于点B,则三角形PAB的面积为()A.8 B.9 C.10 D.1117、(2015•滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA的两边分别与函数y=﹣、y=的图象交于B、A两点,则∠OAB的大小的变化趋势为()A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变18、已知反比例函数y=(k>0)的图象与一次函数y=-x+6相交与第一象限的A、B两点,如图所示,过A、B两点分别做x、y轴的垂线,线段AC、BD相交与P,给出以下结论:①OA=OB;②△OAM∽△OBN;③若△ABP的面积是8,则k=5;④P点一定在直线y=x上,其中正确命题的个数是()个.A.1 B.2 C.3 D.419、(2014•濮阳二模)已知反比例函数的图象如图,则一元二次方程x2﹣(2k﹣1)x+k2﹣1=0根的情况是()A.有两个不等实根B.有两个相等实根C.没有实根D.无法确定20、如图,等边三角形OAB的一边OA在x轴上,双曲线在第一象限内的图像经过OB边的中点C,则点B的坐标是()A.( 1,) B.(,1 )C.( 2,) D.(,2 )21、已知n是正整数,(,)是反比例函数图象上的一列点,其中,,…,=n;记,,…,;若,则的值是()A.0.1×218 B.0.1×219C.0.1×220 D.0.1×22122、如图,直线x=t(t>0)与反比例函数y=,y=的图象分别交于B,C两点,A为y 轴上的任意一点,则△ABC的面积为()A.3 B.t C. D.不能确定23、已知正比例函数y1=x,反比例函数y2=,由y1,y2构造一个新函数y=x+,其图象如图所示.(因其图象似双钩,我们称之为“双钩函数”).给出下列几个命题:①该函数的图象是中心对称图形;②当x<0时,该函数在x=-1时取得最大值-2;③y的值不可能为1;④在每个象限内,函数值y随自变量x的增大而增大.其中正确的命题是()A.①②④ B.①②③ C.②③ D.①③24、如图,直线与反比例函数的图象在第一象限内交于A、B两点,交x轴的正半轴于C点,若AB:BC=(m-1):1(m>1),则△OAB的面积(用m表示)为()A. B. C. D.25、如图,在x轴正半轴上依次截取OA1=A1A2=A2A…A n-1A n(n为正整数),过点A1、A2、A3、…、A n分别作x轴的垂线,与反比例函数y=(x>0)交于点P1、P2、P3、…、P n,连接P1P2、P2P3、…、P n-P n,过点P2、P3、…、P n分别向P1A1、P2A2、…、P n-1A n-1作垂线段,构成的一系列直角三角形(见图中1阴影部分)的面积和是()A. B. C. D.26、如图,在平面直角坐标系中,菱形ABOC的顶点O在坐标原点,边BO在x轴的负半轴上,∠BOC=60°,顶点C的坐标为(m,3),反比例函数的图像与菱形对角线AO交于D点,连接BD,当BD⊥x轴时,k的值是()A.6 B.-6 C.12 D.-1227、如图所示,已知A(,),B(2,)为反比例函数图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(,0) B.(1,0) C.(,0) D.(,0)28、如图,OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y=和y=的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:①=;②阴影部分面积是(k1+k2);③当∠AOC=90°时,|k1|=|k2|;④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是()A.①②③ B.②④ C.①③④ D.①④29、如图,点A是反比例函数y= (x<0)的图象上的一点,过点A作平行四边形ABCD,使点B、C在x 轴上,点D在y轴上.已知平行四边形ABCD的面积为6,则k的值为()A.6 B.-6 C.3 D.-330、如图,直线和双曲线交于,两点,是线段上的点(不与,重合),过点,,分别向轴作垂线,垂足分别是,,,连接,,,设面积是,面积是,面积是,则().A. B. C. D.31、如图,在平面直角坐标系中,A(1,0),B(0,3),以AB为边在第一象限作正方形ABCD,点D在双曲线y=(k≠0)上,将正方形沿x轴负方向平移 m个单位长度后,点C恰好落在双曲线上,则m的值是()A.2 B.3 C. D.32、(2014浙江杭州)当函数的自变量x满足时,函数值y满足,则这个函数可以是()A. B.C. D.33、反比例函数图象上的两点为(x1,y1),(x2,y2),且x1<x2,则下列关系成立的是()A.y1>y2 B.y1<y2C.y1=y2 D.不能确定34、已知函数的图象如图,有以下结论:①m<0;②在每一个分支上,y随x的增大而增大;③若点A(-1,a)、B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确结论的个数为()A.4 B.3 C.2 D.135、若函数y=2x+k的图象与x轴的正半轴相交,则函数的图象位于()A.第二、第三象限 B.第三、第四象限C.第二、第四象限 D.第一、第三象限36、当函数的自变量x满足时,函数值y满足,则这个函数可以是() A. B.C. D.37、若变量m与n之间的函数解析式为(a为不等于1的常数),则m是n的() A.一次函数 B.正比例函数C.反比例函数 D.无法确定38、若与y成反比例,与z成正比例,则x与z所成的函数关系为()A.正比例函数关系 B.反比例函数关系C.不成比例关系 D.一次函数关系39、若是反比例函数,则a的取值为()A.1 B.-1C.±1 D.任意实数40、关于反比例函数的图象,下列说法正确的是()A.经过点(1,1)B.两个分支分布在第二、第四象限C.两个分支关于x轴成轴对称D.当x<0时,y随x的增大而减小41、已知一次函数y=kx+b的图象如图所示,那么正比例函数y=kx和反比例函数在同一平面直角坐标系中的图象大致是()A. B.C. D.42、(2013贵州六盘水)下列图形中,阴影部分面积最大的是()A. B.C. D.43、若与y成反比例,与z成正比例,则x与z所成的函数关系为() A.正比例函数关系B.反比例函数关系C.不成比例关系D.一次函数关系44、(2011甘肃天水)已知函数的图象如图,有以下结论:①m<0;②在每一个分支上,y随x的增大而增大;③若点A(-1,a)、B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确结论的个数为()A.4 B.3 C.2 D.145、(2014甘肃天水)已知函数的图象如图所示,以下结论:①m<0;②在每个分支上y随x的增大而增大;③若点A(-1,a)、点B(2,b)在图象上,则a<b;④若点P(x,y)在图象上,则点P1(-x,-y)也在图象上.其中正确的个数是()A.4个 B.3个 C.2个 D.1个46、若为反比例函数,则a=________.参考答案1、A2、A3、C4、B5、B6、A7、D8、A9、D10、B11、A12、A13、C14、B.15、A16、A17、D18、D.19、C20、C21、A.22、C23、B.24、B25、A26、D27、D28、D29、B30、D31、A32、A33、D34、B35、C36、A37、C38、B39、A40、D41、C42、C43、B44、B45、B46、0【解析】1、试题分析:第一个三角形底边上的高为6,第二个三角形底边上的高为2,第三个三角形底边上的高为,根据规律可得:第n个三角形底边上的高为.考点:反比例函数的性质.2、设点A与点B为函数y1,y2图象上的一对“友好点”,则点A与点B关于原点对称.设点A的坐标为(x0, y0),则点B的坐标应为(-x0, -y0).由于点A在函数(x>0)的图象上,所以将点A的坐标代入函数y1的解析式,得,故点B的坐标可以表示为.由于点B在直线y2=kx+1+k (k为常数,且k≥0)上,所以将点B的坐标代入y2=kx+1+k,得,①因为点A在函数(x>0)的图象上,所以x0>0,方程①两侧同时乘以x0并整理,得,②因为k≥0,所以应该按以下两种情况分别对方程②进行求解.(1) 当k=0时,方程②应为:,解之,得.故当k=0时,“友好点”为:点A (1, -1)与点B (-1, 1).(2) 当k>0时,方程②为关于x0的一元二次方程,利用因式分解法解该一元二次方程,得,∴或,∴或故当k>0时,“友好点”为:点A (, -k)与点B (-, k),或点A (1, -1)与点B (-1, 1).综上所述,当k=0时,两个图象有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1);当k>0且k≠1时,两个图象有2对“友好点”,它们分别是:点A (, -k)与点B (-, k),点A (1, -1)与点B (-1, 1);当k=1时,两个图象实际上只有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1).因此,这两个图象上的“友好点”应有1对或者2对.故本题应选A.点睛:本题是一道利用代数方法求解几何相关问题的综合题目,也是数形结合思想的应用问题. 本题的关键思想可以总结为:利用关于原点对称的点的坐标特征和函数图象与解析式之间的关系将题目中的几何问题转化为关于某一待定坐标值的方程,通过求解方程获得符合要求的点.3、由题意可得:有且只有一组解,即有唯一解,∴关于的一元二次方程有两个相等的实数根,∴△=,解得:.故选C.点睛:在坐标系中,直线与双曲线的交点个数是由两个函数解析式组成的方程组的解的个数来确定的;解这类题时,通常先把两个函数的解析式组成方程组,再把方程组转化为一个一元二次方程,最后根据一元二次方程根的判别式的值来确定根的情况,就可以确定两函数图象的交点个数了.4、,两点均在函数的图像上,可得ab=1, =1,即可得a=c,b=,所以b-c=-a=,再由<可得1-a>0,1+a>0,所以,即b-c<0,故选B.5、由一次函数y1=﹣x+5可知,一次函数y1=﹣x+5的图象经过第一、二、四象限,不经过第三象限;故①正确;∵点M的横坐标为1,∴y=﹣1+5=4,∴M(1,4),∴k=4,∴反比例函数y2=(k≠0,x>0),解,得或,∴N的纵坐标为1,故②正确;将一次函数y1=﹣x+5的图象向下平移1个单位长度,则函数的解析式为y=﹣x+4,解解得,,∴将一次函数y1=﹣x+5的图象向下平移1个单位,则与反比例函数y2=(k≠0,x>0)图象有且只有一个交点,故③正确;∵M(1,4),N(4,1),根据图象可知当1<x<4时,一次函数图象部分在反比例函数图象的上方,所以y1>y2,故④错误,故选B.【点睛】本题考查了一次函数和二次函数的交点坐标,其知识点有:待定系数法求解析式,平移的性质以及交点的求法等.6、k>0时,函数y=k(x+1)的图象经过第一、二、三象限,反比例函数y=的图象位于第一、三象限,选项A符合;k<0时,函数y=k(x+1)的图象经过第二、三、四象限,而反比例函数y=的图象位于第二、四象限,无选项符合.故选A.【点睛】本题考查一次函数与反比例函数图象位于哪些象限的问题,解题的关键是要熟记一次函数、反比例函数位于哪些象限与系数的关系.7、试题分析:根据反比例函数的图像与系数k的意义,设A(x1,y1),B(x2,y2),则有x1y1=x2y2=1可知S△ODB=S△OCA=1,故①正确;同样可知四边形OCMD的面积为a,因此四边形OAMB的面积为a-2,故不会发生变化,故②正确;当点A是MC的中点时,y2=2y1,代入x1y2=a中,得2x1y1=a,a=2,代入x1=kx2中,得x1=2x2,因此B为MD的中点,故③正确.故选:D.8、试题分析:作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB=2x,然后根据平行线的性质即可得CG:BC=FG:AB,即,所以.故选:A.考点:1、三角形全等的判定与性质,2、平行线的性质9、试题分析:根据反比例函数的几何意义可得:;.考点:反比例函数的几何意义10、试题分析:过A作AE⊥x轴于E,BF⊥x轴于F,∵AB∥x轴,∴∠ABO=∠BOD,∠ABD+∠BDO=180°,∵将△CDB绕点B顺时针旋转得到对应△AOB,∴∠ABO=∠CBD,∴∠BOD=∠OBD,∵OB=BD,∴∠BOD=∠BDO,∴△BOD是等边三角形,∴∠BOD=60°,∠BAO=∠AOE=30°,∵OA=2,∴AE=BF=,∴B(1,);∵双曲线经过点B,∴k=1×=,故选B.考点:反比例函数图象上点的坐标特征;坐标与图形变化-旋转11、试题分析:首先根据反比例函数y2=的解析式可得到=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=.故选:A.考点:反比例函数系数k的几何意义12、试题分析:首先根据反比例函数y2=的解析式可得到S△ODB=S△OAC=×3=,再由阴影部分面积为6可得到=9,从而得到图象C1的函数关系式为y=,再算出△EOF的面积S△EOF=×9=,可以得到△AOC与△EOF的面积比,然后证明△EOF∽△AOC,根据对应边之比等于面积比的平方可得到EF﹕AC=:1.故选:A.考点:1、反比例函数系数k的几何意义,2、以及相似三角形的性质13、试题分析:设y=(k≠0),根据当x=2时,y=20,求出k,即可得出y与x的函数图象.解:设y=(k≠0),∵当x=2时,y=20,∴k=40,∴y=,则y与x的函数图象大致是C,故选:C.14、试题解析:∵S矩形OCPD=k1,S△AOC=S△DOB=k2,∴四边形PAOB的面积=S矩形OCPD-2S△AOC=k1-k2.故选B.考点:反比例函数系数k的几何意义.15、试题分析:过E作y轴和x的垂线EM,EN,证明四边形MENO是矩形,设E(b,a),根据反比例函数图象上点的坐标特点可得ab=,进而可计算出CO长,根据三角函数可得∠DCO=30°,再根据菱形的性质可得∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2,然后利用勾股定理计算出DG长,进而可得AG长.解:过E作y轴和x的垂线EM,EN,设E(b,a),∵反比例函数y=(x>0)经过点E,∴ab=,∵四边形ABCD是菱形,∴BD⊥AC,DO=BD=2,∵EN⊥x,EM⊥y,∴四边形MENO是矩形,∴ME∥x,EN∥y,∵E为CD的中点,∴DO•CO=4,∴CO=2,∴tan∠DCO==,∴∠DCO=30°,∵四边形ABCD是菱形,∴∠DAB=∠DCB=2∠DCO=60°,∠1=30°,AO=CO=2,∵DF⊥AB,∴∠2=30°,∴DG=AG,设DG=r,则AG=r,GO=2﹣r,∵AD=AB,∠DAB=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠3=30°,在Rt△DOG中,DG2=GO2+DO2,∴r2=(2﹣r)2+22,解得:r=,∴AG=,故选:A.考点:反比例函数综合题.16、试题分析:设P的坐标是(a,),推出A的坐标和B的坐标,求出∠APB=90°,求出PA、PB的值,根据三角形的面积公式求出即可.解:∵点P在y=上,∴|x p|×|y p|=|k|=1,∴设P的坐标是(a,)(a为正数),∵PA⊥x轴,∴A的横坐标是a,∵A在y=﹣上,∴A的坐标是(a,﹣),∵PB⊥y轴,∴B的纵坐标是,∵B在y=﹣上,∴代入得:=﹣,解得:x=﹣3a,∴B的坐标是(﹣3a,),∴PA=|﹣(﹣)|=,PB=|a﹣(﹣3a)|=4a,∵PA⊥x轴,PB⊥y轴,x轴⊥y轴,∴PA⊥PB,∴△PAB的面积是:PA×PB=××4a=8.故选A.考点:反比例函数系数k的几何意义.17、试题分析:如图,作辅助线;首先证明△BOM∽△OAN,得到;设B(﹣m,),A(n,),得到BM=,AN=,OM=m,ON=n,进而得到mn=,mn=,此为解决问题的关键性结论;运用三角函数的定义证明知tan∠OAB=为定值,即可解决问题.解:如图,分别过点A、B作AN⊥x轴、BM⊥x轴;∵∠AOB=90°,∴∠BOM+∠AON=∠AON+∠OAN=90°,∴∠BOM=∠OAN,∵∠BMO=∠ANO=90°,∴△BOM∽△OAN,∴;设B(﹣m,),A(n,),则BM=,AN=,OM=m,ON=n,∴mn=,mn=;∵∠AOB=90°,∴tan∠OAB=①;∵△BOM∽△OAN,∴===②,由①②知tan∠OAB=为定值,∴∠OAB的大小不变,故选:D.考点:相似三角形的判定与性质;反比例函数图象上点的坐标特征.18、试题分析:①∵令x=0,则y=6,令y=0,则x=6,∴E(0,6),F(6,0),∴E、F两点关于直线y=x对称,∵反比例函数的图象关于直线y=x对称,∴A、B两点关于直线y=x对称,∴y=x是线段AB的垂直平分线,∴OA=OB,故①正确;②∵A、B两点关于直线y=x对称,AM⊥y轴,BN⊥x轴,∴AM=BN,∵由①知OA=OB,∴△OAM≌△OBN,∴△OAM∽△OBN,故②正确;③设A(x,6-x),∵A、B两点关于直线y=x对称,∴B(6-x,x),P(x,x),∵△ABP的面积是8,∴S△ABP=PB•AP=(6-2x)(6-2x)=8,解得x=1或x=5,∵当x=1时,6-x=5,∴A(1,5);当x=5时,6-x=1,∴A(5,1);∵点A在反比例函数y=的图象上,∴k=1×5=5,故③正确;④∵点A、B关于直线y=x对称,∴OM=ON,∵AM⊥y轴,AC⊥x轴,BD⊥y轴,BN⊥x轴,∴四边形AMOC与四边形BDON均是矩形,∵由②知AM=BN,∴OC=OD,∴AP=PB,∴点P在线段AB的垂直平分线上,∴点P在直线y=x上,故④正确.故选:D.考点:反比例函数综合题.19、试题分析:首先根据反比例函数的图象可以得到k的取值范围,然后根据k的取值范围即可判断方程x2﹣(2k﹣1)x+k2﹣1=0的判别式的正负情况,接着就可以判断方程的根的情况.解:∵反比例函数的图象在第一、三象限内,∴k﹣2>0,∴k>2,∵一元二次方程x2﹣(2k﹣1)x+k2﹣1=0的判别式为△=b2﹣4ac=(2k﹣1)2﹣4(k2﹣1)=﹣4k+5,而k>2,∴﹣4k+5<0,∴△<0,∴一元二次方程x2﹣(2k﹣1)x+k2﹣1=0没有实数根.故选C.考点:根的判别式;反比例函数的图象.20、试题分析:过点B作BD⊥x轴,垂足为D,设点B的坐标为(a,b)(a>0),∵三角形OAB是等边三角形,∴∠BOA=60°,在Rt△BOD中,tan60°=,∴b=a,∵点C是OB的中点,∴点C 坐标为(,),∵点C在双曲线y=上,∴a2=,∴a=2,∴点B的坐标是(2,2),故选C.考点:反比例函数综合题.21、试题分析:∵,,x1=1,x2=2,x3=3,x4=4,………,x n=n,∴y2=1,∵x2=2,∴k=2.∴∵x1=1,x2=2,x3=3,x4=4,………,x n=n,………,而∴y1=k,y2=,y3=,y4=,………,y20=,∵,,…,;∴=2×,T3=x3y4=3×,………,=19×,………∴=·2×·3×·………·19×=.故答案选A.考点:反比例函数图象上点的特征.22、试题分析:把x=t分别代入y=,y=,得y=,y=,所以B(t,)、C(t,),所以BC=-()=.因此再由A为y轴上的任意一点,可知点A到直线BC的距离为t,所以可求S△ABC的面积==.故选C.考点:反比例函数图象上点的坐标特征及三角形的面积23、试题分析:①正比例函数y1=x,反比例函数y2=都是中心对称的,其和函数y=x+也是中心对称图形,正确;②根据图象可得当x<0时,该函数在x=-1时取得最大值-2,正确;③由图象可得y的值不可能为1,正确;④在每个象限内,函数值y随自变量x的增大而增大,错误.故选B.考点:1.反比例函数的性质;2.正比例函数的性质.24、试题分析:作AD⊥x轴于点D,BE⊥x轴于点E,根据相似三角形的判定得到△CAD∽△CBE,则CB:CA=BE:AD,而AB:BC=(m-1):1(m>1),则有AC:BC=m:1,AD:BE=m:1,设A点坐标为(,m),则B点的坐标为(2,1),由反比例函数的性质知,因此==(2-)(m+1)=.故选B考点:反比例函数的图像与性质25、试题分析:根据题意可得:=0,=,=,,,则.考点:规律题.26、首先过点C 作CE⊥x 轴于点E,由∠BOC=60°,顶点C 的坐标为(m ,3),可求得OC 的长,又由菱形ABOC 的顶点O 在坐标原点,边BO 在x 轴的负半轴上,可求得OB 的长,且∠AOB=30°,继而求得DB 的长,则可求得点D 的坐标,又由反比例函数的图象与菱形对角线AO 交D 点,即可求得答案.解:过点C 作CE⊥x 轴于点E,∵顶点C 的坐标为(m ,3),∴OE= ﹣m ,CE=3,∵菱形ABOC 中,∠BOC=60°,∴OB=OC=="6" ,∠BOD=∠BOC=30°,∵DB⊥x 轴,∴DB=OB•tan30°=6× =2,∴点D 的坐标为:(﹣6,2),∵反比例函数的图象与菱形对角线AO 交D 点,∴k="xy=" ﹣12.故选D.“点睛”此题考查了菱形的性质以及反比例函数图象上点的坐标特征.注意准确作出辅助线,求得点D 的坐标是关键.27、试题分析:设点P的坐标为(x,0),然后分别求出AP和BP的长度,然后进行计算.考点:点之间的距离计算.28、试题分析:过点C作CD⊥y轴于点D,过点A作AE⊥y轴于点E.∵,∴CD=AE.由题意,易得四边形ONCD与四边形OMAE均为矩形,∴CD=ON,AE=OM,∴ON=OM.∵,CN·ON=,AM·OM=∴,结论①正确.由题意>0,<0,∴阴影部分的面积为,∴结论②错误.当∠AOC=90°时,易得△CON∽△OAM,要使成立,则需△CON≌△OAM,而△CON与△OAM不一定全等,故结论③错误.若四边形OABC为菱形,则OA=OC,∵ON=OM,∴Rt△ONC≌Rt△OMA(HL),∴=,即=-,∴两双曲线既关于x轴对称,也关于y轴对称,结论④正确.考点:反比例函数的性质、三角形全等.29、试题分析:因为矩形ADOE的面积等于AD×AE,平行四边形ABCD的面积等于:AD×AE,所以▱ABCD的面积等于矩形ADOE的面积,根据反比例函数的k的几何意义可得:矩形ADOE的面积为6,可知k=-6.故选:B.点睛:此题考查了反比例函数的k的几何意义及平行四边形的性质,根据题意得出▱ABCD的面积等于矩形ADOE的面积是解答本题的关键.30、试题分析:根据反比例函数的几何意义可得:;.考点:反比例函数的几何意义31、试题分析:作CE⊥y轴于点E,交双曲线于点G.作DF⊥x轴于点F.根据图示可得△OAB和△FDA 和△BEC全等,从而得出点D的坐标为(4,1),点C的坐标为(3,4)。
2022-2023学年人教版九年级数学下册《26.1反比例函数》同步练习题(附答案)一.选择题1.下列函数中,不是反比例函数的是()A.y=x﹣1B.xy=5C.D.2.若y=(a+1)x a2﹣2是反比例函数,则a的值为()A.1B.﹣1C.±1D.任意实数3.如图,过原点的一条直线与反比例函数(k≠0)的图象分别交于A、B两点,若A 点的坐标为(3,﹣5),则B点的坐标为()A.(3,﹣5)B.(﹣5,3)C.(﹣3,+5)D.(+3,﹣5)4.下列函数中,y的值随x值的增大而增大的函数是()A.y=B.y=﹣2x+1C.y=x﹣2D.y=﹣x﹣2 5.已知反比例函数y=﹣,下列说法不正确的是()A.图象经过点(2,﹣4)B.图象分别位于第二、四象限内C.在每个象限内y的值随x的值增大而增大D.y≤1时,x≤﹣86.对于反比例函数y=﹣,下列说法不正确的是()A.点(﹣2,1)在它的图象上B.若点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则y1<y2C.它的图象在第二、四象限D.当x>0时y随x的增大而增大7.若反比例函数在每个象限内,y随x的增大而减小,则()A.B.C.D.8.二次函数y=ax2+bx和反比例函数在同一直角坐标系中的大致图象是()A.B.C.D.9.两个反比例函数C1:和C2:在第一象限内的图象如图所示,设点P在C1上,PC⊥x轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形P AOB的面积为()A.1B.2C.3D.410.如图,∠OAB=30°,点A在反比例函数的图象上,过B的反比例函数解析式为()A.B.C.D.二.填空题11.反比例函数图象的一支如图所示,△POM的面积为2,则该函数的解析式是.12.在反比例函数y=的图象的每一支上,y都随x的增大而减小,则k的取值范围是.13.下列函数:①y=﹣5x;②y=3x﹣2;③y=﹣(x>0);④y=3x2(x<0),其中y的值随x的增大而增大的函数为.(填序号)14.若(1,y1)、(2,y2)、(﹣3,y3)都在函数y=﹣的图象上,则y1、y2、y3的大小关系是.15.如图,一次函数y1=k1x+b的图象与反比例函数y2=的图象交于点A(1,m),B(4,n).当y1>y2时,x的取值范围是.16.如图,在平面直角坐标系中,菱形ABOC的顶点A在反比例函数y=(k>0,x>0)的图象上,点C的坐标为(4,3),则k的值为.17.如图,四边形OABC是正方形,OA在y轴正半轴上,OC在x轴负半轴上.反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F.若∠EOF=30°,则线段OE的长度为.三.解答题18.已知y是关于x的反比例函数,当x=3时,y=﹣2.(1)求此函数的表达式;(2)当x=﹣4时,函数值是2m,求m的值.19.如图,反比例函数的图象经过点(﹣2,4)和点A(a,﹣2).(Ⅰ)求该反比例函数的解析式和a的值.(Ⅱ)若点C(x,y)也在反比例函数的图象上,当2<x<8时,求函数y 的取值范围.20.已知图中的曲线是反比例函数y=(m为常数)图象的一支.(1)根据图象位置,求m的取值范围;(2)若该函数的图象任取一点A,过A点作x轴的垂线,垂足为B,当△OAB的面积为4时,求m的值.21.如图,一次函数y=k1x+b的图象与反比例函数y=的图象相交于点A(3,1),B(﹣1,n)两点.(1)分别求出一次函数和反比例函数的解析式;(2)根据图象,直接写出满足k1x+b≥的x的取值范围;(3)连接BO并延长交双曲线于点C,连接AC,求△ABC的面积.22.如图,一次函数y1=ax+b与反比例函数y2=的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围为;(3)点P是x轴上一点,当S△P AC=S△AOB时,请直接写出点P的坐标为.23.如图,在平面直角坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B,将△AOB绕点B逆时针旋转,使点O的对应点D在x轴的正半轴上.若AB的对应线段CB恰好经过点O.(1)求点B的坐标和双曲线的解析式;(2)判断点C是否在双曲线上,并说明理由.24.如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.参考答案一.选择题1.解:反比例函数的三种形式为:①y=(k为常数,k≠0),②xy=k(k为常数,k≠0),③y=kx﹣1(k为常数,k≠0),由此可知:只有y=不是反比例函数,其它都是反比例函数,故选:C.2.解:由反比例函数的定义得a+1≠0且a2﹣2=﹣1由a+1≠0得a≠﹣1由a2﹣2=﹣1得a=±1综上所述,a=1.故选:A.3.解:∵反比例函数的图象是中心对称图形,则与经过原点的直线的两个交点一定关于原点对称,∴它的另一个交点的坐标是(﹣3,+5).故选:C.4.解:A、y=是反比例函数,k=2>0,在每个象限内,y随x的增大而减小,所以A选项不合题意;B、y=﹣2x+1是一次函数,k=﹣2<0,y随x的增大而减小,所以B选项不合题意;C、y=x﹣2是一次函数,k=1>0,y随x的增大而增大,所以C选项符合题意;D、y=﹣x﹣2是一次函数,k=﹣1<0,y随x的增大而减小,所以D选项不合题意.故选:C.5.解:A、当x=2时,y=﹣4,即反比例函数y=﹣的图像经过点(2,﹣4),故不符合题意;B、因为反比例函数y=﹣中的k=﹣8,所以图像分别在二、四象限,故不符合题意;C、因为反比例函数y=﹣中的k=﹣8,所以在每个象限内y随x增大而增大,故不符合题意;D、y≤1时,x≤﹣8或x>0,故符合题意;故选:D.6.解:A、当x=﹣2时,y=1,即点(﹣2,1)在它的图象上,不符合题意;B、点A(x1,y1),B(x2,y2)都在图象上,且x1<x2,则点A和点B都在第二象限或都在第四象限时y1<y2,点A在第二象限,点B在第四象限时y1>y2,符合题意;C、反比例函数y=﹣中的k=﹣2<0,所以它的图象在第二、四象限,不符合题意;D、反比例函数y=﹣中的k=﹣2<0,所以当x>0时y随x的增大而增大,不符合题意.故选:B.7.解:∵反比例函数在每个象限内,y随x的增大而减小,∴3k﹣2>0,解得k>,故选:A.8.解:A、由反比例函数得:b>0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b<0,∴选项A不正确;B、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴右侧,∴a、b异号,∴b>0,∴选项B正确;C、由反比例函数得:b>0,∵抛物线开口向下,∴a<0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b<0,∴选项C不正确;D、由反比例函数得:b<0,∵抛物线开口向上,∴a>0,∴抛物线的对称轴在y轴左侧,∴a、b同号,∴b>0,∴选项D不正确;故选:B.9.解:∵PC⊥x轴,PD⊥y轴,∴S△AOC=S△BOD=|k|=,S矩形PCOD=|2|=2,∴四边形P AOB的面积=2﹣2•=1.故选:A.10.解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,如图.∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴=,∵S△AOD==3,∴S△BCO=|k|=1,∵经过点B的反比例函数图象在第二象限,∴k=﹣2,故反比例函数解析式为:y=﹣.故选:C.二.填空题11.解:∵△POM的面积为2,∴S=|k|=2,∴k=±4,又∵图象在第四象限,∴k<0,∴k=﹣4,∴反比例函数的解析式为:y=﹣.故答案为:y=﹣.12.解:在反比例函数y=的图象的每一支上,y都随x的增大而减少,∴﹣k+1>0,∴k<1,∴k的取值范围为:k<1.故答案为:k<1.13.解:①对于y=﹣5x,y随x的增大而减小;②对于y=3x﹣2,y随x的增大而增大;③当x>0时,函数y=﹣,y随x的增大而增大;④y=3x2,当x<0时,y随x的增大而减小.故答案为:②③.14.解:∵y=﹣中,k=﹣2<0,∴图象在二、四象限,在每一象限内y随x的增大而增大,∵2>1>0,﹣3<0,∴点(1,y1),B(2,y2)在第四象限,(﹣3,y3)在第二象限,∴y1<y2<0,y3>0.∴y1<y2<y3.故答案为:y1<y2<y3.15.解:∵一次函数y1=k1x+b的图象与反比例函数的图象交于点A(1,m),B(4,n),∴当1<x<4时,y1>y2,当x<0时,y1>y2,即当y1>y2时,x的取值范围是x<0或1<x<4.故答案为:x<0或1<x<4.16.解:延长AC交x轴于E,如图所示:则AE⊥x轴,∵C的坐标为(4,3),∴OE=4,CE=3,∴OC==5,∵四边形OBAC是菱形,∴AB=OB=OC=AC=5,∴AE=5+3=8,∴点A的坐标为(4,8),把A(4,8)代入函数y=(x>0)得:k=4×8=32;故答案为:32.17.解:∵四边形OABC是正方形,∴OA=OC,∠OAF=∠OCE=90°,∵反比例函数y=﹣在第二象限的图象与BC,AB分别交于点E,F,∴CE×OC=AF×OA=4,∴CE=AF,在△OCE与OAF中,,∴△OCE≌△OAF(SAS),∵∠EOF=30°,∴∠COE=∠AOF=30°,∴OC=CE,∵CE×OC=4,∴CE=2,∴OE=2CE=4,故答案为:4.三.解答题18.解:(1)设y=(k≠0),则k=xy;∵当x=3时,y=﹣2,∴k=3×(﹣2)=﹣6,∴该反比例函数的解析式是:y=﹣;(2)由(1)知,y=﹣,∵x=﹣4时,函数值是2m,∴2m=﹣,∴m=.19.解:(Ⅰ)将点(﹣2,4)代入y=(k≠0),得:k=﹣2×4=﹣8,∴反比例函数解析式为:y=﹣,把点A(a,﹣2)代入y=﹣得﹣=﹣2,∴a=4,A(4,﹣2);(Ⅱ)∵点C(x,y)也在反比例函数的图象上,∴当x=2时,y=﹣4;当x=8时,y=﹣1,∵k=﹣8<0,∴当x>0 时,y随x值增大而增大,∴当2<x<8 时,﹣4<y<﹣1.20.解:(1)∵这个反比例函数的图象分布在第一、第三象限,∴m﹣5>0,解得m>5.(2)∵S△OAB=|k|,△OAB的面积为4,∴(m﹣5)=4,∴m=13.21.解:(1)∵把A(3,1)代入y=得:k2=3×1=3,∴反比例函数的解析式是y=,∵B(﹣1,n)代入反比例函数y=得:n=﹣3,∴B的坐标是(﹣1,﹣3),把A、B的坐标代入一次函数y=k1x+b得:,解得:k1=1,b=﹣2,∴一次函数的解析式是y=x﹣2;(2)从图象可知:k1x+b≥的x的取值范围是当﹣1≤x<0或x≥3.(3)过C点作CD∥y轴,交直线AB于D,∵B(﹣1,﹣3),B、C关于原点对称,∴C(1,3),把x=1代入y=x﹣2得,y=﹣1,∴D(1,﹣1),∴CD=4,∴S△ABC=S△ACD+S△BCD=×4×(3+1)=8.22.解:(1)将A(2,8),B(8,2)代入y=ax+b得,解得,∴一次函数为y=﹣x+10,将A(2,8)代入y2=得8=,解得k=16,∴反比例函数的解析式为y=;(2)由图象可知,当y1<y2时,自变量x的取值范围为:x>8或0<x<2,故答案为x>8或0<x<2;(3)由题意可知OA=OC,∴S△APC=2S△AOP,把y=0代入y1=﹣x+10得,0=﹣x+10,解得x=10,∴D(10,0),∴S△AOB=S△AOD﹣S△BOD=﹣=30,∵S△P AC=S△AOB=×30=24,∴2S△AOP=24,∴2××y A=24,即2×OP×8=24,∴OP=3,∴P(3,0)或P(﹣3,0),故答案为P(3,0)或P(﹣3,0).23.解:(1)∵AB∥x轴,∴∠ABO=∠BOD,由旋转可知∠ABO=∠CBD,∴∠BOD=∠CBD,∴OD=BD,由旋转知OB=BD,∴△OBD是等边三角形,∴∠BOD=60°,∴B(1,),∵双曲线y=经过点B,∴k=xy=1×=.∴双曲线的解析式为y=.(2)∵∠ABO=60°,∠AOB=90°,∴∠A=30°,∴AB=2OB,由旋转知AB=BC,∴BC=2OB,∴OC=OB,∴点C(﹣1,﹣),把点C(﹣1,﹣)代入y=,﹣=﹣,∴点C在双曲线上.24.解:(1)∵AB∥y轴,AB⊥x轴.点A(﹣2,1),且平行四边形ABCD对角线交于坐标原点O,∴AM=1,OM=ON=2,∴MN=4,∵平行四边形ABCD的面积为12,∴AB•MN=12,∴AB=3,BM=2.∴点B(﹣2,﹣2).将点B(﹣2,﹣2)代入,得,∴k=4.∴反比例函数的解析式为;(2)在Rt△AOM中,根据勾股定理,得.当△AOP是等腰三角形时,分三种情况讨论:①当OA=OP时,若点P在y轴的负半轴上,则点,若点P在y轴的正半轴上,则点;②当OP=AP时,点P在OA的垂直平分线上,如图,∴,∵∠POG+∠AOM=90°=∠AOM+∠OAM,∴∠POG=∠OAM,∵∠PGO=∠AMO=90°,∴△OAM∽△POG,∴OP=OG=,∴点P3的坐标为;③当AP=AO时,点A在OP4的垂直平分线上,∴点P4的坐标为(0,2).综上可知,点P的坐标为或或或(0,2).。
北师大九年级上第五章反比例函数
第5.2.1课时 (反比例函数的图象与性质1) 姓名
学习目标:
1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象;
2.体会函数的三种表示方法的互相转换,对函数进行认识上的整合;
一.填空题
1.反比例函数k y x
=的图象是________,过点(2-,____),其图象两支分布在_ __象限; 2.如果y 与2-x 成反比例函数,且比例系数0≠k ,则它的函数解析式是_________,若
3=x 时,4=y ,则_____=k ;
3.如果函数22(1)m
y m x -=-是反比例函数,那么m 的值是_________ ; 4.已知函数1k y x +=
的图象两支分布在第二、四象限内,则k 的范围是_________ 5.双曲线k y x
=经过点(2-,3),则_____=k ; 6.已知y 与6成反比例,当1=y 时,4=x ,则当2=x 时,_____=y ;
7.反比例函数和正比例函数的图象都经过点A(1-,2-),则这两个函数的解析式分别是
_________和_________;
8.某厂有煤1500吨,求这些煤能用的天数y 与每天用煤的吨数x 之间的函数关系式为
_________;
二.选择题 :
9.下列等式中,哪个等式表示y 是x 的反比例函数 ( )
(A ) k y x = (B ) 23y x = (C ) 121
y x =+ (D ) 21xy -= 10.已知反比例函数的图象经过点(1,2),则它的图象也一定经过 ( )
(A ) (1-,2-) (B ) (1-,2) (C ) (1,2-) (D ) (2-,1)
11.反比例函数 2
k y x
= (0≠k )的图象的两个分支分别位于 ( )
(A ) 第一、二象限 (B ) 第一、三象限 (C ) 第二、四象限 (D ) 第一、四象限
12.如图1—84,反比例函数k y x =
的图象经过点A , 则
k 的值是
( )
(A ) 2 (B ) 1.5
(C ) 3- (D ) 32
- 13.点A 为反比例函数图象上一点,它到原点的距离
为5,到x 轴的距离为3,若点A 在第二象限内.则这个反比例函数的解析式为 ( )
(A ) 12y x =
(B ) 12y x =- (C ) 112y x = (D ) 112y x
=- 14.反比例函数m y x =的图象两支分布在第二、四象限,则点(m ,2-m )在 ( )
(A ) 第一象限 (B ) 第二象限 (C ) 第三象限 (D ) 第四象限
15.若函数21(31)n
n y n x --=-是反比例函数,且它的图象在二、四象限内,则n 的值是 ( )
(A ) 0 (B ) 1 (C ) 0或1 (D ) 非上述答案
16.已知12y y y =+,其中1y 与
1x 成反比例且比例系数为1k ,2y 与2x 成正比例且比例系数为2k ,若1-=x 时,0=y ,则1k 与2k 的关系为 ( )
(A ) 12k k =- (B ) 12k k ≠ (C ) 121k k =-
(D ) 12k k = 三.解答题
17.已知正比例函数y kx =与反比例函数3y x
=
的图象都过A(m ,1)点.求: (1)正比例函数的解析式;
(2)正比例函数与反比例函数的另一个交点的坐标.
2.已知12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-2;当x =2
时,y=-7,求y 与x 间的函数关系式.
3.已知12y y y =-,且1y 与x 的算术平方根成正比例,2y 与x 的平方成反比例,当x=1时,y=0;x=2时,y=314
,求y 关于x 的表达式. 4.已知抛物线2y ax bx c =++过点(-1,2):对称轴是直线x=1,顶点在双曲线k y x =
上,求此抛物线的解析式.
5.设a 、b 是关于x 的方程22(3)(3)0kx k x k +-+-=的两个不相等的实根(k 是非负整数),一次函数y=(k-2)x+m 与反比例函数n y x
=
的图象都经过点(a ,b). (1)求k 的值;
(2)求一次函数和反比例函数的解析式.。