概率论期末复习4
- 格式:pdf
- 大小:565.70 KB
- 文档页数:31
概率论期末复习题集一、基本概念与原理1. 定义随机试验、样本空间、事件,并举例说明。
2. 解释概率的古典定义、频率定义和主观定义。
3. 描述概率的公理化定义,并列出概率的三个基本公理。
4. 举例说明条件概率的概念,并解释全概率公式和贝叶斯公式。
5. 描述随机变量、离散型随机变量和连续型随机变量的区别。
6. 定义数学期望、方差、标准差,并解释它们的意义。
二、离散型随机变量1. 给出离散型随机变量的概率分布列和概率质量函数。
2. 计算离散型随机变量的数学期望和方差。
3. 解释二项分布、泊松分布和几何分布,并给出它们的期望和方差公式。
4. 利用二项分布解决实际问题,例如药物测试的成功率问题。
三、连续型随机变量1. 描述连续型随机变量的概率密度函数和分布函数。
2. 计算连续型随机变量的数学期望和方差。
3. 解释均匀分布、指数分布和正态分布,并给出它们的概率密度函数和期望、方差的公式。
4. 利用正态分布解决实际问题,例如测量误差的分布问题。
四、多变量随机变量1. 定义联合分布函数和边缘分布函数,并解释它们之间的关系。
2. 描述协方差、相关系数和独立性的概念。
3. 计算两个随机变量的协方差和相关系数。
4. 利用联合分布解决实际问题,例如两个独立试验的联合成功概率。
五、大数定律和中心极限定理1. 解释切比雪夫不等式、马尔可夫不等式和切比雪夫大数定律。
2. 描述中心极限定理的内容,并解释为什么它在统计学中非常重要。
3. 利用中心极限定理估计样本均值的分布。
六、随机过程1. 定义随机过程和遍历理论。
2. 描述泊松过程和维纳过程,并解释它们在实际中的应用。
3. 解释随机过程的平稳性和遍历性。
七、应用题1. 一个袋子里有10个红球和20个蓝球,随机抽取5个球,计算以下事件的概率:至少有3个红球。
2. 某工厂生产的零件,每个零件合格的概率为0.95。
求生产100个零件中,至少有90个合格的概率。
3. 一个随机变量X服从正态分布N(μ, σ²),求X的数学期望和方差。
正态总体抽样分布分位数(分位点) Quantile ,下侧分位数Under Quantile 定义 设连续型变量X 的分布为(),F x 密度为(),f x 对任意的01,p <<满足(累积概率)分布值为p 的位置,p x 即()()(),01,px p p F x P X x f x dx p p -∞=≤==<<⎰称为p 分位数(下侧p 分位数).分位数是一个位置特征,可能不唯一,特别地,当1/2p =时,1/2x 称为中位数.上侧分位数Upper Side Quantile 定义 设连续型变量X 的分布为(),F x 密度为(),f x 补分布()1(),S x F x - 对任意的01,α<<满足补分布值为α的位置,u α即()1()()(),01,u S u F u P X u f x dx αααααα+∞=-=>==<<⎰称为上侧α分位数.将下侧分位数p 换为1α-得11()()1,01,F x P X x αααα--=≤=-<<1111()1()1()(),S x F x P X x P X x ααααα----=-=-≤=>= 由上侧分位数定义得1,0 1.u x ααα-=<<分位数(下侧分位数)一般定义1 设变量X 的分布为(),F x 对任意的01,p <<满足(累积概率)分布值p ≥的最小位置,p x 即min{;()()},p x x F x P X x p =≤≥ 称为p 分位数(下侧p 分位数).上侧分位数一般定义1 设补分布()1(),S x F x - 对任意的01,α<<满足补分布值α≤的最小位置,u α即min{;()1()()},u x S x F x P X x αα=-=>≤ 称为上侧α分位数.将下侧分位数p 换为1α-得1min{;()()1}x x F x P X x αα-==≤≥-min{;()1()()},0 1.x S x F x P X x u ααα==-=>≤=<<分位数(下侧分位数)一般定义2 设变量X 的分布为(),F x 对任意的01,p <<满足(累积概率)分布值左极限p ≤的最大位置,p x 即max{;(0)()},p x x F x P X x p -<≤ 称为p 分位数(下侧p 分位数).上侧分位数一般定义2 设补分布()1(),S x F x - 对任意的01,α<<满足补分布值左极限α≥的最大位置,u α即max{;(0)1(0)1()()},u x S x F x P X x P X x αα-=--=-<=≥≥ 称为上侧α分位数.将下侧分位数p 换为1α-得1max{;(0)()1}x x F x P X x αα-=-=<≤-max{;(0)1(0)1()()},0 1.x S x F x P X x P X x u ααα=-=--=-<=≥≥=<< 上侧分位数一般定义1和一般定义2是相同的.min{;()1()()}u x S x F x P X x αα==-=>≤ {;()}u P X u ααα=>={;()}u P X u ααα=≥=max{;(0)1(0)1()()}.x S x F x P X x P X x α=-=--=-<=≥≥一.U (无偏)统计量Unbiased Statistic定理 设12,,n X X X 独立同分布(...i i d )总体2(,),X N μσ 则样本均值 211(,/),ni i X X N n n μσ==∑标准化统计量~(0,1).U N =证明由独立正态分布可加(可分,再生)性(即设221122(,),(,),X N Y N μσμσ 独立,则221212(,).X Y N μμσσ+++ 可由随机变量和的卷(褶)积公式推出.)21(,),nii XN n n μσ=∑211(,/).ni i X X N n n μσ==∑将X 标准化即得统计量~(0,1).U N=定理设12,,nX X X为总体X两两不相关样本,2,,EX DXμσ样本均值11,niiX Xn==∑样本方差2211().1niiS X Xn==--∑则(1)2,,E X DXnσμ==(2)22.ESσ=(不依赖于总体分布形式.)证明(1)由期望性质得1111,n ni ii iE X E X EXn nμ==⎛⎫⎛⎫===⎪ ⎪⎝⎭⎝⎭∑∑由方差可加得222111111.n n ni i ii i iDX D X D X DXn n n nσ===⎛⎫====⎪⎝⎭∑∑∑(2)样本方差公式222211(1)()(2)n ni i ii in S X X X X X X==-=-=-+∑∑2222221112(),n n ni i ii i iX X X nX X nX n X X====-+=-=-∑∑∑两边取期望,由22222222,/iEX E X DX E X E X DX nμσμσ=+=+=+=+得2222211(1)n ni ii in ES E X nX EX nE X==⎛⎫-=-=-⎪⎝⎭∑∑22222()(/)(1),n n n nμσμσσ=+-+=-22.ESσ=定理设112,,nX X X独立同分布(...i i d)总体211(,),X Nμσ212,,,nY Y Y独立同分布(...i i d)总体222(,)Y Nμσ,两样本独立,则统计量~(0,1).U N=其中12111211,.n ni ii iX X Y Yn n====∑∑证明22111222~(,/),~(,/),X N n Y N nμσμσ,X Y独立,由独立正态分布可加(可分,再生)性22121212~,,X Y Nn nσσμμ⎛⎫--+⎪⎝⎭将X Y-标准化即得统计量~(0,1).U N=上侧分位数Upper Side Quantile uα(),01,P U uααα>=<<()()1,u P U uαααΦ=≤=-1(1).uαα-=Φ-由标准正态分布的对称性111()(1).u uαααα---=Φ=-Φ-=-标准正态分布上侧分位数10.1(0.9) 1.28;u-=Φ=10.05(0.95) 1.645;u-=Φ=10.025(0.975) 1.96;u-=Φ=10.01(0.99) 2.325;u-=Φ=10.005(0.995) 2.575;u-=Φ=10.002(0.998) 2.880.u-=Φ=二.卡方2χ分布Chi-Squared Distribution(德,阿贝E.Abbe(1840-1905),1863)(德,赫尔墨特Helmert(1843-1917),1875)(英,皮尔逊Karl Pearson(1857-1936),1890)定义设(1,2,,)iX i n= 独立同分布()(0,1),iid N n个独立的标准正态分布的平方和,即变量222212()nn X X Xχ+++称为服从自由度为n的卡方2χ分布,记为22(),nχχ即附表伽玛分布Gamma Distribution (,)αβΓ1/1(;,),0,0,0,()xf x x e xαβααβαββα--=>>>Γ的特例(/2,2).nαβΓ==密度为1/22/21(;),0.2(/2)nxnf x n x e xn--=>Γ是一个非对称分布.卡方2χ分布密度的证明1.随机变量和的公式,卷(褶)积公式设二维随机变量(,)X Y 的联合密度为(,),f x y 则和Z X Y =+的密度为()(,)Z f z f x z x dx +∞-∞=-⎰(当,X Y 独立时)()().X Y f x f z x dx +∞-∞=-⎰由Y X ,的对称性()(,)Z f z f z y y dy +∞-∞=-⎰(当,X Y 独立时)()().X Y f z y f y dy +∞-∞=-⎰证明()()(,)Z x y zF z P Z X Y z f x y dxdy +≤==+≤=⎰⎰(,),z xf x y dydx +∞--∞-∞=⎰⎰两边对z 求导,由复合函数求导链式法则得()(,).Z f z f x z x dx +∞-∞=-⎰或设,t x y =+()(,),zZ F z f x t x dtdx +∞-∞-∞=-⎰⎰由密度函数定义得()(,).Z f z f x z x dx +∞-∞=-⎰α参考:多(二)维随机变量函数的分布2.特殊函数伽玛函数Gamma Function 定义120(/2),,n sn s e ds n N +∞--Γ=∈⎰(设/2s x =)1/22/21.2nx n x e dx +∞--=⎰(1)1,Γ=由分部积分可得递推公式()()1.222n n n Γ+=Γ由伽玛函数定义1/2/21(;),0,2(/2)nx n f x n x e x n --=>Γ是一个密度,以下证明它是2()n χ的密度.3.(;)f x n 的可加(可分,再生)性设(;1),(;1),X f x Y f x n - ,X Y 独立,则(;).Z X Y f x n =+ 证明.由独立变量和的卷积公式()()()(;1)(;1)zZ X Y f z f x f z x dx f x f z x n dx +∞-∞=-=--⎰⎰(1)1/2()/22(1)/201()2((1)/2)n zx z x n z x e dx n ------=-Γ-⎰(1)111/222/201(),2(1/2)((1)/2)n z z n e x z x dx n ----=-ΓΓ-⎰设x zt = (1)11111/2222/201(1).2(1/2)((1)/2)n nz n z e t t dt n -----=-ΓΓ-⎰由规范性得(;),Z X Y f x n =+(1)1111220(1/2)((1)/2)(1).(/2)n n t t dt n ---ΓΓ--=Γ⎰取2,n =111112220(1/2)2(1),t t dt --Γ=-⎰设11011||,22x dx t dt -+== 11111122111()()222x x dx ----+-==⎰⎰11arcsin |.x π-==得(1/2)s -+∞Γ==⎰设2,2,s x ds xdx ==得泊松积分2(1/2)x e dx +∞--∞Γ==⎰设2/,s x x==2/20x e dx +∞-=⎰2/21,x edx +∞--∞=⎰得标准正态密度.设2sin ,0/2,2sin cos ,t dt d θθπθθθ=≤≤=(1)1111220(1)n t t dt ----⎰/2202cos .n d πθθ-=⎰/2/21010cos (/2,1)cos sin nn n I d I I d ππθθπθθ-===⎰⎰/2/222220(1)cossin (1)cos (1cos )n n n d n d ππθθθθθθ--=-=--⎰⎰2(1)(1),n n n I n I -=---因此得华莱士Wallis 公式/20(1)!!131,,222!!2cos (1)!!132,,0!! 1.23!!nn n n n n n n n I d n n n n n n n πππθθ-⎧--⎪-=⎨---⎪-⎩⎰ 是偶数是奇数,((1)/2)(/2).n n n n Γ-==⎨Γ是偶数是奇数 21221(2)!!(21)!!(22)!!,,,(21)!!(2)!!2(21)!!m m m m m m I I I m N m m m π+---<<∈<<+-化简得222(2)!!21.21221(21)!!2m m m m m m m ππ⎛⎫<<↑↑+∞ ⎪++-⎝⎭ 22122(21)!!(22)!!(23)!!,,,(2)!!2(21)!!(22)!!2m m m m m m I I I m N m m m ππ-----<<∈<<--化简得2(21)!!21212.22(22)!!m m m m m m ππ-⎛⎫-<<↑↑+∞ ⎪-⎝⎭ 4.设(0,1),X N 则22(1)(;1).X f x χ= 由随机变量函数的密度公式得((/2(;1),0.x f x x ϕϕ-''=+==> 设i X 独立同分布(0,1),N 由(;)f x n 的可加(可分)性得 22212(2)(;2),,X X f x χ=+222212()()(;).n n X X X f x n χ=+++或2.特殊函数伽玛函数Gamma Function 定义10(),0,ss e ds ααα+∞--Γ=>⎰(1)1,Γ=由分部积分可得递推公式(1)(),0.ααααΓ+=Γ> 设/,0,/,s x ds dx βββ=>=则1/01().x x e dx αβααβ+∞--Γ=⎰设2,2,s x ds xdx ==则222(1)210()22,0.x x xexdx xe dx αααα+∞+∞----Γ==>⎰⎰由伽玛函数定义1/1(;,),0,0,0,()x f x x e x αβααβαββα--=>>>Γ是一个密度,称为伽玛分布(,).αβΓ即附表伽玛分布.3.伽玛分布(,)αβΓ的可加(可分,再生)性设12(,),(,),X Y αβαβΓΓ ,X Y 独立,则12(,).Z X Y ααβ=+Γ+证明.由独立变量和的卷积公式120()()()(;,)(;,)zZ X Y f z f x f z x dx f x f z x dx αβαβ+∞-∞=-=-⎰⎰111211/()/01211()()()zx z x x e z x e dx ααββααβαβα-----=-ΓΓ⎰121211/0121(),()()z z e x z x dx ααβααβαα---+=-ΓΓ⎰设x zt = 1212121111/0121(1).()()z z e t t dt ααααβααβαα+----+=-ΓΓ⎰由规范性得12(,),Z X Y ααβ=+Γ+ 得贝塔函数Beta Function 121111212012()()(,)(1).()tt dt αααααααα--ΓΓB -=Γ+⎰取123/2,αα==2233111220(3/2)(1/2)(1),(3)8t t dt --ΓΓ==-Γ⎰设11011||,22x dx t dt -+==1111221111()(),22248x x dx π--+-===⎰⎰(单位圆面积为π)得0(1/2)s-+∞Γ==⎰4.设(0,1),X N 则22(1)(1/2,2).X χαβ=Γ== 由随机变量函数的密度公式得((/2(;1),0.x f x x ϕϕ-''=+==>设i X 独立同分布(0,1),N 由(,)αβΓ的可加(可分)性得 22212(2)(1,2),,X X χαβ=+Γ==222212()()(/2,2).n n X X X n χαβ=+++Γ==特例.2(2)(/21,2)n χαβ=Γ====指数分布(1/2)E =附表Rayleigh 瑞利分布2(1)σ=的平方.设二维变(向)量的两边缘(分量)独立同标准正态,向量长(模)即平面标准布朗运动单位时刻粒子的半径称为标准瑞利分布2(1).Rayle σ= 由此可得:时间与(圆)面积一一对应. 性质设22221122~(),~()n n χχχχ独立,则2221212~().n n χχχ++ 证明由卡方2χ分布的定义1111222222222112212,,n n n n n X X X X X X χχ+++=+++=+++12222222121212~().n n X X X n n χχχ++=++++期望Expectation ,Mean 2.E n χ=方差Discrete ,Variance ,Dispersion 22.D n χ= k 阶原点矩K-Order Origin Moment 22(1)(22).k k E n k E χχ-=+-2(22)!!.(2)!!k n k E n χ+-=-证明由期望和方差性质22211()(),nniii i E E X E X n χ=====∑∑22211()()2,nnii i i D D X D X n χ=====∑∑212/22/2001()(;)2(/2)n kk k x n E n x f x n dx x e dx n χ++∞+∞--==Γ⎰⎰21/222022((2)/2)1(/2)2((2)/2)n kk x n k n k x e dx n n k ++∞--+Γ+=ΓΓ+⎰ 2(2)n k χ+的密度积分为12((2)/2)(22)!!(2)(22).(/2)(2)!!k n k n k n n n k n n Γ++-==++-=Γ-众数Mode (最可能(最大概率或密度)分布点)max{2,0}.M n =-上侧分位数221(),()n n ααχχ-22(()),01,P n αχχαα>=<<将α换为1α-得221(())1,P n αχχα->=-2221/2/2(()())1.P n n ααχχχα-≤≤=-定理(统计学基本定理) 设n X X X ,,,21 是正态总体2(,)X N μσ 的独立样本,则 (1)样本均值X 与样本方差2S 独立;/21/2-α(2)2222122()(1)~(1).nii XX n Sn χχσσ=--==-∑证明设n 维正态分布12(,,,),n X X X X '= 正交阵A (即A A E '=),00000A ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥n 维正态分布12(,,,),n Y Y Y Y AX '==221111(,/),,),n n i i i i X X N n Y X N n μσσ=====∑121(1))(0,),/(0,1),2,,.i i i i i i Y X i X N Y N i n σσ-==--=∑由独立正态分布正交变换为独立正态分布,或由正态分布独立与不相关等价得,1,2,,,i Y i n = 独立. (,)()(),1,i j i j i j i j Cov Y Y E YY EY EY E YY i j n =-=≤<≤11111(,)()((1))j n j j i ij i i Cov Y Y E YY E X X j X -==⎛⎫==-- ⎪⎝⎭∑∑1221(1)0,2,j ij i EX j EX j n -=⎫=--=≤≤⎪⎭∑只需求平方项期望1111(,)()((1))((1))j i i j i j ii i j i i Cov Y Y E YY X i X X j X --==⎛⎫==---- ⎪⎝⎭∑∑1221(1)0,2.i i i i EX i EX i j n -=⎫=--=≤<≤⎪⎭∑因此X 与,2,,,i Y i n = 独立,从而X 与2S 独立.2211,nnii i i YY Y X A AX X =='''===∑∑222222211112(1)(),nnnni ii i i i i i n S X X X nX Y Y Y ====-=-=-=-=∑∑∑∑由卡方2χ分布定义得222222(1)(/)~(1).ni i n S Y n χσχσ=-==-∑简证222211111(),n n i i i i S X X X X n n ===-=-∑∑222211(1)(),n ni i i i n S X X X nX ==-=-=-∑∑将,2,,,i X i n X = 标准化222222211(1)().nn i i i i X X X n S n U μχσσσ==⎛⎫⎛⎫---⎛⎫==-=- ⎪ ⎪⎝⎭⎝⎭∑∑ 由矩阵正交变换或直角坐标变换,可将2()n χ分解为其中一个变量为标准正态U 的n个独立标准正态的平方和,因此X 与2S 独立,222(1)n S χσ-=可表为1n -个独立标准正态的平方和,即2~(1).n χ-参考:《概率论与数理统计》,茆诗松等,高等教育出版社.三.t 分布,学生氏分布Student Distribution (英,高塞特W.S.Gosset (1876-1937),1908) 定义 设2(0,1),(),,X N Y n X Y χ 独立,变量T =称为服从自由度为n 的t 分布,记为(),T t n 密度为122(;)1,.n xf x n x R n +-⎫=+∈⎪⎭是一个对称分布.21(;1),,(1)f x n x R x π==∈+称为标准柯西分布(0,1).Ct 分布密度的证明可略,因可由F 分布密度推出. 1.随机变量商的密度公式设二维随机变量(,)X Y 的联合密度为(,),f x y 则商/Z X Y =的密度为()(,)||,Z f z f yz y y dy +∞-∞=⎰当,X Y 独立时,()()()||.Z X Y f z f yz f y y dy +∞-∞=⎰证明/()(/)(,)Z x y zF z P Z X Y z f x y dxdy ≤==≤=⎰⎰(,)(,).yzyzf x y dxdy f x y dxdy +∞+∞-∞-∞=+⎰⎰⎰⎰两边对z 求导得()(,)(,)Z f z f yz y ydy f yz y ydy +∞-∞=-+⎰⎰(,)||.f yz y y dy +∞-∞=⎰参考:多(二)维随机变量函数的分布2.变量Θ()y θ=反函数2(),0,y n θθθ=>由随机变量函数的密度公式得Θ的密度为212/2/21()(())|()|()22(/2)nn Y n f f y y n e n n θθθθθθ--Θ'==Γ2/21/2/21,0.2(/2)n n n n n e n θθθ---=>Γ ,X Y 独立,所以,X Θ独立,由独立变量商的密度公式得/T X =Θ的密度为(;)()()||X f x n f x f d θθθθ+∞Θ-∞=⎰22/2()/21/2/212(/2)n x n n n n e d n θθθθθ+∞----=Γ⎰22(1)/2()/2,n n n x e d θθθ++∞-+= 设2(1)/2(1)/2212(1)/222(1)/2(2)(2),,,,2()()n n n nn n n x s ds s s d d ds n x n x n x θθθθθθ----++====+++12(1)/201n n sx s e ds n +-+∞--⎫=+⎪⎭⎰121,.n xx R n +-⎫=+∈⎪⎭性质()t n 分布收敛到标准正态分布(0,1),.N n →+∞()t n 分布尾部概率大于标准正态分布(0,1)N 尾部概率,称为厚尾分布.当40n ≥时,()t n 分布可近似为标准正态分布(0,1)N .2211222lim 1lim 1.x n n n x x n n x x e n n +-+--→+∞→+∞⎡⎤⎛⎫⎛⎫⎢⎥+=+= ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦由规范性,即系数与其适应,lim n =21,,2.n m m N n m =+∈==由2(1/2)(1/1,m m m >-+>,m ↑↑+∞由2(21)4(1,m m m ->->.m ↑↑+∞ 因此.n ↑↑+∞特例.标准柯西分布最大密度1(0;1)f n π==<标准正态分布最大密度(0)ϕ=两密度面积均为1,因此标准柯西分布(0,1)C 尾部概率大于(0,1)N 尾部概率. 期望0,.ET n N =∈ 方差, 2.2nDT n n =>- 证明由()t n 分布密度对称性得0,.ET n N =∈122222(;)1nxDT ET x f x n dx x dxn+-+∞+∞-∞-∞⎛⎫===+⎪⎭⎰⎰1222(1)11nx xn dxn n+-+∞-∞⎫⎛⎫=+-+⎪⎪⎭⎝⎭⎰)()()122112212222nn nxn dx nnn n--+∞-∞--Γ⎛⎫=+-⎪--⎝⎭Γ⎰==122(1)1,22nn n ydy nn n--+∞-∞⎛⎫-=+-⎪--⎭⎰(2)t n-密度积分为1(1), 2.22n n nn nn n-=-=>--上侧分位数1/2(),(),()t n t n t nααα-(()),0 1.P T t nααα>=<<由t分布密度对称得(()),P T t nαα<-=(())1,P T t nαα>-=-由t分布分位数的唯一性得1()().t n t nαα-=-/2(||()),P T t nαα>=/2(||())1.P T t nαα≤=-α标准化t 分布Standardized Student Distribution设(),2,,(),X t n n Y x y >==则变量Y 的密度为122()(())|()|1n Y X f y f x y x y n +-⎛⎫⎫'==+⎪⎪⎪⎭⎭1221,.2n yy R n +-⎛⎫=+∈⎪-⎭称为服从自由度为n 的标准化t 分布,记为().Y t n * 特殊函数贝塔函数Beta Function 定义1110()()(,)(1).x x dt αβαβαβαβ--ΓΓB -=⎰贝塔分布Beta Distribution 定义 设随机变量X 的密度为11(1)(),0,0,01,(,)x x f x x αβαβαβ---=>><<B称为贝塔分布,记为(,).X αβB设(,),(,),U V αγβγΓΓ 独立,则(,).UX U Vαβ=B + 倒贝塔分布Inverse Beta Distribution 定义 设随机变量X 的密度为211()(1),0,0,1,(,)f x x x x αββαβαβ-+--=->>>B 称为倒贝塔分布,记为1(,).X αβ-B 费歇Z 分布Fisher Z-Distribution 定义设21(,),(1)(1)1,,(),|()|,11(1)yY X X Y X x y x y Y y y αβ'B -+====+++ 则变量Y 的密度为112111()(())|()|(,)11(1)Y X y f y f x y x y y y y αβαβ--⎛⎫⎛⎫'== ⎪ ⎪B +++⎝⎭⎝⎭/2α/2α11(1),0,0,0,(,)y y y ααβαβαβ---=+>>>B 称为费歇Z 分布,记为(,).Y Z αβ或设11(,),1(,),1,.11Y X X Y X Y X YβααβB -=B =-=++或设11(,),,.11Y X Y X X Yαβ-B ==-+或设(,),(,),U V αγβγΓΓ 独立,/.Y U V =则变量Y 的密度相同.取12,,22n n αβ==即为独立卡方分布商2122()()n n χχ的密度.1121122212(()/2)()(1),0.(/2)(/2)nn n Y n n f y y y y n n +--Γ+=+>ΓΓ定理 设12,,n X X X 独立同分布(...i i d )总体2(,),X N μσ 则统计量~(1).T t n =- 证明2222(1)~(0,1),~(1),n S U N n χχσ-==-独立, 由t 分布定义T ==~(1).t n ==-/S σ=是用样本标准差S 替换总体标准差σ的因子.定理 设112,,n X X X 独立同分布(...i i d )总体21(,),X N μσ 212,,,n Y Y Y 独立同分布(...i i d )总体22(,)Y N μσ ,(两总体方差相等),两样本独立,则统计量12~(2).T t n n =+-其中12111211,,n n i i i i X X Y Y n n ====∑∑12222212111211(),(),11n n i i i i S X X S Y Y n n ===-=---∑∑ 222112212(1)(1).2wn S n S S n n -+-=+-证明221122~(,/),~(,/),X N n Y N n μσμσ,X Y 独立,由独立正态分布可加性2121212~,,n nX Y N n n μμσ⎛⎫+-- ⎪⎝⎭标准化变量~(0,1).U N =222211221222(1)(1)~(1),~(1)n S n S n n χχσσ----,2212,S S 独立,由独立卡方分布可加性22221211221222(2)(1)(1)~(2).wn n S n S n S n n χσσ+--+-=+-X Y -与2wS 独立,根据t 分布的定义T ==12~(2).t n n =+-四.F (比率)分布Fisher Proportional Distribution (英,费歇R.A.Fisher (1890-1962),1924) 定义 设2212(),(),X n Y n χχ ,X Y 独立,变量12//X n F Y n =称为服从第一(分子)自由度为1,n 第二(分母)自由度为2n 的F 分布,记为12(,),F F n n 密度为1121112112121222(()/2)(;,)1,0,(/2)(/2)n n n n n n n n f x n n x x x n n n n +--Γ+⎛⎫⎛⎫=+> ⎪ ⎪ΓΓ⎝⎭⎝⎭2112211211212()(),0.(/2,(/2)n n n n n n n x n x n x n n +--=+>B 其中贝塔函数()()(,),0,0,())αβαβαβαβΓΓB =>>Γ+F 分布是一个非对称分布.F 分布密度的证明1.随机变量商的密度公式设二维随机变量(,)X Y 的联合密度为(,),f x y 则商/Z X Y =的密度为()(,)||,Z f z f yz y y dy +∞-∞=⎰当,X Y 独立时,()()()||.Z X Y f z f yz f y y dy +∞-∞=⎰证明/()(/)(,)Z x y zF z P Z X Y z f x y dxdy ≤==≤=⎰⎰ 0(,)(,)yzyzf x y dxdy f x y dxdy +∞+∞-∞-∞=+⎰⎰⎰⎰两边对z 求导得()(,)(,)Z f z f yz y ydy f yz y ydy +∞-∞=-+⎰(,)||.f yz y y dy +∞=参考:多(二)维随机变量函数的分布2.由独立变量商的密度公式,/Z X Y =的密度为120(;,)(,)||()()Z X Y f z n n f yz y y dy f yz f y ydy +∞+∞-∞==⎰⎰11212121(1)212,(/2)(/2)2n n n yz n n z y e dy n n -++∞--++=ΓΓ⎰设(1)2ys z =+ 112121221012(1)(/2)(/2)n n n n n s z z s e dsn n +--++∞--+=ΓΓ⎰11211212(()/2)(1),0.n n n n n z z z +--Γ+=+>由随机变量函数的密度公式,1221//X n n F Z Y n n ==的密度为 112122111211212121221222(()/2)(;,)(/;,)1,0.(/2)(/2)n n n n Z n n n n n f x n n f n x n n n x x x n n n n n +-Γ+⎛⎫⎛⎫==+> ⎪ ⎪ΓΓ⎝⎭⎝⎭3.推论.根据12(1,)F n n n ==分布密度推出()t n 分布密度.由标准正态分布的对称性得()t n 是对称的.222()(1,)2()1(||)((1;))(),0,t n F n F x P T x P T F n x F x x -=≤==≤=>两边对x求导得()t n分布密度122212(;)(;1,)1,.nxf x n xf x n n n x R+-⎫====+∈⎪⎭性质由F分布的定义易知,21121~(,),(,)F n nF n n或1221(,)(,) 1.F n n F n n≡期望222,2,2nEF nn=>-第一(分子)自由度为1n无关.方差2122221222(2), 4.(4)(2)n n nDF nn n n+-=>--证明设1(1,2,,)iX i n= 同分布()(0,1),id N则122212222222()()()nXX XE E En n nχχχ===1222212111222222()/()/()/()/nX X X nn nEF E En n n nχχχ+++==22122222(1,)()()/XE EF n Et nn nχ===2222(), 2.2nDt n nn==>-或1121221211212001222(()/2)(;,)1(/2)(/2)n n nnn n n n EF xf x n n dx x x dxn n n n+-+∞+∞⎛⎫⎛⎫Γ+==+⎪ ⎪ΓΓ⎝⎭⎝⎭⎰⎰设11111122111122222222,22n nn nn n n nx y x dx y dyn n n n++⎛⎫⎛⎫++==⎪ ⎪--⎝⎭⎝⎭112112221211211222(()/2)221(/2)(/2)22n n nnn n n n ny y dyn n n n n++-+∞⎛⎫⎛⎫Γ+++=+⎪ ⎪ΓΓ--⎝⎭⎝⎭⎰1121122 21211221222(()/2)2212((2)/2)((2)/2)22n n nnn n n n ny y dy n n n n n++-+∞⎛⎫⎛⎫Γ+++ =+⎪ ⎪-Γ+Γ---⎝⎭⎝⎭⎰12(2,2)F n n+-的密度积分为1222, 2.2nnn=>-1121221221211212001222(()/2)(;,)1(/2)(/2)n n nnn n n n EF x f x n n dx x x dxn n n n+-+∞+∞+⎛⎫⎛⎫Γ+==+⎪ ⎪ΓΓ⎝⎭⎝⎭⎰⎰设1111222211111122222244,44n nn nn n n nx y x dx y dyn n n n++++⎛⎫⎛⎫++==⎪ ⎪--⎝⎭⎝⎭1121222212121122011222(()/2)441(/2)(/2)44n n n n n n n n n yy dy n n n n n ++-+∞+⎛⎫⎛⎫Γ+++=+⎪⎪ΓΓ--⎝⎭⎝⎭⎰112122221121211201221222(2)(()/2)441(4)(2)((4)/2)((4)/2)44n n n n n n n n n n yy dy n n n n n n n ++-+∞+⎛⎫⎛⎫+Γ+++=+ ⎪⎪--Γ+Γ---⎝⎭⎝⎭⎰12(4,4)F n n +-的密度积分为12122122(2), 4.(4)(2)n n n n n n +=>-- 222212221222(2)(4)(2)(2)n n n DF EF E F n n n n +=-=---- 2122221222(2), 4.(4)(2)n n n n n n n +-=>-- 众数1212(2)max ,0 1.(2)n n M n n -⎧⎫=<⎨⎬+⎩⎭上侧分位数12112(,),(,)F n n F n n αα-12((,)),0 1.P F F n n ααα>=<<将α换为1α-得112((,))1,P F F n n αα->=-1/212/212((,)(,))1.P F n n F F n n ααα-≤≤=-由F 分布的性质及上侧分位数的定义可得随机理论 抽样分布第21页 共21页 112211(,).(,)F n n F n n αα-= 证明2121((,)(,)),P F n n F n n αα>=2121((,)(,))1,P F n n F n n αα<=- 由12211~(,)(,)F n n F n n 得 12212111((,))1,(,)(,)P F n n F n n F n n αα=>=- 由分位数的唯一性得112211(,).(,)F n n F n n αα-= 定理 设112,,n X X X 独立同分布(...i i d )总体211(,),X N μσ 212,,,n Y Y Y 独立同分布(...i i d )总体222(,),Y N μσ 两总体独立,2212,S S 依次是两总体的样本方差,则统计量 2211122222~(1,1).S F F n n S σσ=-- 证明2211121(1)(1),n S n χσ-- 2222222(1)(1),n S n χσ-- 独立, 由F 分布的定义211121222222(1)(1)(1)(1)n S n F n S n σσ--=--2211122222~(1,1).S F n n S σσ=--。
知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) (或).(2) 和事件: ;(简记为).(3) 积事件: ,(简记为或).(4) 互不相容:若事件A 和B 不能同时发生,即 (5) 对立事件: .(6) 差事件:若事件A 发生且事件B 不发生,记作(或) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有, .2. **古典概率的定义 古典概型:.几何概率·3.**概率的性质 (1) .(2) (有限可加性) 设n 个事件两两互不相容,则有.(3).(4) 若事件A ,B 满足,则有A B ⊂B A ⊃A B ⋃12n A A A ⋃⋃⋃1nii A =AB 12nA A A ⋂⋂⋂12nA A A 1nii A =AB φ=A A B -AB A B A B ⋃=⋂A B A B ⋂=⋂()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)()0P φ=1,2,,nA A A 121()()nn i i P A A A P A =⋃⋃⋃=∑()1()P A P A =-A B ⊂,.(5) .(6) (加法公式) 对于任意两个事件A ,B ,有.对于任意n 个事件,有.4.**条件概率与乘法公式.乘法公式:.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:,事件A 与B 相互独立的充分必要条件二:.对于任意n 个事件相互独立性定义如下:对任意一个,任意的,若事件总满足,则称事件相互独立.这里实际上包含了个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率,则在n 次重复独立试验中.,事件A恰发生次的概率为,7.**全概率公式与贝叶斯公式 贝叶斯公式:()()()P B A P B P A -=-()()P A P B ≤()1P A ≤()()()()P A B P A P B P AB ⋃=+-1,2,,nA A A 111111()()()()(1)()nnn i i i j i j k n i i j ni j k ni P A P A P A A P A A A P A A -=≤<≤≤<<≤==-+-+-∑∑∑()(|)()P AB P A B P B =()()(|)()(|)P AB P A P B A P B P A B ==()()()P AB P A P B =(|)()P A B P A =1,2,,n A A A 2,,k n =11k i i n≤<<≤1,2,,nA A A 11()()()k k i i i i P A A P A P A =1,2,,nA A A 21nn --()(01)P A p p =<<k ()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭如果事件两两互不相容,且,,,则.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律分布律也可用下列表格形式表示:2.*概率函数的性质 (1),(2).3.*常用离散型随机变量的分布(1) 0—1分布,它的概率函数为,其中,或1,.(2) 二项分布,它的概率函数为,其中,,.(4)** 泊松分布,它的概率函数为1,2,,nA A A 1ni i A ==Ω()0i P A >1,2,,i n =1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑(),1,2,,,.i i p P X a i n ===n a np 0i p ≥1,2,,,;i n =11ii p∞==∑(1,)B p 1()(1)i i P X i p p -==-0i =01p <<(,)B n p ()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭0,1,2,,i n =01p <<()P λ,其中,,..4.*二维离散型随机变量及联合概率二维离散型随机变量的分布可用下列联合概率函数来表示:其中,.5.*二维离散型随机变量的边缘概率 设为二维离散型随机变量,为其联合概率(),称概率为随机变量的边缘分布律,记为并有,称概率为随机变量Y 的边缘分布率,记为,并有=.6.随机变量的相互独立性 .设为二维离散型随机变量,与相互独立的充分必要条件为多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设是一个随机变量,是一个已知函数,是随机变量的函数,它也是一个随机变量.对离散型随机变量,下面来求这个新的随机变量的分布.设离散型随机变量的概率函数为则随机变量函数的概率函数可由下表求得()!iP X i e i λλ-==0,1,2,,,i n =0λ>(,)X Y (,),,1,2,,i j ij P X a Y b p i j ====0,,1,2,,1ij ijijp i j p≥==∑∑(,)X Y ijp ,1,2,i j =()(1,2,)i P X a i ==X ip .(),1,2,i i ij jp P X a p i ====∑()(1,2,)j P Y b j ==.jp .jp (),1,2,j ij iP Y b p j ===∑(,)X Y X Y ,,1,2,.ij i j p p p i j ==对一切X ()g x ()Y g X =X X Y X n a np Y g =但要注意,若的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数的性质 (1) (2);由已知随机变量的分布函数,可算得落在任意区间内的概率 .3.联合分布函数二维随机变量的联合分布函数. 4.联合分布函数的性质 (1) ;(2),;(3).5.**连续型随机变量及其概率密度设随机变量的分布函数为,如果存在一个非负函数,使得对于任一实数,有()n g a ()i g a ip ()F x 0()1;F x ≤≤()0,()1lim lim x x F x F x →-∞→+∞==X ()F x X (,]a b (,)X Y 0(,)1F x y ≤≤(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+X ()F x ()f x x ()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<成立,则称X 为连续型随机变量,函数称为连续型随机变量的概率密度. 6.**概率密度及连续型随机变量的性质 (1) (2);(3);(4)设为连续型随机变量,则对任意一个实数c ,; (5) 设是连续型随机变量的概率密度,则有=.7.**常用的连续型随机变量的分布 (1) 均匀分布,它的概率密度为其中,.(2) 指数分布,它的概率密度为其中,.(3) 正态分布,它的概率密度为,其中,,当时,称为标准正态分布,它的概率密度为,标准正态分布的分布函数记作,即()()xF x f x dx-∞=⎰()f x X ()f x ()0;f x ≥()1f x dx +∞-∞=⎰()()F x f x '=X ()0P X c ==()f x X ()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤()baf x dx⎰(,)R a b 1,;()0,a x b f x b a⎧<<⎪=-⎨⎪⎩其余.)a b -∞<<<+∞()E λ,0;()0,x e x f x λλ-⎧>=⎨⎩其余.0λ>2(,)N μσ22()2(),x f x x μσ--=-∞<<+∞,0μσ-∞<<+∞>0,1μσ==(0,1)N 22(),x f x x -=-∞<<+∞()x Φ,当出时,可查表得到;当时,可由下面性质得到.设,则有;.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数,如果存在一个二元非负函数,使得对于任意一对实数有成立,则为二维连续型随机变量,为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) ;(2);’(3) 在的连续点处有;(4) 设为二维连续型随机变量,则对平面上任一区域有.10,**二维连续型随机变量的边缘概率密度设为二维连续型随机变量的联合概率密度,则的边缘概率密度为;的边缘概率密度为22()t xx dt -Φ=⎰0x ≥()x Φ0x <()x Φ()1()x x Φ-=-Φ2~(,)X N μσ()()x F x μσ-=Φ()()()b a P a X b μμσσ--<≤=Φ-Φ(,)F x y (,)f x y (,)x y (,)(,)xyF x y f s t dtds-∞-∞=⎰⎰(,)X Y (,)f x y (,)0,,f x y x y ≥-∞<<+∞(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰(,)f x y 2(,)(,)F x y f x y x y ∂=∂∂(,)X Y D ((,))(,)DP X Y D f x y dxdy∈=⎰⎰(,)X Y (,)f x y X ()(,)X f x f x y dy+∞-∞=⎰Y.11.常用的二维连续型随机变量 (1) 均匀分布如果在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为(2) 二维正态分布如果的联合概率密度则称服从二维正态分布,并记为.如果,则,,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .,那么,称随机变量与相互独立.设为二维连续型随机变量,则与相互独立的充分必要条件为如果.那么,与相互独立的充分必要条件是.第四章 随机变量的数字特征本章重点:随机变量的期望。
概率论与数理统计期末复习重要知识点第二章知识点:1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。
2.常用离散型分布:(1)两点分布(0-1分布):若一个随机变量X 只有两个可能取值,且其分布为12{},{}1(01)P X x p P X x pp ====-<<,则称X 服从12,x x 处参数为p 的两点分布。
两点分布的概率分布:12{},{}1(01)P X x p P X x pp ====-<<两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =-(2)二项分布:若一个随机变量X 的概率分布由式{}(1),0,1,...,.k kn k n P x k C p p k n -==-=给出,则称X 服从参数为n,p 的二项分布。
记为X~b(n,p)(或B(n,p)).两点分布的概率分布:{}(1),0,1,...,.k k n kn P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =-(3)泊松分布:若一个随机变量X 的概率分布为{},0,0,1,2,...!kP X k ek k λλλ-==>=,则称X 服从参数为λ的泊松分布,记为X~P (λ)泊松分布的概率分布:{},0,0,1,2,...!kP X k ek k λλλ-==>=泊松分布的期望:()E X λ=;泊松分布的方差:()D X λ=4.连续型随机变量:如果对随机变量X 的分布函数F(x),存在非负可积函数()f x ,使得对于任意实数x ,有(){}()xF x P X x f t dt-∞=≤=⎰,则称X 为连续型随机变量,称()f x 为X 的概率密度函数,简称为概率密度函数。
5.常用的连续型分布:(1)均匀分布:若连续型随机变量X 的概率密度为⎪⎩⎪⎨⎧<<-=其它,0,1)(bx a a b x f ,则称X 在区间(a,b )上服从均匀分布,记为X~U(a,b)均匀分布的概率密度:⎪⎩⎪⎨⎧<<-=其它,0,1)(b x a a b x f 均匀分布的期望:()2a bE X +=;均匀分布的方差:2()()12b a D X -= (2)指数分布:若连续型随机变量X 的概率密度为00()0xe xf x λλλ-⎧>>=⎨⎩,则称X 服从参数为λ的指数分布,记为X~e (λ)指数分布的概率密度:00()0xe xf x λλλ-⎧>>=⎨⎩指数分布的期望:1()E X λ=;指数分布的方差:21()D X λ=(3)正态分布:若连续型随机变量X的概率密度为2()2()x f x x μσ--=-∞<<+∞则称X 服从参数为μ和2σ的正态分布,记为X~N(μ,2σ)正态分布的概率密度:22()2()x f x x μσ--=-∞<<+∞正态分布的期望:()E X μ=;正态分布的方差:2()D X σ=(4)标准正态分布:20,1μσ==,2222()()x t xx x e dtϕφ---∞=标准正态分布表的使用: (1)()1()x x x φφ<=--(2)~(0,1){}{}{}{}()()X N P a x b P a x b P a x b P a x b b a φφ<≤=≤≤=≤<=<<=-(3)2~(,),~(0,1),X X N Y N μμσσ-=故(){}{}()X x x F x P X x P μμμφσσσ---=≤=≤={}{}()()a b b a P a X b P Y μμμμφφσσσσ----<≤=≤≤=-定理1: 设X~N(μ,2σ),则~(0,1)X Y N μσ-=6.随机变量的分布函数: 设X 是一个随机变量,称(){}F x P X x =≤为X 的分布函数。
复习重点题目第一章p13例2、p14例5、习题一20、25第二章p34 例7、8;习题二15、24。
第三章p58 例2、例5、p61 例5、p63 例1、习题三5。
第四章习题四13、14、15、16。
第七章P139 例4、P148 例2、习题七P157 1、P159 13。
第八章例4、例5、习题八3、6。
例 1.5.2 设袋中装有r 只红球,t 只白球,每次自袋中任取一只球,观察其颜色然后放回,并再放入 a 只与所取出的那只球同色的球,若在袋中连续取球 4 次,试求第一、二次取到红球且第三、四次取到白球的概率。
解以A i(i 1,2,3,4)表示事件“第i次取到红球”,则A3, A4 分别表示事件“第三、四次取到白球” 。
所求概率为:P( A1 A2 A3 A4 ) P(A4 | A1 A2 A3)P( A3 | A1A2 )P( A2 |A1)P(A1)t a t r a rr t 3a r t 2a r t a r t例 1.5.4 八支枪中,有三支未经试射校正,五支已经试射校正。
校正过的枪射击时,中靶的概率为0.8,未校正的枪射击时,中靶的概率为0.3,今从8 支枪中任取一支射击中靶。
问所用这枪是校正过的概率是多少?解设事件8 8 10 45A ={射击中靶}B 1={ 任取一枪是校正过的 }, B 2 ={任取一枪是未校正过的 }, B 1, B 2构成完备事件组 ,则 P(B 1) 5/8,P(B 2) 3/8,P(A |B 1) 0.8,P(A|B 2) 0.3, 故所求概率为P(B 1 | A) P(B 1)P(A|B 1)/[P(B 1)P(A|B 1) P(B 2)P(A|B 2)] 40/49 0.816习题一、20.已知在 10 只晶体管中有 2 只次品,在其中取两次,每次任取一 只,作不放回抽样。
求下列事件的概率: (1)两只都是正品; (2)两只都是次品;(3)一只是正品,一只是次品; (4)第二次取出的是次品。
《概率论与数理统计》第4-7章复习第四章 随机变量的数字特征常用分布的期望与方差第五章 大数定律及中心极限定理第六章 数理统计的基本概念第七章参数估计常用概率分布的参数估计表自测题第四章﹑数字特征1. 设随机变量X 的密度函数f(x)= ⎩⎨⎧5x 4 0≤x ≤1 0 其他, 求数学期望EX 。
2.设随机变量X ~N (-1,3),Y ~N (0,5),Cov(X ,Y )=0.4,求D (X +Y )的值。
3. 设随机变量X 和Y 的密度函数分别为f X (x)= ⎩⎨⎧0.5, 1≤x ≤30, 其它 ,f Y (y)= ⎩⎨⎧3e -3y , y>00, y ≤0, 若X ,Y 相互独立,求: E(XY)4. 设 X 服从参数为 λ 的普阿松分布(λ>0),则下列6个等式中那几个是错误的。
DX=1λ, E(X)D(X) =1 , E(X 2)=E(X)[E(X)+1] , E(X) = λ , E (X - λ)2 = 0, EX=λ2+λ5.设随机变量的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 1 2 0 1/4 1/12 2 1/6 1/2 求:(1) E(X), E(Y);(2)D(X), D(Y);(3) ρxy 。
6.设二维随机变量(X ,Y)的联合分布律为⎣⎢⎡⎦⎥⎤X ╲Y 0 1 3 0 0.1 0.2 0.1 1 0.2 0.4 0,求(1)E(XY); (2)Cov(X,Y)。
试问:X 与Y 是否相互独立?为什么?7. 设随机变量X 的分布律为 ⎣⎡⎦⎤X -2 0 1 2P 0.2 0.3 0.4 0.1.记Y =X 2, 求:(1)D (X ),D (Y );(2)Cov(X,Y ), ρxy .8. 已知投资某短期项目的收益率R 是一随机变量,其分布为:⎣⎡⎦⎤R -2% 0% 3% 10%P 0.1 0.1 0.3 0.5 。
(1) 求R 的数学期望值E(R)与方差D(R);(2) 若一位投资者在该项目上投资100万元,求他预期获得多少收益(纯利润)(万元)?9. 假定暑假市场上对冰淇淋的需求量是随机变量X 盒,它服从区间[200,400]上的均匀分布,设每售出一盒冰淇淋可为小店挣得1元,但假如销售不出而屯积于冰箱,则每盒赔3元。
第四章 随机变量的数字特征一、 随机变量的数学期望1. 离散型随机变量数学期望设离散型随机变量X 的分布律为:,...2,1,}{===k p x X P k k 若级数∑kk k p x 绝对收敛,则称级数∑kk k p x 的和为随机变量X 的数学期望,记为E(X),即∑=kk kp xX E )(。
2. 连续型随机变量数学期望设连续型随机变量X 的概率密度函数为)(X f ,若积分⎰+∞∞-dx x xf )(绝对收敛,则称积分⎰+∞∞-dx x xf )(为随机变量X 的数学期望,记为E(X),即⎰+∞∞-=dx x xf X E )()(.数学期望简称期望或均值,他反映了随机变量所有可能取值的一种平均。
3. 随机变量函数的期望(1) 设X 是随机变量,)(x g y =为实变量x 的函数。
1) 若X 是离散型随机变量,其分布律为:,}{k k p x X P == 1=k ,2,3,...,且级数∑kk k p x g )(绝对收敛,则∑==kk kp xg x g E Y E )()]([)(2) 若X 市连续型随机变量,其密度函数为)(x f ,且积分⎰+∞∞-dx x f x g )()(绝对收敛,则⎰+∞∞-==dx x f x g x g E Y E )()()]([)((2) 设(X ,Y )是二维随机变量,),(y x g z =为实变量x ,y 的二元函数。
1) 若(X ,Y )是离散型随机变量,其分布律为:,),(ij i i p y Y x X P ===,.....2,1,=j i 且∑∑ijij j ip y xg ),(绝对收敛,则∑∑==ijij j ip y xg Y X g E Z E ),()],([)(2) 若(X ,Y )是连续型随机变量,其密度函数为),(y x f ,且⎰⎰+∞∞-+∞∞-dxdy y x f y x g ),(),(绝对收敛,则⎰⎰+∞∞-+∞∞-==dxdy y x f y x g Y X g E Z E ),(),()],([)(。
《概率统计》、《概率论与数理统计》、《随机数学》课程期末复习资料注:以下是考试的参考内容,不作为实际考试范围,考试内容以教学大纲和实施计划为准;注明“了解”的内容一般不考。
1、能很好地掌握写样本空间与事件方法,会事件关系的运算,了解概率的古典定义2、能较熟练地求解古典概率;了解概率的公理化定义3、掌握概率的基本性质和应用这些性质进行概率计算;理解条件概率的概念;掌握加法公式与乘法公式4、能准确地选择和运用全概率公式与贝叶斯公式解题;掌握事件独立性的概念及性质。
5、理解随机变量的概念,能熟练写出(0—1)分布、二项分布、泊松分布的分布律。
6、理解分布函数的概念及性质,理解连续型随机变量的概率密度及性质。
7、掌握指数分布(参数λ)、均匀分布、正态分布,特别是正态分布概率计算8、会求一维随机变量函数分布的一般方法,求一维随机变量的分布律或概率密度。
9、会求分布中的待定参数。
10、会求边缘分布函数、边缘分布律、条件分布律、边缘密度函数、条件密度函数,会判别随机变量的独立性。
11、掌握连续型随机变量的条件概率密度的概念及计算。
12、理解二维随机变量的概念,理解二维随机变量的联合分布函数及其性质,理解二维离散型随机变量的联合分布律及其性质,理解二维连续型随机变量的联合概率密度及其性质,并会用它们计算有关事件的概率。
13、了解求二维随机变量函数的分布的一般方法。
14、会熟练地求随机变量及其函数的数学期望和方差。
会熟练地默写出几种重要随机变量的数学期望及方差。
15、较熟练地求协方差与相关系数.16、了解矩与协方差矩阵概念。
会用独立正态随机变量线性组合性质解题。
17、了解大数定理结论,会用中心极限定理解题。
18、掌握总体、样本、简单随机样本、统计量及抽样分布概念,掌握样本均值与样本方差及样本矩概念,掌握2分布(及性质)、t分布、F分布及其分位点概念。
19、理解正态总体样本均值与样本方差的抽样分布定理;会用矩估计方法来估计未知参数。
概率论与数理统计期末复习题一一、填空题(每空2分,共20分)1、设X 为连续型随机变量,则P{X=1}=( 0 ).2、袋中有50个球,其编号从01到50,从中任取一球,其编号中有数字4的概率为(14/50 或7/25 ).3、若随机变量X 的分布律为P{X=k}=C(2/3)k,k=1,2,3,4,则C=( 81/130 ). 4、设X 服从N (1,4)分布,Y 服从P(1)分布,且X 与Y 独立,则 E (XY+1-Y )=( 1 ) ,D (2Y-X+1)=( 17 ).5、已知随机变量X ~N(μ,σ2),(X-5)/4服从N(0,1),则μ=( 5 );σ=( 4 ). 6且X 与Y 相互独立。
则A=( 0.35 ),B=( 0.35 ).7、设X 1,X 2,…,X n 是取自均匀分布U[0,θ]的一个样本,其中θ>0,n x x x ,...,,21是一组观察值,则θ的极大似然估计量为( X (n) ).二、计算题(每题12分,共48分)1、钥匙掉了,落在宿舍中的概率为40%,这种情况下找到的概率为0.9; 落在教室里的概率为35%,这种情况下找到的概率为0.3; 落在路上的概率为25%,这种情况下找到的概率为0.1,求(1)找到钥匙的概率;(2)若钥匙已经找到,则该钥匙落在教室里的概率.解:(1)以A 1,A 2,A 3分别记钥匙落在宿舍中、落在教室里、落在路上,以B 记找到钥匙.则 P(A 1)=0.4,P(A 2)=0.35,P(A 3)=0.25, P(B| A 1)=0.9 ,P(B| A 2)=0.3,P(B| A 3)=0.1 所以,49.01.025.03.035.09.04.0)|()()(31=⨯+⨯+⨯==∑=ii iA B P A P B P(2)21.049.0/)3.035.0()|(2=⨯=B A P 2、已知随机变量X 的概率密度为其中λ>0为已知参数.(1)求常数A; (2)求P{-1<X <1/λ)}; (3)F(1).⎪⎩⎪⎨⎧<≥=-000)(2x x e A x f x λλ解:(1)由归一性:λλλλλλ/1,|)(102==-===∞+--+∞+∞∞-⎰⎰A A e A dx e A dx x f x x 所以(2)⎰=-==<<--λλλλ/1036.0/11}/11{e dx e X P x(3)⎰---==11)1(λλλe dx eF x3、设随机变量X 的分布律为且X X Y 22+=,求(1)()E X ; (2)()E Y ; (3))(X D . 解:(1)14.023.012.001.01)(=⨯+⨯+⨯+⨯-=X E (2)24.043.012.001.01)(2=⨯+⨯+⨯+⨯=X E422)(2)()2()(22=+=+=+=X E X E X X E Y E(3)112)]([)()(22=-=-=X E X E X D4、若X ~N(μ,σ2),求μ, σ2的矩估计.解:(1)E(X)=μ 令μ=-X 所以μ的矩估计为-Λ=X μ(2)D(X)=E(X 2)-[E(X)]2又E(X 2)=∑=n i i X n 121D(X)= ∑=n i i X n 121--X =212)(1σ=-∑=-n i i X X n所以σ2的矩估计为∑=-Λ-=ni i X X n 122)(1σ三、解答题(12分)设某次考试的考生的成绩X 服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为在这次考试中全体考生的平均成绩为70分? 解:提出假设检验问题:H 0: μ=70, H 1 :μ≠70,nS X t /70-=-~t(n-1),其中n=36,-x =66.5,s=15,α=0.05,t α/2(n-1)=t 0.025(35)=2.03 (6)03.24.136/15|705.66|||<=-=t所以,接受H 0,在显著性水平0.05下,可认为在这次考试中全体考生的平均成绩为70分四、综合题(每小题4分,共20分) 设二维随机变量),(Y X 的联合密度函数为:32,01,01(,)0,x ce y x y f x y ⎧≤≤≤≤=⎨⎩其它试求: )1( 常数C ;)2(()X f x , )(y f Y ;)3( X 与Y 是否相互独立?)4( )(X E ,)(Y E ,)(XY E ; )5( )(X D ,)(Y D . 附:Φ(1.96)=0.975; Φ(1)=0.84; Φ(2)=0.9772t 0.05(9)= 1.8331 ; t 0.025(9)=2.262 ; 8595.1)8(05.0=t , 306.2)8(025.0=t t 0.05(36)= 1.6883 ; t 0.025(36)=2.0281 ; 0.05(35) 1.6896t =, 0.025(35) 2.0301t = 解:(1))1(9|31|3113103103101010102323-=⋅⋅=⋅==⎰⎰⎰⎰e c y e c dy y dx e c dxdy y ce x x x 所以,c=9/(e 3-1)(2)0)(1319)(,103323103=-=-=≤≤⎰x f x e e dy y e e x f x X xx X 为其它情况时,当当所以,333,01()10,xX e x f x e ⎧≤≤⎪=-⎨⎪⎩其它同理, 23,01()0,Y y y f y ⎧≤≤=⎨⎩其它(3)因为: 32333,01,01()()(,)10,x X Y e y x y f x f y f x y e ⎧⋅≤≤≤≤⎪==-⎨⎪⎩其它所以,X 与Y 相互独立. (4)113333013130303331111(|)1213(1)x xx x EX x e dx xde e e y e e dx e e e =⋅=--=⋅--+=-⎰⎰⎰124100333|44EY y y dx y =⋅==⎰ 3321()4(1)e E XY EX EY e +=⋅=- (5) 22()DX EX EX =-11223231303300133130303331|21112(|)13529(1)x x xx x EX x e dy x e e xdx e e e xe e dx e e e ⎡⎤=⋅=⋅-⋅⎢⎥⎣⎦--⎡⎤=--⎢⎥-⎣⎦-=-⎰⎰⎰ ∴3323326332521(21)9(1)9(1)1119(1)e DX e e e e e e -=-+---+=-22()DY EY EY =- 12225010333|55EY y y dy y =⋅==⎰ ∴ 2333()5480DY =-=概率论与数理统计期末复习题二一、计算题(每题10分,共70分)1、设P (A )=1/3,P (B )=1/4,P (A ∪B )=1/2.求P (AB )、P (A-B ).解:P (AB )= P (A )+P (B )- P (A ∪B )=1/12P (A-B )= P (A )-P (AB )=1/42、设有甲乙两袋,甲袋中装有3只白球、2只红球,乙袋中装有2只白球、3只红球.今从甲袋中任取一球放入乙袋,再从乙袋中任取两球,问两球都为白球的概率是多少?解:用A 表示“从甲袋中任取一球为红球”, B 表示“从乙袋中任取两球都为白球”。
概率论期末复习知识点第一章(A卷20分,B卷22分)1.事件的表式2.事件的关系与运算3.概率性质及其应用4.古典概型5.条件概率6.全概率公式7.贝叶斯公式8.事件的独立性重点:条件概率,全概率公式,贝叶斯公式第二章(A卷22分,B卷20分)1.离散型随机变量的概率分布2.两点分布3.二项分布4.泊松分布5.概率密度函数及其性质6.连续型随机变量的分布函数7.均匀分布8.指数分布9.标准正态分布、正态分布10.随机变量相关的概率计算11.离散型随机变量函数的概率分布重点:○1正态分布,二项分布○2离散型随机变量及函数的概率分布第三章(A卷23分,B卷20分)1.离散型随机向量联合概率分布及分布函数2.二维连续型随机向量的联合概率密度、性质及其应用3.二维连续型随机向量的分布函数4.均匀分布5.二维正态分布6.边缘概率密度7.随机变量的独立性8.二维随机向量的相关概率计算重点:○1联合概率密度○2边缘概率密度○3随机变量的独立性第四章(A卷21分,B卷26分)1.离散型随机变量的期望2.连续型随机变量的期望3.随机变量函数的期望4.方差5.方差的性质6.协方差、协方差的性质7.相关系数重点:○1数学期望(随机变量及函数的数学期望)○2方差(离散型随机变量的方差)○3协方差和相关系数第五章(A卷14分,B卷12分)1.雪比切夫不等式的应用2.棣莫弗——拉普拉斯中心极限定理的应用重点:棣莫弗——拉普拉斯中心极限定理概率论期末公式复习对偶律: ,B A B A = ; B A AB = 概率的性质1. P (Ø)=0;2. A 1,A 2,…, A n 两两互斥时:P (A 1∪A 2∪…∪A n )=P (A 1)+…+P (A n ),3.)(1)(A P A P -=(A 是 A 不发生)(D )4.若A B , 则有: P (A )≤ P(B ),P (AB ) = P (A ),P (B -A )=P (B )-P (A ),P (A ∪B )=P (B ).5.)()()()(AB P B P A P B A P -+=⋃(D ), P (B -A )=P (B )-P (AB )。
概率论与数理统计期末复习20题及解答【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(1)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E .11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x 求:(1)常数A ;(2))(X E 和)(X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相关系数),(Y X R .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t XX X X X k T +++=.16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P .【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量.18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值.(1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).解答部分【第一章】 随机事件与概率1、甲袋中有4个白球3个黑球,乙袋中有2个白球3个黑球,先从甲袋中任取一球放入乙袋, 再从乙袋中任取一球返还甲袋. 求经此换球过程后甲袋中黑球数增加的概率.【解】设A 表示“从甲袋移往乙袋的是白球”,B 表示“从乙袋返还甲袋的是黑球”,C 表示“经此换球过程后甲袋中黑球数增加”,则AB C =, 又2163)(,74)(===A B P A P ,于是由概率乘法定理得所求概率为 )()(AB P C P =)()(A B P A P ==722174=⋅.2、某人忘记了电话号码的最后一个数字,因而他随意地拨号,求此人拨号不超过两次而接通所需电话的概率.【解】 设i A 表示“此人第i 次拨号能拨通所需电话” )2,1(=i ,A 表示“此人拨号不超过两次而接通所需电话”,则211A A A A +=,由概率加法定理与乘法定理得所求概率为)()()()(211211A A P A P A A A P A P +=+=)()()(1211A A P A P A P +=2.091109101=⋅+=.3、已知将1,0两字符之一输入信道时输出的也是字符0或1,且输出结果为原字符的概率为)10(<<αα. 假设该信道传输各字符时是独立工作的. 现以等概率从“101”,“010”这两个字符串中任取一个输入信道.求输出结果恰为“000”的概率.【解】设:1A 输入的是“101”,:2A 输入的是“010”,:B 输出的是“000”,则2/1)(1=A P ,2/1)(2=A P ,αα21)1()(-=A B P ,)1()(22αα-=A B P ,从而由全概率公式得)()()()()(2211A B P A P A B P A P B P +=)1(21)1(2122αααα-+-=)1(21αα-=.4、试卷中的一道选择题有4个答案可供选择,其中只有1个答案是正确的.某考生如果会做这道题,则一定能选出正确答案;若该考生不会做这道题,则不妨随机选取一个答案.设该考生会做这道题的概率为85.0.(1)求该考生选出此题正确答案的概率;(2)已知该考生做对了此题,求该考生确实会做这道题的概率.【解】设A 表示“该考生会解这道题”,B 表示“该考生选出正确答案”,则85.0)(=A P ,2.0)(=A P ,1)(=A B P ,25.0)(=A B P .(1)由全概率公式得)()()()()(A B P A P A B P A P B P +=25.02.0185.0⨯+⨯=9.0=.(2)由贝叶斯公式得944.018179.0185.0)()()()(≈=⨯==B P A B P A P B A P .【第二章】 随机变量及其分布5、设连续随机变量X 的分布函数为+∞<<∞-+=x x B A x F ,arctan )(.(1)求系数A 及B ;(2)求X 落在区间)1,1(-内的概率;(3)求X 的概率密度.【解】(1)由分布函数的性质可知0)2()(lim )(=-⋅+==-∞-∞→πB A x F F x ,12)(lim )(=⋅+==+∞+∞→πB A x F F x ,由此解得 π1,21==B A . (2)X 的分布函数为)(arctan 121)(+∞<<-∞+=x x x F π, 于是所求概率为21))1arctan(121()1arctan 121()1()1()11(=-+-+=--=<<-ππF F X P .(3)X 的概率密度为)1(1)()(2x x F x f +='=π.6、设随机变量X 的概率密度为⎩⎨⎧≤≤=其它,0,10,)(x ax x f ,求:(1)常数a ;(2))5.15.0(<<X P ;(3)X 的分布函数)(x F .【解】(1)由概率密度的性质可知⎰∞+∞-dx x f )(121===⎰aaxdx , 由此得2=a .(2) )5.15.0(<<X P 75.000212/122/3112/1=+=+=⎰⎰x dx xdx .(3)当0<x 时,有00)(==⎰∞-xdx x F ;当10<≤x 时,有20020)(x xdx dx x F x=+=⎰⎰∞-;当1≥x 时,有1020)(1100=++=⎰⎰⎰∞-xdx xdx dx x F .所以,X 的分布函数为⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(2x x x x x F7、设二维随机变量),(Y X 的联合概率密度为⎩⎨⎧<<+=.,0;1,1),1(),(其它y x xy A y x f 求:(1)系数A ;(2)X 的边缘概率密度)(x f X ;(3)概率)(2X Y P ≤.【解】(1)由联合概率密度的性质可知=⎰⎰+∞∞-+∞∞-dxdy y x f ),(14)1(1111==+⎰⎰--A dy xy A dx ,由此得41=A . (2)当11<<-x 时,有=)(x f X =⎰+∞∞-dy y x f ),(214111=+⎰-dy xy ; 当1-≤x 或1≥x 时,显然有0)(=x f X .所以X 的边缘概率密度⎩⎨⎧<<-=.,0;11,2/1)(其它x x f X(3))(2X Y P ≤⎰⎰≤=2),(x y dxdy y x f dy xy dx x ⎰⎰--+=211141dx x x x )1221(412511+-+=⎰-32=.8、设二维随机变量),(Y X 的概率密度为⎩⎨⎧<<<<=.,0;20,10,1),(其它x y x y x f求:(1)),(Y X 的边缘概率密度)(x f X ,)(y f Y ;(2)概率)1,21(≤≤Y X P ;(3)判断X ,Y 是否相互独立.【解】(1)当10<<x 时,有x dy dy y x f x f xX 2),()(20⎰⎰===+∞∞-;当0≤x 或1≥x 时,显然有0)(=x f X .于是X 的边缘概率密度为⎩⎨⎧<<=.,0;10,2)(其它x x x f X 当20<<y 时,有⎰⎰-===+∞∞-1221),()(y Y ydx dx y x f y f ; 当0≤y 或2≥y 时,显然有0)(=y f Y .于是Y 的边缘概率密度为⎪⎩⎪⎨⎧<<-=.,0;20,21)(其它y y y f Y(2)⎰⎰⎰⎰===≤≤∞-∞2/12/102/11-41),()}1,21{(y dx dy dx y x f dy Y X P .(3)容易验证)()(),(y f x f y x f Y X ≠,故X 与Y 不独立.9、设X 和Y 是两个相互独立的随机变量,]2.0,0[~U X ,Y 的概率密度函数为⎩⎨⎧≤>=-.0,0,0,5)(5y y e y f y Y(2)求X 和Y 的联合概率密度),(y x f ;(2)求概率)(X Y P ≤.【解】(1)由题意知,X 的概率密度函数为⎩⎨⎧<<=.,0;2.00,5)(其它x x f X因为X 和Y 相互独立,故X 和Y 的联合概率密度⎩⎨⎧><<==-.,0;0,2.00,25)()(),(5其它y x e y f x f y x f y Y X(2)12.005052.00)1(525),()(---≤=-===≤⎰⎰⎰⎰⎰e dx e dy e dx dxdy y x f X Y P x x y xy .【第三章】数字特征10、设随机变量X 的概率密度为⎪⎩⎪⎨⎧≤<-≤≤+-=,,0,21,)2(,10,)()(其它x x a x b x b a x f ,已知21)(=X E ,求:(1)b a ,的值;(2))32(+X E . 【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(12)2(])[(2110=+=-++-⎰⎰ba dx x a dxb x b a ; 又dx x xf X E ⎰∞+∞-=)()(.216)2(])[(2110=+=-++-=⎰⎰b a dx x x a xdx b x b a联立方程组⎪⎩⎪⎨⎧=+=+,216,12b a b a 解得41=a ,23=b . (2) 由数学期望的性质,有432123)(2)32(=+⋅=+=+X E X E . 11、设随机变量X 的概率密度为⎩⎨⎧≤>=-.0,0,0,)(2x x Ae x f x求:(1)常数A ;(2))(X E 和)(X D .【解】(1)由概率密度的性质可知=⎰∞+∞-dx x f )(122==⎰∞+-Adx Ae x , 由此得2=A .(2)由数学期望公式得⎰⎰∞++∞-=-=⋅=0022212)(dt te dx ex X E t tx x21)2(Γ21==. 由于⎰∞+-⋅=02222)(dx ex X E xdt e t t tx ⎰+∞-==0224121!241)3(Γ41=⋅==,故利用方差计算公式得41)21(21)]([)()(222=-=-=X E X E X D .12、设),(Y X 的联合概率分布如下:XY1104/14/12/10(1)求Y X ,的数学期望)(X E ,)(Y E ,方差)(X D ,)(Y D .(2)求Y X ,的协方差),cov(Y X 与相 关系数),(Y X R .【解】 由),(Y X 的联合概率分布知Y X ,服从"10"-分布:4/1)0(==X P ,4/3)1(==X P , 2/1)0(==Y P ,2/1)1(==Y P ,由"10"-分布的期望与方差公式得16/3)4/11(4/3)(,4/3)(=-⨯==X D X E , 4/1)2/11(2/1)(,2/1)(=-⨯==Y D Y E ,由),(Y X 的联合概率分布知2/14/1114/1010104/100)(=⨯⨯+⨯⨯+⨯⨯+⨯⨯=XY E ,从而8/12/14/32/1)()()(),cov(=⨯-=-=Y E X E XY E Y X ,=),(Y X R 334/116/38/1)()(),cov(==Y D X D Y X .【第四章】正态分布13、假设某大学学生在一次概率论与数理统计统考中的考试成绩X (百分制)近似服从正态分布,已知满分为100分平均成绩为75分,95分以上的人数占考生总数的2.3%.(1)试估计本次考试的不及格率(低于60分为不及格);(2)试估计本次考试成绩在65分至85分之间的考生人数占考生总数的比例. [已知9332.0)5.1(,8413.0)1(≈≈ΦΦ,9772.0)2(=Φ]【解】 由题意,可设X 近似服从正态分布),75(2σN .已知%3.2)95(=≥X P ,即%3.2)20(1)7595(1)95(1)95(=-=--=<-=≥σΦσΦX P X P ,由此得977.0)20(=σΦ,于是220≈σ,10≈σ,从而近似有)10,75(~2N X .(1)0668.09332.01)5.1(1)5.1()107560()60(=-≈-=-=-=<ΦΦΦX P , 由此可知,本次考试的不及格率约为%68.6.(2))107565()107585()8565(---=≤≤ΦΦX P 6826.018413.021)1(2)1()1(=-⨯≈-=--=ΦΦΦ,由此可知,成绩在65分至85分之间的考生人数约占考生总数的%26.68.14、两台机床分别加工生产轴与轴衬.设随机变量X (单位:mm )表示轴的直径,随机变量Y (单位:mm )表示轴衬的内径,已知)3.0,50(~2N X ,)4.0,52(~2N Y ,显然X 与Y 是独立的.如果轴 衬的内径与轴的直径之差在3~1mm 之间,则轴与轴衬可以配套使用.求任取一轴与一轴衬可以配套使用的概率.[已知9772.0)2(≈Φ]【解】 设X Y Z -=,由X 与Y 的独立性及独立正态变量的线性组合的性质可知,)4.03.0,5052(~22+--=N X Y Z , 即)5.0,2(~2N Z .于是所求概率为)2()2()5.021()5.023()31(--=---=≤≤ΦΦΦΦZ P .9544.019772.021)2(2=-⨯≈-=Φ【第五章】 数理统计基本知识15、设总体)1,0(~N X ,521,,,X X X 是来自该总体的简单随机样本,求常数0>k 使)3(~)2(25242321t X X X X X k T +++=.【解】 由)1,0(~N X 知)5,0(~221N X X +,于是)1,0(~5221N X X +,又由2χ分布的定义知)3(~2252423χX X X ++,所以)3(~2533/)(5/)2(2524232125242321t X X X X X X X X X X T +++⋅=+++=,比较可得53=k .16、设总体)5 ,40(~2N X ,从该总体中抽取容量为64的样本,求概率)1|40(|<-X P . 【解】 由题设40=μ,5=σ,64=n ,于是)1,0(~8540N X nX u -=-=σμ从而)58|8/540(|)1|40(|<-=<-X P X P .8904.019452.021)6.1(2)58|(|=-⨯≈-=<=Φu P【第六章】参数估计17、设总体X 的概率密度为⎩⎨⎧≥=--,,0,2,);()2(其它x e x f x λλλ其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本,n x x x ,,,21 为样本观测值.(1)求参数λ的矩估计量.(2)求参数λ的最大似然估计量. 【解】(1)21)2(),()(02)2(2+=+===-+∞=---+∞+∞∞-⎰⎰⎰λλλλλλdt e t dx ex dx x xf X E t tx x ,令)(X E X =,即21+=λX ,解得参数λ的矩估计量为21-=∧X λ. (2)样本似然函数为∑====--=--=∏∏ni i i n x nni x n i i eex f L 1)2(1)2(1),()(λλλλλλ,上式两边取对数得∑--==ni i n X n L 1)2(ln )(ln λλλ,上式两边对λ求导并令导数为零得=λλd L d )(ln 0)2(1=∑--=n i i n x nλ, 解得2121-=∑-==x nx nni i λ,从而参数λ的最大似然估计量为 21-=∧X λ. 18、设总体X 的概率密度为⎪⎩⎪⎨⎧≤>=-,0,0;0,e 1);(2x x x xf x λλλ 其中参数0>λ.设n X X X ,,,21 是取自该总体的一组简单随机样本, n x x x ,,,21 为样本观测值. (1)求参数λ的最大似然估计量.(2)你得到的估计量是不是参数λ的无偏估计,请说明理由. 【解】(1)样本似然函数为,e1e1),()(1121211∏∏∏=-=-=∑⋅====n i x inni x i n i i ni iixx x f L λλλλλλ上式两边取对数得∑∑==-+-=ni i ni i x x n L 111ln ln 2)(ln λλλ, 求导数得∑=+-=ni i x n L d d 1212)(ln λλλλ, 令0)(ln =λλL d d解得2211x x n n i i==∑=λ,于是参数λ的极大似然估计量为 221ˆ1X X n n i i ==∑=λ. (2)dx x X E x λλ/202e 1)(-+∞⎰=dx x x λλ/20e )(-+∞⎰=dx t t t x -∞+=⎰=e 02λλλΓλ2)3(==, λλλ=⋅====221)(21)(21)2()ˆ(X E X E X E E , 于是221ˆ1X X n ni i ==∑=λ是λ的无偏估计.【第七章】假设检验19、矩形的宽与长之比为618.0(黄金分割)时将给人们视觉上的和谐美感. 某工艺品厂生产矩形裱画专用框架. 根据该厂制定的技术标准,一批合格产品的宽与长之比必须服从均值为618.00=μ的正态分布. 现从该厂某日生产的一批产品中随机抽取25个样品,测得其宽与长之比的平均值为,646.0=x 样本标准差为093.0=s . 试问在显著性水平05.0=α水平上能否认为这批产品是合格品?【解】由题意,待检验的假设为0H : 618.00==μμ; 1H : 618.0≠μ.因为σ未知,所以检验统计量为)24(~)618.0(525/618.0/0t S X S X n S X t -=-=-=μ, 关于0H 的拒绝域为 06.2)24()1(||025.02/==->t n t t α. 现在646.0=x ,093.0=s ,所以统计量t 的观测值为505.1093.0)618.0646.0(5=-=t . 因为)24(06.2505.1||025.0t t =<=,即t 的观测值不在拒绝域内,从而接受..原假设,即可以认为这批产品是合格品.20、已知某种口服药存在使服用者收缩压(高压)增高的副作用. 临床统计表明,在服用此药的人群中收缩压的增高值服从均值为220=μ(单位:mmHg ,毫米汞柱)的正态分布. 现在研制了一种新的替代药品,并对一批志愿者进行了临床试验. 现从该批志愿者中随机抽取16人测量收缩压增高值,计算得到样本均值)mmHg (5.19=x ,样本标准差)mmHg (2.5=s . 试问这组临床试验的样本数据能否支持“新的替代药品比原药品副作用小”这一结论 (取显著性水平05.0=α).【解】由题意,待检验的假设为0H : 220==μμ; 1H : 22<μ.因为σ未知,所以取统计量)15(~)22(4/0t S X nS X t -=-=μ, 且关于0H 的拒绝域为 753.1)15()1(05.0-=-=--<t n t t α. 现在5.19=x ,2.5=s ,所以统计量t 的观测值为923.12.5)225.19(4-≈-=t . 因为)15(753.1923.105.0t t -=-<-≈,即t 的观测值在拒绝域内,从而拒绝..原假设,即认为这次试验支持“新的替代药品比原药品副作用小”这一结论.。
概率论与数理统计第四章期末复习(一)随机变量的数学期望1.数学期望的定义定义1设离散随机变量X 的分布律为)()(i i i x X P x p p ===, ,2,1=i .若+∞<∑+∞=1i i i p x ,则称∑+∞==1)(i i i p x X E 为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.定义2设连续随机变量X 的密度函数为)(x f .若+∞<⎰∞+∞-x x f x d )(,则称xx xf X E d )()(⎰∞+∞-=为随机变量X 的数学期望,或称为该分布的数学期望,简称期望或均值.2.随机变量函数的数学期望定理1设随机变量Y 是随机变量X 的连续函数:)(X g Y =.设X 是离散型随机变量,其分布律为)(i i x X P p ==, ,2,1=i ,若∑+∞=1)(i i i p x g 绝对收敛,则有∑+∞===1)()]([)(i i i p x g X g E Y E .设X 是连续型随机变量,其概率密度为)(x f ,若⎰∞+∞-x x f x g d )()(绝对收敛,则有x x f x g X g E Y E d )()()]([)(⎰∞+∞-==.【例1】设随机变量X 的分布律为X 2-1-0123P1.02.025.02.015.01.0求随机变量X 的函数2X Y =的数学期望.【解】1.0315.022.0125.002.0)1(1.0)2()(222222⨯+⨯+⨯+⨯+⨯-+⨯-=Y E 3.2=.【例2】设随机变量X 具有概率密度⎪⎩⎪⎨⎧≤≤=,其他.;,001)(ππx x f X ,求X Y sin =的数学期望.【解】x x f x g X g E Y E d )()()]([)(⎰∞+∞-==πππ2d 1sin 0=⋅=⎰x x .【例3】某公司经销某种原料,根据历史资料表明:这种原料的市场需求量X (单位:吨)服从)500,300(上的均匀分布.每售出1吨该原料,公司可获利1.5(千元);若积压1吨,则公司损失0.5(千元).问公司应该组织多少货源,可使平均收益最大?【解】设该公司应该组织a 吨货源,则显然应该有500300≤≤a .又记Y 为在a 吨货源条件下的收益额(单位:千元),则收益额Y 为需求量X 的函数,即)(X g Y =.由题设条件知:当a X ≥时,此a 吨货源全部售出,共获利a 5.1.当a X <时,则售出X 吨(获利X 5.1),且还有X a -吨积压(获利)(5.0X a --),所以共获利a X X a X 5.02)(5.05.1-=--.由此知⎩⎨⎧<-≥=.,;,a X a X a X a X g 5.025.1)(则x x g x x f x g Y E X 2001)(d )()()(500300⎰⎰==∞+∞-]d 5.1d )5.02([2001500300x a x a x a a ⎰⎰+-=)300900(200122-+-=a a .易知,当450=a 时,能使)(Y E 达到最大,即公司应该组织450吨货源.定理2设随机变量Z 是随机变量X ,Y 的连续函数:),(Y X g Z =.设),(Y X 是二维离散型随机变量,其联合分布律为),(j i ij y Y x X P p ===,,2,1,=j i ,若∑∑+∞=+∞=11),(i j ij j i p y x g 收敛,则有∑∑+∞=+∞===11),()],([)(i j ij j i p y x g Y X g E Z E .设),(Y X 是二维连续型随机变量,其联合概率密度函数为),(y x f ,若y x y x f y x g d d ),(),(⎰⎰∞+∞-∞+∞-收敛,则有y x y x f y x g Y X g E Z E d d ),(),()],([)(⎰⎰∞+∞-∞+∞-==.【例4】设随机变量),(Y X 的联合概率密度为⎩⎨⎧<<<<--=其他.,,,,010102),(y x y x y x f 求)(X E ,)(XY E .【解】⎰⎰∞+∞-∞+∞-=y x y x f x X E d d ),()(125d d )2(1010=--=⎰⎰y x y x x ,⎰⎰∞+∞-∞+∞-=y x y x f xy XY E d d ),()(61d d )2(1010=--=⎰⎰y x y x xy .3.数学期望的性质性质1若a 是常数,则a a E =)(.性质2对任意常数a ,有)()(X aE aX E =.性质3对任意的两个函数)(1x g 和)(2x g ,有)]([)]([)]()([2121X g E X g E X g X g E +=+.性质4设),(Y X 是二维随机变量,则有)()()(Y E X E Y X E +=+.推广到n 维随机变量场合,即)()()()(2121n n X E X E X E X X X E +++=+++ .性质5若随机变量X 与Y 相互独立,则有)()()(Y E X E XY E =.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X E X E X E X X X E =.【例5】设随机变量X 与Y 相互独立,X ~)4,1(-N ,Y ~)2,1(N ,则=-)2(Y X E .【解析】因为X ~)4,1(-N ,Y ~)2,1(N ,所以1)(-=X E ,1)(=Y E ,故3)(2)()2(-=-=-Y E X E Y X E .(二)随机变量的方差1.方差的定义定义1设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为)(X D ,即})]({[)(2X E X E X D -=.称方差的平方根)(X D 为随机变量X 的标准差,记为)(X σ或X σ.定理1(方差的计算公式)【例1】设随机变量X 的概率密度为⎪⎩⎪⎨⎧<≤-<<-+=其他.,;,;,0101011)(x x x x x f ,求)(X D .【解】0d )1(d )1()(101=-++=⎰⎰-x x x x x x X E ,61d )1(d )1()(120122=-++=⎰⎰-x x x x x x X E ,所以61)]([)()(22=-=X E X E X D .2.方差的性质性质1常数的方差为0,即0)(=c D ,其中c 是常数.性质2若a ,b 是常数,则)()(2X D a b aX D =+.性质3若随机变量X 与Y 相互独立,则有)()()(Y D X D Y X D +=±.推广到n 维随机变量场合,即若1X ,2X ,…,n X 相互独立,则有)()()()(2121n n X D X D X D X X X D +++=±±± .【例2】已知2)(-=X E ,5)(2=X E ,求)31(X D -.【解】9})]([)({9)()3()31(222=-=-=-X E X E X D X D .(三)常见随机变量的数学期望、方差1.两点分布X ~),1(p b p X E =)(,)1()(p p X D -=.2.二项分布X ~),(p n b np X E =)(,)1()(p np X D -=.3.泊松分布X ~)(λP λ=)(X E ,λ=)(X D .4.均匀分布X ~),(b a U )(21)(b a X E +=,12)()(2a b X D -=.5.指数分布X ~)(λE λ1)(=X E ,21)(λ=X D .6.正态分布X ~),(2σμN μ=)(X E ,2)(σ=X D .【例1】设X ~),(p n b 且6)(=X E ,6.3)(=X D ,则下列结论正确的是()A .15=n ,4.0=pB .20=n ,3.0=pC .10=n ,6.0=p D .12=n ,5.0=p 【解析】6)(==np X E ,6.3)1()(=-=p np X D ,解之得15=n ,4.0=p .正确选项为A .【例2】若X ~)5,2(N ,Y ~)1,3(N ,且X 与Y 相互独立,则=)(XY E ()A .6B .2C .5D .15【解析】因为X ~)5,2(N ,所以2)(=X E ,因为Y ~)1,3(N ,3)(=Y E ,故6)()()(==Y E X E XY E ,正确选项为A .【例3】X 与Y 相互独立,X ~)2(P ,Y ~)1(E ,则=-)2(Y X D .【解析】因为X ~)2(P ,所以2)(=X D ,因为Y ~)1(E ,所以1)(=Y D ,又因为随机变量X 与Y 相互独立,所以9)()1()(2)2(22=-+=-Y D X D Y X D .(四)协方差、相关系数与矩1.协方差定义1设),(Y X 是一个二维随机变量,若)]}()][({[Y E Y X E X E --存在,则称其为X 与Y 的协方差,记为),(Cov Y X .即)]}()][({[),(Cov Y E Y X E X E Y X --=.定理1)()()(),(Cov Y E X E XY E Y X -=.【例1】设二维随机变量),(Y X 的联合分布律为:求协方差),(Cov Y X .【解】由题易得32)(=X E ,0)(=Y E ,0311131003111)(=⨯⨯+⨯⨯+⨯⨯-=XY E .于是0)()()(),(Cov =-=Y E X E XY E Y X .定理2若X 与Y 相互独立,则0),(Cov =Y X ,反之不然.定理3对任意二维随机变量),(Y X ,有),(Cov 2)()()(Y X Y D X D Y X D ±+=±.关于协方差的计算,还有下面四条有用的性质.性质1协方差),(Cov Y X 的计算与X ,Y 的次序无关,即),(Cov ),(Cov X Y Y X =.性质2任意随机变量X 与常数a 的协方差为零,即0),(Cov =a X .性质3对任意常数a ,b ,有),(Cov ),(Cov Y X ab bY X a =.性质4设X ,Y ,Z 是任意三个随机变量,则),(Cov ),(Cov ),(Cov Z Y Z X Z Y X +=+.2.相关系数定义2设),(Y X 是一个二维随机变量,且()0D X >,()0D Y >,则称Y X XY Y X Y D X D Y X σσρ),(Cov )()(),(Cov ==为X 与Y 的相关系数.性质11≤XY ρ.性质21=XY ρ的充要条件是X 与Y 间几乎处处有线性关系,即存在)0(≠a 与b ,使得1)(=+=b aX Y P .其中当1=XY ρ时,有0>a ;当1-=XY ρ时,有0<a .性质3设随机变量X 与Y 独立,则它们的相关系数等于零,即0=XY ρ.【例2】设1)()(==Y D X D ,21=XY ρ,则=+)(Y X D 3.【解析】因为21)()(),(Cov ==Y D X D Y X XY ρ,所以)()(21Y D X D XY =ρ21=,故),(Cov 2)()()(Y X Y D X D Y X D ++=+3=.【例3】已知1)(-=X E ,3)(=X D ,则=-)]2(3[2X E 6.【解析】)]2([3)]2(3[22-=-X E X E }2)]([)({32-+=X E X D 6=.【例5】设随机变量),(Y X 的概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤+=其他.,,,,02020)(81),(y x y x y x f 求),(Cov Y X ,)(Y X D +和XY ρ.【解】⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(67d d )(822=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f x X E d d ),()(2235d d )(820202=+=⎰⎰y x y x x ,⎰⎰+∞∞-+∞∞-=y x y x f xy XY E d d ),()(34d d )(82020=+=⎰⎰y x y x xy ,由轮换对称性,有67)(=Y E ,35)(=Y E ,361)()()(),(Cov -=-=Y E X E XY E Y X ,3611)]([)()()(22=-==X E X E X D Y D ,95),(Cov 2)()()(=++=+Y X Y D X D Y X D ,111)()(),Cov(-==Y D X D Y X XY ρ.。
知识点第一章 随机事件与概率本章重点:随机事件的概率计算. 1.**事件的关系及运算 (1) A B ⊂(或B A ⊃).(2) 和事件: A B ⋃; 12n A A A ⋃⋃⋃(简记为1nii A =).(3) 积事件: AB , 12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(4) 互不相容:若事件A 和B 不能同时发生,即AB φ= (5) 对立事件: A .(6) 差事件:若事件A 发生且事件B 不发生,记作A B -(或AB ) .(7) 德摩根(De Morgan )法则:对任意事件A 和B 有A B A B ⋃=⋂, A B A B ⋂=⋂.2. **古典概率的定义 古典概型:()A n A P A n ==Ω中所含样本点的个数中所含样本点的个数.几何概率()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·3.**概率的性质 (1) ()0P φ=.(2) (有限可加性) 设n 个事件1,2,,n A A A 两两互不相容,则有121()()nn i i P A A A P A =⋃⋃⋃=∑.(3)()1()P A P A =-.(4) 若事件A ,B 满足A B ⊂,则有()()()P B A P B P A -=-,()()P A P B ≤.(5) ()1P A ≤.(6) (加法公式) 对于任意两个事件A ,B ,有()()()()P A B P A P B P AB ⋃=+-.对于任意n 个事件1,2,,n A A A ,有111111()()()()(1)()nnn i i i j i j k ni i j ni j k ni P A P A P A A P A A A P AA -=≤<≤≤<<≤==-+-+-∑∑∑.4.**条件概率与乘法公式()(|)()P AB P A B P B =.乘法公式:()()(|)()(|)P AB P A P B A P B P A B ==.5.*随机事件的相互独立性事件A 与B 相互独立的充分必要条件一:()()()P AB P A P B =,事件A 与B 相互独立的充分必要条件二:(|)()P A B P A =.对于任意n 个事件1,2,,n A A A 相互独立性定义如下:对任意一个2,,k n =,任意的11k i i n ≤<<≤,若事件1,2,,n A A A 总满足 11()()()k k i i i i P A A P A P A =,则称事件1,2,,n A A A 相互独立.这里实际上包含了21n n --个等式.6.*贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.**全概率公式与贝叶斯公式 贝叶斯公式:如果事件1,2,,n A A A 两两互不相容,且1ni i A ==Ω,()0i P A >,1,2,,i n =,则1()(|)(|),1,2,,()(|)k k k niii P A P B A P A B k nP A P B A ===∑.第二章 一维随机变量及其分布本章重点:离散型和连续性随机变量的分布及其概率计算.概率论主要研究随机变量的统计规律,也称这个统计规律为随机变量的分布. 1.**离散型随机变量及其分布律(),1,2,,,.i i p P X a i n ===分布律也可用下列表格形式表示:2.*概率函数的性质 (1) 0i p ≥, 1,2,,,;i n =(2)11ii p∞==∑.3.*常用离散型随机变量的分布(1) 0—1分布(1,)B p ,它的概率函数为1()(1)i i P X i p p -==-,其中,0i =或1,01p <<.(2) 二项分布(,)B n p ,它的概率函数为()(1)i n in P X i p p i -⎛⎫==- ⎪⎝⎭,其中,0,1,2,,i n =,01p <<.(4)** 泊松分布()P λ,它的概率函数为()!iP X i e i λλ-==,其中,0,1,2,,,i n =,0λ>..4.*二维离散型随机变量及联合概率二维离散型随机变量(,)X Y 的分布可用下列联合概率函数来表示:(,),,1,2,,i j ij P X a Y b p i j ====其中,0,,1,2,,1ij ijijp i j p≥==∑∑.5.*二维离散型随机变量的边缘概率 设(,)X Y 为二维离散型随机变量,ij p 为其联合概率(,1,2,i j =),称概率()(1,2,)i P X a i ==为随机变量X 的边缘分布律,记为i p 并有.(),1,2,i i ij jp P X a p i ====∑,称概率()(1,2,)j P Y b j ==为随机变量Y 的边缘分布率,记为.j p ,并有.j p =(),1,2,j ij iP Y b p j ===∑.6.随机变量的相互独立性 .设(,)X Y 为二维离散型随机变量,X 与Y 相互独立的充分必要条件为,,1,2,.ij i j p p p i j ==对一切多维随机变量的相互独立性可类似定义.即多维离散型随机变量的独立性有与二维相应的结论.7.*随机变量函数的分布设X 是一个随机变量,()g x 是一个已知函数,()Y g X =是随机变量X 的函数,它也是一个随机变量.对离散型随机变量X ,下面来求这个新的随机变量Y 的分布.设离散型随机变量X 的概率函数为则随机变量函数Y g =的概率函数可由下表求得但要注意,若()i g a 的值中有相等的,则应把那些相等的值分别合并,同时把对应的概率i p 相加.第三章 连续型随机变量及其分布本章重点:一维及二维随机变量的分布及其概率计算,边缘分布和独立性计算. 1.*分布函数随机变量的分布可以用其分布函数来表示,.2.分布函数()F x 的性质 (1) 0()1;F x ≤≤(2) ()0,()1lim lim x x F x F x →-∞→+∞==;由已知随机变量X 的分布函数()F x ,可算得X 落在任意区间(,]a b 内的概率 .3.联合分布函数二维随机变量(,)X Y 的联合分布函数. 4.联合分布函数的性质 (1) 0(,)1F x y ≤≤;(2)(,)0,(,)0lim lim x y F x y F x y →-∞→-∞==,(,)0,(,)1lim lim x x y y F x y F x y →-∞→+∞→-∞→+∞==;(3) 121222211211(,)(,)(,)(,)(,)P x X x y Y y F x y F x y F x y F x y <≤<≤=--+. 5.**连续型随机变量及其概率密度设随机变量X 的分布函数为()F x ,如果存在一个非负函数()f x ,使得对于任一实数x ,有()()F x P X x =<()()()P a X b F b F a ≤<=-(,)(,)F x y P X x Y x =<<()()xF x f x dx-∞=⎰成立,则称X 为连续型随机变量,函数()f x 称为连续型随机变量X 的概率密度. 6.**概率密度()f x 及连续型随机变量的性质 (1)()0;f x ≥ (2)()1f x dx +∞-∞=⎰;(3)()()F x f x '=;(4)设X 为连续型随机变量,则对任意一个实数c ,()0P X c ==; (5) 设()f x 是连续型随机变量X 的概率密度,则有()()()()P a X b P a X b P a X b P a X b <<=≤<=≤≤=<≤=()baf x dx⎰.7.**常用的连续型随机变量的分布 (1) 均匀分布(,)R a b ,它的概率密度为1,;()0,a xb f x b a⎧<<⎪=-⎨⎪⎩其余. 其中,)a b -∞<<<+∞.(2) 指数分布()E λ,它的概率密度为,0;()0,x e x f x λλ-⎧>=⎨⎩其余. 其中,0λ>.(3) 正态分布2(,)N μσ,它的概率密度为22()2(),x f x x μσ--=-∞<<+∞,其中,,0μσ-∞<<+∞>,当0,1μσ==时,称(0,1)N 为标准正态分布,它的概率密度为22(),x f x x -=-∞<<+∞,标准正态分布的分布函数记作()x Φ,即22()t xx dt -Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ;()()()b a P a X b μμσσ--<≤=Φ-Φ.8.**二维连续型随机变量及联合概率密度对于二维随机变量(X ,Y)的分布函数(,)F x y ,如果存在一个二元非负函数(,)f x y ,使得对于任意一对实数(,)x y 有(,)(,)xyF x y f s t dtds-∞-∞=⎰⎰成立,则(,)X Y 为二维连续型随机变量,(,)f x y 为二维连续型随机变量的联合概率密度. 9.**二维连续型随机变量及联合概率密度的性质 (1) (,)0,,f x y x y ≥-∞<<+∞; (2)(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;’(3) 在(,)f x y 的连续点处有2(,)(,)F x y f x y x y ∂=∂∂;(4) 设(,)X Y 为二维连续型随机变量,则对平面上任一区域D 有((,))(,)DP X Y D f x y dxdy∈=⎰⎰.10,**二维连续型随机变量(,)X Y 的边缘概率密度设(,)f x y 为二维连续型随机变量的联合概率密度,则X 的边缘概率密度为()(,)X f x f x y dy+∞-∞=⎰;Y 的边缘概率密度为()(,)Y f y f x y dx+∞-∞=⎰.11.常用的二维连续型随机变量 (1) 均匀分布如果(,)X Y 在二维平面上某个区域G 上服从均匀分布,则它的联合概率密度为1,(,)x y f x y G ⎧∈⎪=⎨⎪⎩,()G;的面积0,其余. (2) 二维正态分布221212(,,,,)N μμσσρ 如果(,)X Y 的联合概率密度2211212221121()()()()1(,)22(1)x x y x f x y μμμμρρσσσσ⎧⎫⎡⎤----⎪⎪=--+⎨⎬⎢⎥-⎪⎪⎣⎦⎩⎭则称(,)X Y 服从二维正态分布,并记为221212(,)~(,,,,)X Y N μμσσρ.如果221212(,)~(,,,,)X Y N μμσσρ,则211~(,)X N μσ,222~(,)Y N μσ,即二维正态分布的边缘分布还是正态分布. 12.**随机变量的相互独立性 .(,)()(),,X Y F x y F x F y x y =-∞<<+∞对一切,那么,称随机变量X 与Y 相互独立.设(,)X Y 为二维连续型随机变量,则X 与Y 相互独立的充分必要条件为(,)()(),X Y f x y f x f y =在一切连续点上.如果221212(,)~(,,,,)X Y N μμσσρ.那么,X 与Y 相互独立的充分必要条件是0ρ=.第四章 随机变量的数字特征本章重点:随机变量的期望。
第一章1.设P (A )=31,P (A ∪B )=21,且A 与B 互不相容,则P (B )=____61_______.2. 设P (A )=31,P (A ∪B )=21,且A 与B 相互独立,则P (B )=______41_____.3.设事件A 与B 互不相容,P (A )=0.2,P (B )=0.3,则P (B A ⋃)=___0.5_____. 4.已知P (A )=1/2,P (B )=1/3,且A ,B 相互独立,则P (A B )=________1/3________. A 与B 相互独立5.设P (A )=0.5,P (A B )=0.4,则P (B|A )=___0.2________.6.设A ,B 为随机事件,且P(A)=0.8,P(B)=0.4,P(B|A)=0.25,则P(A|B)=____ 0.5______.7.一口袋装有3只红球,2只黑球,今从中任意取出2只球,则这两只恰为一红一黑的概率是________ 0.6________.8.设袋中装有6只红球、4只白球,每次从袋中取一球观其颜色后放回,并再放入1只同颜色的球,若连取两次,则第一次取得红球且第二次取得白球的概率等于____12/55____.9.一袋中有7个红球和3个白球,从袋中有放回地取两次球,每次取一个,则第一次取得红球且第二次取得白球的概率p=___0.21_____.10.设工厂甲、乙、丙三个车间生产同一种产品,产量依次占全厂产量的45%,35%,20%,且各车间的次品率分别为4%,2%,5%.求:(1)从该厂生产的产品中任取1件,它是次品的概率; 3.5% (2)该件次品是由甲车间生产的概率.3518第二章1.设随机变量X~N (2,22),则P {X ≤0}=___0.1587____.(附:Φ(1)=0.8413) 设随机变量X~N (2,22),则P{X ≤0}=(P{(X-2)/2≤-1} =Φ(-1)=1-Φ(1)=0.15872.设连续型随机变量X 的分布函数为⎩⎨⎧≤>-=-,0,0;0,1)(3x x e x F x则当x >0时,X 的概率密度f (x )=___ xe33-_____.3.设随机变量X 的分布函数为F (x )=⎩⎨⎧≤>--,0,0;0,2x x e a x 则常数a =____1____.4.设随机变量X~N (1,4),已知标准正态分布函数值Φ(1)=0.8413,为使P{X<a}<0.8413,则常数a<___3_________.5.抛一枚均匀硬币5次,记正面向上的次数为X ,则P{X ≥1}=_____3231_______. 6.X 表示4次独立重复射击命中目标的次数,每次命中目标的概率为0.5,则X~ _B(4, 0.5)____7.设随机变量X 服从区间[0,5]8.设随机变量X 的分布律为 =X 2,记随机变量Y 的分布函数为F Y (y 9.设随机变量X 的分布律为P {X =k }=a/N , k =1,2,…,N ,试确定常数a . 110.已知随机变量X 的密度函数为f (x )=A e ?|x |, ?∞<x <+∞,求:(1)A 值;(2)P {0<X <1}; (3) F (x ).21 21(1-e ??) ⎪⎩⎪⎨⎧≤>-=-0210211)(x e x e x F x x11.设随机变量X 分布函数为F (x )=e ,0,(0),00.xt A B x ,x λ-⎧+≥>⎨<⎩(1) 求常数A ,B ;(2) 求P {X ≤2},P {X >3}; (3) 求分布密度f (x ). A=1 B=-1 P {X ≤2}=λ21--e P {X >3}=λ3-e⎩⎨⎧≤>=-0)(x x e x f xλλ 12.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧<≤-<≤.,0,21,2,10,其他x x x x 求X 的分布函数F (x ).求(1)X 的分布函数,(2)Y =X 的分布律.14.设随机变量X ~U (0,1),试求: (1) Y =e X 的分布函数及密度函数; (2) Z =?2ln X 的分布函数及密度函数.第三章1.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>=+-,,0;0,0,),()(其他y x ey x f y x (1)求边缘概率密度f X (x)和f Y (y ),(2)问X 与Y 是否相互独立,并说明理由.因为 )()(),(y f x f y x f Y X = ,所以X 与Y 相互独立2.设二维随机变量221212(,)~(,, ,,)X Y N μμσσρ,且X 与Y 相互独立,则ρ=____0______. 3.设X~N (-1,4),Y~N (1,9)且X 与Y 相互独立,则2X-Y~___ N (-3,25)____. 4.,5.设随机变量(X,Y)服从区域D 上的均匀分布,其中区域D 是直线y=x ,x=1和x 轴所围成的三角形区域,则(X,Y)的概率密度101()2y x f x y others⎧≤<≤⎪=⎨⎪⎩,.62)随机变量Z=XY 的分布律.7求:(1)a 的值;(2)(X ,Y )分别关于X 和Y 的边缘分布列;(3)X 与Y 是否独立?为什么?(4)X+Y 的分布列. a=0.3因为{0,1}{0}{1}P X Y P X P Y ==≠==,所以X 与Y 不相互独立。