导数
- 格式:doc
- 大小:342.00 KB
- 文档页数:4
大学数学导数数学导数是高等数学中的重要概念,广泛应用于各个领域,如物理学、经济学、工程学等等。
导数被定义为函数在某一点处的变化率,它描述了函数在该点附近的局部性质。
本文将从导数的定义、计算方法、应用以及一些相关的概念和定理进行讨论。
一、导数的定义在微积分中,导数常用符号 "f'(x)" 或 "dy/dx" 表示,它表示函数 f(x) 在点 x 处的导数。
导数可以通过以下极限定义来计算:f'(x) = lim (h->0) [f(x+h) - f(x)] / h二、导数的计算方法计算导数的方法有多种,其中最常用的方法是使用导数的基本性质和常见函数的导数公式。
以下是一些常见函数的导数公式:1. 常数函数的导数为 0。
2. 幂函数的导数计算可以使用幂函数的求导法则。
3. 指数函数的导数为自身的常数倍。
4. 对数函数的导数可以使用对数函数的求导法则。
5. 三角函数和反三角函数的导数公式。
三、导数的应用导数在实际应用中起着重要的作用。
以下是一些常见的应用:1. 确定函数的最大值和最小值。
2. 描述物理学中的运动和变化。
3. 经济学中的边际分析。
4. 工程学中的优化问题。
四、相关概念和定理1. 导数为零的点被称为函数的驻点。
在驻点处,函数的斜率为零。
2. 函数在某一区间内递增或递减的条件是其导数在该区间内恒为正或恒为负。
3. 函数在一个点的导数存在,则函数在该点连续。
4. 导数的和差、常数倍和乘积法则,以及链式法则等。
总结:导数是高等数学中重要的概念,它描述了函数在某一点附近的局部性质和变化率。
本文介绍了导数的定义、计算方法、应用以及一些相关概念和定理。
在实际应用中,导数有着广泛的应用,如确定函数的最值、描述物理学中的运动和变化、边际分析等。
通过掌握导数的概念和计算方法,我们可以更好地理解和应用数学在各个领域中的作用。
导数的基本公式18个1. 常数函数的导数为0对于常数函数y=c,它的导数恒为零,即dy/dx=0。
2. 幂函数y=x^n的导数为y=nx^(n-1)对于幂函数y=x^n,它的导数为dy/dx=nx^(n-1)。
3. 指数函数y=a^x(a>0且a≠1)的导数为y=lna·a^x对于指数函数y=a^x,它的导数为dy/dx=lna·a^x,其中lna表示自然对数e为底数时a的对数。
4. 对数函数y=loga(x)(a>0且a≠1)的导数为y=1/(x·lna)对于对数函数y=loga(x),它的导数为dy/dx=1/(x·lna)。
5. 三角函数y=sin(x)的导数为y=cos(x)对于三角函数y=sin(x),它的导数为dy/dx=cos(x)。
6. 三角函数y=cos(x)的导数为y=-sin(x)对于三角函数y=cos(x),它的导数为dy/dx=-sin(x)。
7. 三角函数y=tan(x)的导数为y=sec^2(x)对于三角函数y=tan(x),它的导数为dy/dx=sec^2(x),其中sec(x)=1/cos(x)为余割函数。
8. 反三角函数y=arcsin(x)的导数为y=1/√(1-x^2)对于反三角函数y=arcsin(x),它的导数为dy/dx=1/√(1-x^2)。
9. 反三角函数y=arccos(x)的导数为y=-1/√(1-x^2)对于反三角函数y=arccos(x),它的导数为dy/dx=-1/√(1-x^2)。
10. 反三角函数y=arctan(x)的导数为y=1/(1+x^2)对于反三角函数y=arctan(x),它的导数为dy/dx=1/(1+x^2)。
11. 常数乘以一个函数的导数等于常数乘以该函数的导数对于函数y=c·f(x),它的导数为dy/dx=c·f'(x)。
12. 两个函数的和的导数等于这两个函数的导数之和对于函数y=f(x)+g(x),它的导数为dy/dx=f'(x)+g'(x)。
高中数学导数
导数是高中数学中非常基础的一个知识点,它在数学和其他领域中有着广泛的应用。
下面将通过以下几个列表对导数进行详细介绍。
一、导数的定义
1. 函数在某一点的导数表示函数在该点的变化率,可以用极限的概念来表示。
2. 导数也可以表示为函数在某一点的切线斜率,即切线的斜率越大,则函数在该点的导数越大。
二、导数的求法
1. 使用导数的定义式,即求出一段极小的区间内函数的平均变化率的极限,这可以用极限的概念来表示。
2. 利用导数的性质进行求导,如求和、差、积、商等。
3. 利用基本函数的导数公式,如多项式、幂函数、指数函数、对数函数、三角函数等。
三、导数的应用
1. 导数可以用于求极值,即函数取得最大值或最小值的点。
2. 导数可以用于解决曲线的渐近线问题,如求水平渐近线和垂直渐近线。
3. 导数可以用于解决函数图像的凹凸性问题,即函数在凹还是凸的区间。
四、常见的导数公式
1. 常数函数的导数为零。
2. 幂函数的导数为 $n*x^{n-1}$。
3. 指数函数 $a^x$ 的导数为 $a^x\ln(a)$。
4. 对数函数 $\ln(x)$ 的导数为 $\frac{1}{x}$。
5. 三角函数的导数公式:
$\sin(x)$ 的导数为 $\cos(x)$;
$\cos(x)$ 的导数为 $-\sin(x)$;
$\tan(x)$ 的导数为 $\sec^2(x)$。
以上就是导数的基本概念和应用。
导数是高中数学中的重要内容,我们需要掌握导数的求法和基本公式,并熟练应用导数解决问题。
常见导数基本公式导数作为微积分的基本概念之一,在数学和物理等领域有着重要的应用。
学习导数的基本公式,不仅可以帮助我们求解各种函数的导数,还可以为我们理解函数图像的特征提供指导。
本文将介绍一些常见的导数基本公式,并通过具体的例子来阐述其应用和意义。
首先,我们先来讨论一阶导数的基本公式。
对于任意函数f(x),其导数可以表示为f'(x)或dy/dx。
当函数f(x)在一点x0处可导时,其导数可以通过以下几种常见的公式来计算。
1. 常数函数导数公式:对于常数c,其导数为0,即d(c)/dx = 0。
这是因为常数函数的斜率恒为0,即不随x的变化而变化。
2. 幂函数导数公式:对于幂函数f(x) = x^n(n为常数),其导数可以表示为d(x^n)/dx = nx^(n-1)。
这个公式告诉我们,幂函数的导数是通过将指数降低1,并乘以原来的指数。
例如,当n为2时,f(x) = x^2的导数为d(x^2)/dx = 2x。
3. 指数函数导数公式:对于指数函数f(x) = e^x,其导数为d(e^x)/dx = e^x。
指数函数的导数与函数自身相等,这是指数函数在任意点的斜率都等于函数值。
例如,f(x) = e^x的导数为d(e^x)/dx = e^x。
4. 对数函数导数公式:对于自然对数函数f(x) = ln(x),其导数为d(ln(x))/dx = 1/x。
对数函数的导数可以通过求幂函数导数公式和指数函数导数公式的逆运算得到。
例如,f(x) = ln(x)的导数为d(ln(x))/dx = 1/x。
以上是一阶导数的一些基本公式,可以帮助我们求解一些简单函数的导数。
但是在实际问题中,我们经常遇到复合函数或者多元函数,需要使用更加复杂的导数公式。
下面,我们来介绍一些常见的高阶导数公式和一些导函数的性质。
1. 高阶导数公式:高阶导数是指函数的导数再次求导得到的导数。
对于一阶导数f'(x),我们可以通过不断求导得到二阶导数f''(x),三阶导数f'''(x)等。
求导公式大全1、原函数:y=c(c为常数)导数: y'=0导数:y'=nx^(n-1) 3、原函数:y=tanx 导数: y'=1/cos^2x 4、原函数:y=cotx 导数:y'=-1/sin^2x 5、原函数:y=sinx 导数:y'=cosx6、原函数:y=cosx 导数: y'=-sinx7、原函数:y=a^x 导数:y'=a^xlna 8、原函数:y=e^x 导数: y'=e^x导数:y'=logae/x10、原函数:y=lnx导数:y'=1/x求导公式大全整理y=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方) f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1 x^2)高中数学导数学习方法1、多看求导公式,把几个常用求导公式记清楚,遇到求导的题目,灵活运用公式。
2、在解题时先看好定义域,对函数求导,对结果通分,这么做可以让判断符号变的比较容易。
导数是微积分学中的重要概念,它表示一个函数在某一点处的变化率。
导数公式是微积分学中的基本公式之一,用于计算函数的导数。
以下是导数的基本公式表:
1.函数y=kx的导数为y′=k,其中k为常数。
2.函数y=axn的导数为y′=naxn−1,其中a为常数,n为正整数。
3.函数y=loga(x)的导数为y′=x ln a1,其中a为常数且a>0且a=1。
4.函数y=ex的导数为y′=ex。
5.函数y=sin(x)的导数为y′=cos(x)。
6.函数y=cos(x)的导数为y′=−sin(x)。
7.函数y=tan(x)的导数为y′=(sec(x))2。
8.函数y=cot(x)的导数为y′=−(csc(x))2。
9.函数y=sec(x)的导数为y′=tan(x)sec(x)。
10.函数y=csc(x)的导数为y′=−cot(x)csc(x)。
这些公式可以在求解函数的导数时提供帮助。
但是需要注意,对于复杂的函数,可能需要使用更高级的导数公式才能求解其导数。
此外,导数的计算还涉及到一些基本的微积分知识和技巧,例如链式法则、乘法法则、指数函数求导法则等等,需要在学习微积分的过程中逐步掌握。
导数的公式定义
导数(Derivative)也称为微商,是微积分中的重要基础概念。
导数的公式定义为:当函数 y=f(x)的自变量 x 在一点 x0 上产生一个增量Δx 时,函数输出值的增量Δy 与自变量增量Δx 的比值在Δx 趋于 0 时的极限 a 如果存在,a 即为在 x0 处的导数,记作 f’(x0)或 df(x0)/dx。
导数是函数的局部性质,描述了函数在某一点附近的变化率。
如果函数的自变量和取值都是实数的话,函数在某一点的导数就是该函数所代表的曲线在这一点上的切线斜率。
导数的本质是通过极限的概念对函数进行局部的线性逼近。
例如在运动学中,物体的位移对于时间的导数就是物体的瞬时速度。
不是所有的函数都有导数,一个函数也不一定在所有的点上都有导数。
若某函数在某一点导数存在,则称其在这一点可导,否则称为不可导。
可导的函数一定连续,不连续的函数一定不可导。
对于可导的函数 f(x),x↦f’(x)也是一个函数,称作 f(x)的导函数(简称导数)。
16个基本导数公式
1、恒等公式:若y=f(x),则`dy/dx=f'(x)=1`
2、变量链法:若y=f(u),u=g(x),则
`dy/dx=dy/du*du/dx=f'(u)*g'(x)`
3、复合函数:若y=f(g(x)),则
`dy/dx=f'(g(x))*g'(x)`
4、指数函数:若y=a^x,a>0,a!= 1,则`dy/dx=a^x ln a`
5、对数函数:若y=ln x,则`dy/dx=1/x`
6、三角函数:若y=sinx,则`dy/dx=cosx`
7、反三角函数:若y=arcsinx,则`dy/dx=1/sqrt(1-x^2)`
8、双曲函数:若y=sinhx,则`dy/dx=coshx`
9、反双曲函数:若y=arccoshx,则
`dy/dx=1/sqrt(x^2-1)`
10、椭圆函数:若y=coshx,则`dy/dx=sinhx`
11、反椭圆函数:若y=arctanhx,则`dy/dx=1/(1-
x^2)`
12、幂函数:若y=x^n,n不等于 0,则
`dy/dx=nx^(n-1)`
13、指数型函数:若y=k(x-a)^n,n不等于 0,则`dy/dx=nk(x-a)^(n-1)`
14、指数形式函数:若y=ae^(bx+c),则
`dy/dx=abe^(bx+c)`
15、对数型函数:若y=k(lnx+a)^n,n不等于 0,则`dy/dx=nk(lnx+a)^(n-1)/x`
16、对数形式函数:若y=ae^(bx)lnx+c,则
`dy/dx=ae^(bx)(b+1/x)`。
导数的定义与计算方法导数是微积分中的重要概念,用于描述函数的变化率。
本文将介绍导数的定义以及计算方法,帮助读者更好地理解导数的概念和运用。
一、导数的定义导数是函数在某一点处的变化率。
数学上,对于函数f(x),其在点x处的导数记为f'(x),可以通过以下极限定义得到:f'(x) = lim(h→0) [f(x+h) - f(x)] / h其中,lim表示极限,h表示自变量x的增量。
这个极限定义可以理解为当自变量x的增量趋近于0时,函数f(x)在点x处的变化率。
二、导数的计算方法导数的计算方法可以根据函数的具体形式来进行。
下面介绍几种常见的计算方法:1. 可导函数的导数计算法则- 常数法则:如果f(x) = c,其中c为常数,则f'(x) = 0。
- 幂函数法则:如果f(x) = x^n,其中n为常数,则f'(x) = n * x^(n-1)。
- 指数函数法则:如果f(x) = e^x,则f'(x) = e^x。
- 对数函数法则:如果f(x) = log_a(x),其中a为常数且a > 0,则f'(x) = 1 / (x * ln(a))。
- 三角函数法则:如果f(x) = sin(x),则f'(x) = cos(x);如果f(x) = cos(x),则f'(x) = -sin(x)。
- 复合函数法则:如果f(x) = g(h(x)),则f'(x) = g'(h(x)) * h'(x),其中g'表示函数g的导数。
2. 基本初等函数的导数以下是一些基本初等函数的导数计算公式:- (sin x)' = cos x- (cos x)' = -sin x- (tan x)' = sec^2 x- (cot x)' = -csc^2 x- (sec x)' = sec x * tan x- (csc x)' = -csc x * cot x- (log_a x)' = 1 / (x * ln a)- (e^x)' = e^x3. 导数的加法、减法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的和、差、常数倍的导数可以通过以下法则计算:- (f(x) + g(x))' = f'(x) + g'(x)- (f(x) - g(x))' = f'(x) - g'(x)- (k * f(x))' = k * f'(x),其中k为常数4. 导数的乘法、除法法则如果有两个函数f(x)和g(x)在某点处的导数分别为f'(x)和g'(x),则它们的乘积和商的导数可以通过以下法则计算:- (f(x) * g(x))' = f'(x) * g(x) + f(x) * g'(x)- (f(x) / g(x))' = [f'(x) * g(x) - f(x) * g'(x)] / (g(x))^2,其中g(x) ≠ 0以上是导数的一些基本计算方法,能够满足大多数函数的求导需求。
基本导数公式16个汇总基本导数公式16个整理16个基本导数公式(y:原函数;y:导函数):1、y=c,y=0(c为常数)。
2、y=x^μ,y=μx^(μ-1)(μ为常数且μ≠0)。
3、y=a^x,y=a^x lna;y=e^x,y=e^x。
4、y=logax,y=1/(xlna)(a0且a≠1);y=lnx,y=1/x。
5、y=sinx,y=cosx。
6、y=cosx,y=-sinx。
7、y=tanx,y=(secx)^2=1/(cosx)^2。
8、y=cotx,y=-(cscx)^2=-1/(sinx)^2。
9、y=arcsinx,y=1/√(1-x^2)。
10、y=arccosx,y=-1/√(1-x^2)。
11、y=arctanx,y=1/(1+x^2)。
12、y=arccotx,y=-1/(1+x^2)。
13、y=shx,y=ch x。
14、y=chx,y=sh x。
15、y=thx,y=1/(chx)^2。
16、y=arshx,y=1/√(1+x^2)。
导数的几何意义是什么导数的数学意义是:函数y=f(x)在x0点的导数f(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
导数的物理意义是:导数可以表示运动物体的瞬时速度和加速度(就直线运动而言,位移关于时间的一阶导数是瞬时速度,二阶导数是加速度),可以表示曲线在一点的斜率,还可以表示经济学中的边际和弹性。
导数与物理,几何,代数关系密切:在几何中可求切线;在代数中可求瞬时变化率;在物理中可求速度、加速度。
导数运算法则减法法则:(f(x)-g(x))=f(x)-g(x)加法法则:(f(x)+g(x))=f(x)+g(x)乘法法则:(f(x)g(x))=f(x)g(x)+f(x)g(x)除法法则:(g(x)/f(x))=(g(x)f(x)-f(x)g(x))/(f(x))^2常用导数公式1、y=c(c为常数) y=02、y=x^n y=nx^(n-1)3、y=a^x y=a^xlnay=e^x y=e^x4、y=logax y=logae/x y=lnx y=1/x5、y=sinx y=cosx6.y=cosx y=-sinx7、y=tanx y=1/cos^2x8、y=cotx y=-1/sin^2x。
16个基本导数公式详解在微积分中,导数是一个基本的概念。
它描述了函数在给定点的变化率。
了解导数的基本公式对于求解微积分问题是至关重要的。
在本文中,我们将详细讨论16个基本导数公式,每个公式都将包含定义、求导法则和常见的具体例子。
1.常数函数的导数:定义:如果函数$f(x)$是一个常数,则$f'(x)=0$。
求导法则:常数的导数是0。
例如:对于函数$f(x)=5$,它的导数$f'(x)=0$。
2.幂函数的导数:定义:对于函数 $f(x)=x^n$,其中 $n$ 是一个正整数,则$f'(x)=nx^{n-1}$。
求导法则:对于幂函数,使用幂函数的指数作为系数,然后将指数减1例如:对于函数$f(x)=x^2$,它的导数$f'(x)=2x$。
3.指数函数的导数:定义:对于函数 $f(x)=a^x$,其中 $a$ 是一个正常数且 $a \neq 1$,则 $f'(x)=a^x \ln(a)$。
求导法则:对于指数函数,使用指数和常数的乘积,并且乘以自然对数的底数。
例如:对于函数 $f(x)=2^x$,它的导数 $f'(x)=2^x \ln(2)$。
4.对数函数的导数:定义:对于函数 $f(x)=\log_a(x)$,其中 $a$ 是一个正常数且 $a\neq 1$,则 $f'(x)=\frac{1}{x \ln(a)}$。
求导法则:对于对数函数,使用1除以输入的自变量乘以自然对数的底数。
例如:对于函数 $f(x)=\log_2(x)$,它的导数 $f'(x)=\frac{1}{x\ln(2)}$。
5.正弦函数的导数:定义:对于函数 $f(x)=\sin(x)$,则 $f'(x)=\cos(x)$。
求导法则:正弦函数的导数是余弦函数。
例如:对于函数 $f(x)=\sin(2x)$,它的导数 $f'(x)=2\cos(2x)$。
6.余弦函数的导数:定义:对于函数 $f(x)=\cos(x)$,则 $f'(x)=-\sin(x)$。
导数公式大全1、原函数:y=c(c为常数)导数:y'=02、原函数:y=x^n导数:y'=nx^(n-1)3、原函数:y=tanx导数:y'=1/cos^2x4、原函数:y=cotx导数:y'=-1/sin^2x5、原函数:y=sinx导数:y'=cosx6、原函数:y=cosx导数:y'=-sinx7、原函数:y=a^x导数:y'=a^xlna8、原函数:y=e^x导数:y'=e^x9、原函数:y=logax导数:y'=logae/x10、原函数:y=lnx导数:y'=1/xy=f(x)=c (c为常数),则f'(x)=0f(x)=x^n (n不等于0) f'(x)=nx^(n-1) (x^n表示x的n次方)f(x)=sinx f'(x)=cosxf(x)=cosx f'(x)=-sinxf(x)=tanx f'(x)=sec^2xf(x)=a^x f'(x)=a^xlna(a>0且a不等于1,x>0)f(x)=e^x f'(x)=e^xf(x)=logaX f'(x)=1/xlna (a>0且a不等于1,x>0)f(x)=lnx f'(x)=1/x (x>0)f(x)=tanx f'(x)=1/cos^2 xf(x)=cotx f'(x)=- 1/sin^2 xf(x)=acrsin(x) f'(x)=1/√(1-x^2)f(x)=acrcos(x) f'(x)=-1/√(1-x^2)f(x)=acrtan(x) f'(x)=-1/(1+x^2)导数(Derivative)是微积分中的重要基础概念。
当函数y=f(x)的自变量X在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df/dx(x0)。
导数的知识点和典型例题导数的基本概念1. 导数的定义导数是微积分中的重要概念,表示函数在某一点上的变化率。
对于函数f(x),在点x处的导数可以通过以下公式定义:其中,h表示x点附近的一个小增量。
该定义可以简化为下面的形式:2. 导数的几何意义导数的几何意义是切线的斜率。
对于曲线y=f(x),在点(x, f(x))处的导数即为曲线在该点切线的斜率。
导数正值表示曲线逐渐上升,负值表示曲线逐渐下降。
3. 导数的物理意义导数在物理学中具有速度和加速度的物理意义。
对于位移函数s(t),其导数s’(t)表示在时刻t的瞬时速度。
二阶导数s’’(t)则表示在时刻t的瞬时加速度。
导数的计算方法1. 基本函数的导数以下是一些常见的函数的导数公式:•常数函数:常数函数的导数为0。
•幂函数:幂函数f(x)=x n的导数为f’(x)=nx(n-1)。
•指数函数:指数函数f(x)=a x的导数为f’(x)=a x * ln(a),其中ln(a)表示以e为底a的对数。
•对数函数:对数函数f(x)=log_a(x)的导数为f’(x)=1/(x * ln(a)),其中ln(a)表示以e为底a的对数。
•三角函数:三角函数的导数公式如下:–sin(x)的导数为cos(x)。
–cos(x)的导数为-sin(x)。
–tan(x)的导数为sec^2(x)。
•反三角函数:反三角函数的导数公式如下:–arcsin(x)的导数为1/sqrt(1-x^2)。
–arccos(x)的导数为-1/sqrt(1-x^2)。
–arctan(x)的导数为1/(1+x^2)。
2. 导数的基本运算法则导数具有一些基本的运算法则,便于计算更复杂函数的导数:•常数因子法则:对于函数y=c f(x),其中c为常数,f(x)为可导函数,其导数为y’=c f’(x)。
•和差法则:对于函数y=f(x)±g(x),其中f(x)和g(x)均为可导函数,其导数为y’=f’(x)±g’(x)。
合肥一中2009-2010年高二上学期段1考试
文科数学试题
一,选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填在答题卷的表格内.
1, 空间三条直线交于一点,则它们确定的平面数可为( )
A,1 B,1或2或3 C,1或3 D,1或2或3或4
2,如图,一个空间几何体的正视图和侧视图都是边长为1的正方形, 俯视图是一个圆,那么这个几何体的侧面积...为( ). A ,
4
π
B ,
54
π C , π D ,
32
π
3,两条直线都与同一个平面平行,则这两条直线的位置关系是( ) A .平行 B .相交 C .异面 D .以上均有可能
4,长方体1111ABC D A B C D -中,16,4,2AB AD AA ===,那么从点A 经过 面11A ABB 、面1111A B C D 的表面最后到达1C 的最短距离( )
A,2+
B,4+
C,
D,
5,一个平行于圆锥底面的平面将圆锥的高分成相等的两段,那么,圆锥被分成的两部分的体积的比是( )
A,1:2 B,1:7 C,1:4 D,1:8
6,已知直线⊥l 平面α,直线⊂m 平面β,有以下四个命题:
①m l ⊥⇒βα//;②m l //⇒⊥βα;③βα⊥⇒m l //;④βα//⇒⊥m l
其中正确的两个命题是( )
A ,①②
B ,③④
C ,②④
D ,①③
7,在空间四边形A B C D 的各边,,,AB BC CD DA 上分别取,,,E F G H 四点,如果E F 和G H 相交于点P ,那么( )
A,点P 必在直线A C 上 B,点P 必在直线B D 上
C,点P 必在平面ABC 外 D,点P 与平面ABC 的位置关系无法确定. 8,棱长为1的正方体的外接球的表面积( ) A. 3π
B.
2
π C.
2
9π D. 9π
9,一个圆柱的侧面积展开图是一个正方形,这个圆柱的全面积与侧面积的比是
A , 21ππ-
B ,144ππ+
C ,122ππ+
D ,142ππ
+
10、如图,Rt △ABC 中,∠ACB=90°,直线L 过点A 且垂直于平面ABC , 动点P ∈L ,当点P 逐渐远离点A 时,∠PCB 的值( ) A, 先增大后减小 B, 先减小后增大 C, 视P 点在L 上的初始位置而定 D, 大小不变
答题卷
正视图 侧视图
一,选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有
二,填空题:本大题共5小题,每小题4分,共20分,请将答案填在相应题号的横线上
11,正方体1111ABC D A B C D -中,异面直线1AD 与1A B
12,正三棱锥的底面边长为3,侧棱长为
13,如图所示,OABC 是正方形,用斜二测画法画出其水平放置 的直观图为四边形O 1A 1B 1C 1, 那么O 1A 1B 1C 1的面积是 .
14,已知圆台的上下底面半径分别是2、6,且侧面面积等于两底面面积之和, 求该圆台的母线长
15,已知正四面体ABCD 的棱长为a ,E 为CD 上一点,且1:2:=ED CE ,则截面△ABE 的面积
三,解答题:本大题共4小题,共40分,解答应写出文字说明,证明过程或演算步骤.
16,(本大题满分10分)
如图所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知该四棱锥底面边长是2m ,m ,求. (1)求侧棱与底面所成角;(2)求.制造这个塔顶需要多少铁板?
2)
E D
C B A
P
俯视图
侧视图
正视图
17,(本小题满分10分)
如图,P A ⊥菱形A B C D 所在的平面,,M N 分别是,AB PC 的中点. (1)求证://M N 平面PAD ; (2)求证:平面P B D ⊥平面PAC
18,(本小题满分10分)
已知一四棱锥P -ABCD 的三视图如下,E 是侧棱PC 上的动点。
(1)求四棱锥P -ABCD 的体积;
(2)求证:不论点E 在何位置,都有BD ⊥AE
19(本小题满分10分)
如图:空间四边形ABCD ,被一平面所截,截面EFGH 为平行四边形, (1)求证:CD 面EFGH
(2) 若E 、F 、G 、H 分别是线段AC 、CB 、BD 、DA 的中点,P 、Q 两点分别是AB 和CD 上的任意点,求证: PQ 被平面EFGH 平分、
(3)若AB=CD=a 且AB 与CD 成60°角,问E 在AC 的何处时,截面EFGH 面积最大?
A B
C
D
E
F
G
H。