反比例函数的图象和性质
- 格式:doc
- 大小:626.00 KB
- 文档页数:10
易加益教育培训中心——溧阳校区 小学、初中创新教育专家反比例函数图像及其性质一、函数定义一般的,如果两个变量x 、y 之间的关系可以表示成 xk y (k 为常数,k ≠0),其中k 叫做反比例系数,x 是自变量,y 是自变量x 的函数,x 的取值范围是不等于0的一切实数,且y 也不能等于0。
k 大于0时,图像在一、三象限。
k 小于0时,图像在二、四象限。
k 的绝对值表示的是x 与y 的坐标形成的矩形的面积。
二、函数的性质1、单调性当k>0时,图象分别位于第一、三象限,从左往右,y 随x 的增大而减小,为减函数; 当k<0时,图象分别位于第二、四象限,从左往右,y 随x 的增大而增大,为增函数。
2、相交性因为y=k/x(k ≠0)中,x 不能为0,y 也不能为0,所以反比例函数的图象不可能与x 轴相交,也不可能与y 轴相交,只能无限接近x 轴,y 轴。
3、图像表达⑴ 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴:y=x 和y=-x (即第一三,二四象限角平分线),对称中心是坐标原点。
⑵ 反比例函数图像不与x 轴和y 轴相交的渐近线为:x 轴与y 轴。
⑶ k 值相等的反比例函数重合,k 值不相等的反比例函数永不相交。
⑷ |k|越大,反比例函数的图象离坐标轴的距离越远。
三、重点知识⑴ 过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。
⑵ 对于双曲线y=k/x ,若在分母上加减任意一个实数(即y=k/(x ±m ),m 为常数),就相当于将双曲线图象向左或右平移一个单位。
(加一个数时向左平移,减一个数时向右平移)四、反比例函数图像。
反比例函数的图象和性质一、反比例函数的定义函数ky x=(k 为常数,0k ≠)叫做反比例函数,其中k 叫做比例系数,x 是自变量,y 是函数,自变量x 的取值范围是不等于0的一切实数.二、反比例函数的图象反比例函数ky x=(k 为常数,0k ≠)的图象由两条曲线组成,每条曲线随着x 的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数k y x =与ky x=-(0k ≠)的图象关于x 轴对称,也关于y 轴对称.三、反比例函数的性质反比例函数ky x=(k 为常数,0k ≠)的图象是双曲线; 当0k >时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而减小;当0k <时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y 随x 的增大而增大.注意:⑴反比例函数ky x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来. ②叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当0k >时,双曲线ky x=的两支分别在一、三象限,在每一个象限内,y 随x 的增大而减小.这是由于0x ≠,即0x >或0x <的缘故.如果笼统地叙述为0k <时,y 随x 的增大而增大就是错误的.⑵由于反比例函数中自变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势. ⑶在画出的图象上要注明函数的解析式.四、反比例函数解析式的求法反比例函数的解析式(0)ky k x=≠中,只有一个系数k ,确定了k 的值,也就确定了反比例函数的解析式.因此,只需给出一组x 、y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式.五、比例系数k 的几何意义过反比例函数()0ky k =≠,图象上一点()P x y ,,做两坐标轴的垂线,两垂足、原点、P 点组成一个矩一、反比例函数的定义及解析式的确定【例1】 下列关于x 的函数中:①2y x =;②43y x -=;③ky x=;④22m y x +=中,一定是反比例函数的有( )A .1个B . 2个C . 3个D . 4个【巩固】已知y 与2x 成反比例,当3x =时,4y =,则y 是x 的( )A . 正比例函数B .一次函数C .反比例函数D .以上都不是【例2】 若函数||1a y x-=是反比例函数,则a 的值为( ). A . a 为任意实数 B . 0a > C . 1a ≠ D . 1a ≠±【巩固】已知()2212m m y m m x +-=+是关于x 的反比例函数,求m 的值及函数的解析式.【例3】 已知反比例函数的图象经过点()3,2和(),2m -,则m 的值是 .【巩固】已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y 的值都为l9,求y 与变量x 的函数关系式.二、反比例函数的图象分布及增减性【例4】在下图中,反比例函数21kyx+=的图象大致是()ABC D【巩固】函数kyx=(0k>)的图象可能是()A. B. C. D.【例5】函数kyx=与y kx b=+在同一坐标系的图象大致是图中的()ABCD【巩固】函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )AD【例6】 已知0a ≠,0b ≠,0a b +≠则函数y ax b =+与a by x+=在同一坐标系中的图象不可能是() A. B. C. D.【巩固】如图,反比例函数1k y x-=与一次函数(1)y k x =+只可能是( )A. B. C. D.【例7】 反比例函数2(0)k y k x=≠的图象的两个分支分别位于 .【巩固】已知点()1P a ,在反比例函数ky x=(0k ≠)的图象上,其中223a m m =++(m 为实数),则这个函数的图象在第_____象限.【例8】 在反比例函数5k y x-=图象的每一支曲线上,y 都随x 的增大而减小,则k 的取值范围是 ( ) A .5k > B .0k > C .5k < D .0k <【巩固】已知反比例函数12my x-=的图象上两点A (1x ,1y ),B (2x ,2y ),当120x x <<时,有12y y <,则m 的取值范围是__ ___.【例9】 已知3b =,且反比例函数1by x+=的图象在每个象限内,y 随x 的增大而增大,如果点(a ,3)在双曲线上1by x+=,则_____a =.【例10】 若A (1a ,1b ),B (2a ,2b )是反比例函数2y x=-图象上的两个点,且 12a a <,则1b 与2b 的大小关系是( )A .12b b <B .12b b = C .12b b > D .大小不确定【巩固】已知反比例函数ky x=的图象在第二、第四象限内,函数图象上有两点()()1227,,5,A y B y ,则1y 与2y 的大小关系为( )A .12y y >B . 12y y =C . 12y y <D . 无法确定【例11】 反比例函数3y x=-的图象上有三点,(2-,a ),(1-,b ),(1,c ) ,比较a ,b ,c 大小.【巩固】若点A (1-,1y )、B (2,2y )、B (π,3y )都是反比例函数21k y x+=的图象上,试比较1y 、2y 、3y 的大小关系 .1. 已知函数1mm y x-=是y 关于x 的反比例函数,求m 的值.2.如图,点P 在反比例函数()10y x x=>的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点'P .则在第一象限内,经过点'P 的反比例函数图象的解析式是( )A .()50y x x =->B .()50y x x=>C .()60y x x =->D .()60y x x =>3.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是()4.已知反比例函数的图象经过点()21P -,,则这个函数的图象位于( ) A .第一、三象限B .第二、三象限C .第二、四象限D .第三、四象限5.反比例函数()2231m y m x -=-的图象所在的象限内,y 随x 增大而增大,则反比例函数的解析式是( ) A .4y x =B .4y x =-C .4y x =或4y x=- D .不能确定6.反比例函数21m y x-=的图象如图所示,1(1)A b -,,2(2)B b -,是该图象上的两点. ⑴比较1b 与2b 的大小; ⑵求m 的取值范围.。
B
A
O y
=____________;
的面积是否发生变化? B A
O y
x
可以得到AOB S D =____________. 2.从反比例函数x
k
y =
(k ≠0)的图象上任一点P (x ,y )向x 轴、y 轴作垂线段,与x 轴、y 轴所围成的矩形面积S = . 二、合作、交流、展示:
1.已知反比例函数的图象经过点A (2,6).
(1)这个函数的图象位于哪些象限?y 随x 的增大如何变化?
(2)点B (3,4),C (142,42
5
--),D (2,5)是否在这个函数的图像上?
解:
【反思】判断点是否在图像上,只要 .
2.下列图形中,阴影部分面积最大的是( ) A .
B .
C .
D
.
3. 如图,一次函数y =kx +b 的图象与反比例函数x
m
y =
的图象交于A (-2,1)、B (1,n )两点.(1)分别求反比例函数和一次函数的解析式;
(2)根据图象写出一次函数的值大于反比例函数的值的x 的取值范围;
(3)求△AOB 的面积.
三、巩固与应用:
1. 已知点(-1,y 1)、(2,y 2)、(π,y 3)在双曲线x
k y 1
2+-=上,则下列关
系式正确的是( )
(A )y 1>y 2>y 3 (B )y 1>y 3>y 2 (C )y 2>y 1>y 3 (D )y 3>y 1>y 2
2. 如图,A 、B 是函数x
y 2
=
的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴
,
△ABC 的面积记为S ,则( ). (A)S =2 (B)S =4
(C)2<S <4
(D)S >4
3.如图,在平面直角坐标系中,反比例函数x
k
y =
(x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB =2,AD =4,点A 的坐标为(2,6) . (1)直接写出B 、C 、D 三点的坐标;
(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式. 四、小结: 1.理解反比例函数k 的几何含义;2.综合运用知识解题.
五、作业:必做:课本P9习题T5,8,9习题T ; 选做:《作业精编》相应练习.
一、
二、
三、
四、
五、课前导学:预习课本第1页至第3页,完成下列问题:
1.我们形如的函数叫做一次函数,当时,又叫做正比例函数.
2.探究:反比例函数的意义
问题1:(1)京沪线铁路全长1 463km,某次列车的平均速度vkm/h•随此次列车的全程运行问题th的变化而变化,其关系可用函数式表示为:
(2)某住宅小区要种植一个面积为1 000m2矩形草坪,草坪的长ym随宽xm•的变化而变化,可用函数式表示为 (3)已知北京市的总面积为1.68×104km2,人均占有的土地面积Skm2/人,随全市总人口n人的变化而变化,其关系可用函数式表示为.
问题2上述问题中的函数关系式都有什么共同的特征?
4. 反比例函数的意义:一般的,形如 的函数,叫做反比例函数,其中x 是自变量, y 是函数学.自变量的取值范围是 的一切实数.
5.下列哪个等式中的y 是x 的反比例函数?
6.已知y 是x 的反比例函数,当x=2时,y=6.写出y 与x 的函数关系式; 求当x=4
时,y 的值.
7.已知y 与(2x+1)成反比例,且x=1时,y=2,那么当x=0时,y 的值是
二、
合作、交流、展示:
1.比例函数的意义:反比例函数的解析式 ,y=
x
k 反比例函数的变形形式:(1)xy=k (2)1
-=kx y 2.例题1.下列等式中,哪些是反比例函数? (1)3x y =
(2)x y 2-= (3)xy =21 (4)2
5
+=x y
(5)x y 23-
= (6)31
+=x
y (7)y =x -4 例题2.当m 取什么值时,函数
2
3)2(m x m y --=是反比例函数?
例题3(拓展提升).已知函数y =y 1+y 2,y 1与x 成正比例,y 2与x 成反比例,且当x =1时,y =4;当x =2时,y =5
(1)求y 与x 的函数关系式; (2)当x =-2时,求函数y 的值
归纳总结: 注意y 1与x 和y 2与x 的函数关系中的比例系数 ,故不能都设为k , 要用 的字母表示。
三、巩固与应用:
1已知函数y=(m+2)x
|m |-3
是反比例函数,则m 的值是 ..
2.已知y=y 1-y 2,y 1与x 成反比例,y 2与x -2成正比例,并且当x=3时,y=5; 当x=1时,y=-1.求y 与x 之间的函数关系式.
3.下列各变量之间的关系属于反比例函数关系的有( )
①当路程s 一定时,汽车行驶的平均速度v 与行驶时间t 之间的关系; ②当电压U 一定时,电路中的电阻R 与通过的电流强度I 之间的函数关系;
()()()().5
18;57;76;3652x y x y xy x y ==
-=+-=()()()().24;2
3;4.02;51====xy x y x y x y
③当矩形面积S一定时,矩形的两边a与b之间的函数关系;
④当受力F一定时,物体所受到的压强p与受力面积S之间的函数关系.
A.①②③
B.②③④
C.①③④
D.①②③④4.一张一百元的新版人民币把它换成50元的人民币,可得几张?换成10元的人民币可得几张?依次换成5元,2元,1元的人民币,各可得几张?换得的张数y 与面值x之间有怎样的关系呢?请同学们填表:
换成的面值x(元) 50 20 10 5 2 1
换成的张数y(张)
(1)用含有x的代数式表示y.(2)换成的面值x会怎样变化呢?变量y是x的什么函数?为什么?。