数控机床加工程序的编制
- 格式:doc
- 大小:727.00 KB
- 文档页数:44
编程训练一、简单编程题目例如 如图所示的外圆切槽加工,其加工程序如下:例如:如图所示,圆柱螺纹加工,螺纹的螺距为 1.5mm ,车削螺纹前工件直径φ42mm ,第一次进给背吃刀量0.3mm ,第二次进给背吃刀量0.2mm ,第三次进给背吃刀量0.10mm ,第四次进给背吃刀量0.08mm ,采用绝对值编程。
基点坐标 :A(26,0) B(28,-1) C(28,-20) D(32,-20) E(42,-35) F(42,-50) G(45,-50)根据加工要求选用刀具:2号为外圆左偏精车刀。
切削用量表二、在GSK980-TD 数控车床上,加工如图所示零件,试编制精车加工程序。
U /2X三、在 FANUC O-TD数控车床上加工如图所示零件,试编制其加工程序。
已知条件:毛坯为φ60×95的棒料,材料为45钢。
从右端至左端轴向走刀切削;粗加工每次进给深度2.0mm,进给量为0.25mm/r;精加工余量X向0.4mm,Z向0.1mm;切槽刀刃宽4mm。
加工路线为:(1)粗车外圆。
从右至左切削外轮廓,采用粗车循环。
(2) 精车外圆。
右端倒角→φ20mm外圆→倒角→φ30mm外圆→倒角→φ40mm外圆。
(3)切断。
根据加工要求选用3把刀具:1号为外圆左偏粗车刀,2号为外圆左偏精车刀,3号为外圆切断刀。
答:设工件右端面为编程坐标原点。
(毛坯为锻件,余该零件的加工程序如下:程序说明答:该零件的加工程序如下:程序说明O0002;程序号G50 X100. Z50.;M03 S1000;T0100;N1;工序(一)外圆粗切削G00 G99 X44.0 Z1.0;G71 U2. R1.;外圆粗车循环点G71 P10 Q11 U1. W0.1 F0.15;X向精加工余量为0.5mm,Z向精加工余量0.1mm N10 G0 X0;工件轮廓程序起始序号(N10),刀具以G0速度至X0 G01 Z0 F0.1 ;进刀至Z0X20.0 K-1.0;切削端面,倒角1×45ºZ-20.0;切削φ20外圆,长20mmX30.0 K-1.0;切削端面,倒角1×45ºZ-50.0;切削φ30外圆,长50mmX40 K-1.0;切削端面,倒角1×45ºZ-84.0;切削φ40外圆,长84mmN11 G01 X43.0;工件轮廓程序结束序号(N11)G00 X100. Z50. T0100;X轴、Z轴回换刀点T0202;M03 S500;N2;工序(二)外圆精车G00 X44.0 Z1.0;外圆精车循环点G70 P10 Q11;精车外圆指令,执行N10至N11程序段G00 X100. Z50. T0200;刀具回换刀点T0303;M03 S300;N3;工序(三)切断G0 X42.0 Z-84.0;切断刀循环点G01 X-1.;切断G04 X2;G01 X45. F0.1;G00 X100. Z50. T0300;X轴、Z轴回换刀点M30;程序结束四、在FANUC O-TD数控车床上加工如图所示零件,试编制其加工程序。
前言现代科学技术的发展极大地推动了不同学科的交叉与渗透,引起了工程领域的技术改造与革命。
在机械工程领域,由于微电子技术和计算机技术的迅速发展及其向机械工业的渗透所形成的机电一体化,使机械工业的技术结构、产品机构、功能与构成、生产方式及管理体系发生了巨大变化,使工业生产由“机械电气化”迈入了“机电一体化”为特征的发展阶段。
机电一体化主要体现在数控技术及应用上,在这次实训中,感触最深的是了解了数控机床在机械制造业中的重要性,它是电子信息技术和传统机械加工技术结合的产物,它集现代精密机械、计算机、通信、液压气动、光电等多学科技术为一体,具有高效率、高精度、高自动和。
摘要数控技术是机械加工自动化的基础,是数控机床的核心技术,其水平高低关系到国家战略地位和体现国家综合国力的水平,近年来,PLC在工业自动控制领域应用愈来愈广,它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其它工控产品难以比拟的。
随着PLC技术的发展, 它在位置控制、过程控制、数据处理等方面的应用也越来越多。
在机床的实际设计和生产过程中,为了提高数控机床加工的精度,对其定位控制装置的选择就显得尤为重要。
FBs系列PLC的NC定位功能较其它PLC更精准,且程序的设计和调试相当方便。
本文提出的是如何应用PLC的NC定位控制实现机床数控系统控制功能的方法来满足控制要求,在实际运行中是切实可行的。
整机控制系统具有程序设计思路清晰、硬件电路简单实用、可靠性高、抗干扰能力强,具有良好的性能价格比等显著优点,其软硬件的设计思路可供工矿企业的相关数控机床设计改造借鉴。
目录第一章:概述1.1、数控机床的发展趋势 (1)1.2、数控机床的发展历史 (2)第二章:数控加工的特点与刀具2.1、数控机床的特点 (3)2.1.1、数控车床的5大特点 (4)2.2、数控机床的常用种类 (4)2.3、数控机床的刀具选择与应用 (5)第三章:数控机床的程序编写3.1、数控机床的编程 (6)3.1.1、数控机床的自动编程内容与步骤 (6)3.1.2、数控机床编程的基本概览 (9)3.2、数控机床常用术语 (9)第四章:数控车床程序编程 (11)第一章概述1.1、数控机传递个发展趋势数控机床数字控制机床是用数字代码形式的信息(程序指令),控制刀具按给定的工作程序、运动速度和轨迹进行自动加工的机床,简称数控机床。
第2章 数控加工的程序编制1.概述2.1.1 数控编程的基本概念在数控机床上加工零件时,一般首先需要编写零件加工程序,即用数字形式的指令代码来描述被加工零件的工艺过程、零件尺寸和工艺参数(如主轴转速、进给速度等),然后将零件加工程序输入数控装置,经过计算机的处理与计算,发出各种控制指令,控制机床的运动与辅助动作,自动完成零件的加工。
当变更加工对象时,只需重新编写零件加工程序,而机床本身则不需要进行调整就能把零件加工出来。
这种根据被加工零件的图纸及其技术要求、工艺要求等切削加工的必要信息,按数控系统所规定的指令和格式编制的数控加工指令序列,就是数控加工程序,或称零件程序。
要在数控机床上进行加工,数控加工程序是必须的。
制备数控加工程序的过程称为数控加工程序编制,简称数控编程(NC programming),它是数控加工中的一项极为重要的工作。
2.1.2 数控编程方法简介数控编程方法可以分为两类,一类是手工编程;另一类是自动编程。
手工编程1.手工编程是指编制零件数控加工程序的各个步骤,即从零件图纸分析、工艺决策、确定加工路线和工艺参数、计算刀位轨迹坐标数据、编写零件的数控加工程序单直至程序的检验,均由人工来完成。
对于点位加工或几何形状不太复杂的平面零件,数控编程计算较简单,程序段不多,手工编程即可实现。
但对轮廓形状由复杂曲线组成的平面零件,特别是空间复杂曲面零件,数值计算则相当繁琐,工作量大,容易出错,且很难校对。
据资料统计,对于复杂零件,特别是曲面零件加工,用手工编程时,一个零件的编程时间与在机床上实际加工时间之比,平均约为30:1。
数控机床不能开动的原因中,有20~30%是由于加工程序不能及时编制出来而造成的。
因此,为了缩短生产周期,提高数控机床的利用率,有效地解决各种模具及复杂零件的加工问题,采用手工编程已不能满足要求,而必须采用自动编程方法。
2. 自动编程进行复杂零件加工时,刀位轨迹的计算工作量非常大,有些时候,甚至是不现实的。
2013 届毕业设计 系 别:信息与工程系专业名称: 数 控 技 术 姓 名:学 号: 20100204012 班 级: 10 数 控 技 术 指导教师:2012 年 12 月 20 日MinBei Vocational And Technical College数控车轴类零件工艺设计及程序编制摘要随着数控技术的不断发展和应用领域的扩大,数控加工技术对国计民生的一些重要行业的发展起着越来越重要的作用,因为效率、质量是先进制造技术的主体。
高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
而对于数控加工,无论是手工编程还是自动编程,在编程前都要对所加工的零件进行工艺分析,拟定加工方案,选择合适的刀具,确定切削用量,对一些工艺问题(如对刀点、加工路线等)也需做一些处理。
并在加工过程掌握控制精度的方法,才能加工出合格的产品。
本文根据数控机床的特点,针对具体的零件,进行了工艺方案的分析,工装方案的确定,刀具和切削用量的选择,确定加工顺序和加工路线,数控加工程序编制。
通过整个工艺的过程的制定,充分体现了数控设备在保证加工精度,加工效率,简化工序等方面的优势。
关键词:轴类零件,工艺分析,数控编程,数控加工目录一引言 (1)二轴类零件加工工艺分析 (2)(一)典型轴类零件的加工工艺 (2)(二)数控车床的概述 (3)(三)分析加工对象 (6)(四)夹具和刀具的选择 (7)三零件工艺过程卡设计 (8)(一)数控加工步骤、工艺特点及内容 (8)(二)加工工序的划分 (9)(三)编制工艺过程卡 (10)(四)切削用量的确定 (10)(五)编制加工工序卡 (11)四数控车削编程及仿真 (12)(一)刀具加工进给路线的确定 (12)(二)本零件加工所用刀具 (13)(三)编程基础 (14)(四)斯沃数控仿真 (21)结束语 (31)参考文献 (32)致谢 (33)附录 (34)数控车轴类零件工艺设计及程序编制李汪洋一、引言为了在激烈的巿场竞争中立于不败之地,各工业发达国家均投入了大量的资金,对现代制造技术进行研究开发,并提出了各式各样全新的制造模式。
数控机床加工程序的结构与格式)程序的结构组成:1、程序号:以O开头,或P 或%开头2、程序内容:核心3、程序结束:M02M30结束(二)程序段格式:1、程序段组成程序2、程序段由数据字组成3、每个字是控制系统的具体指令,表示英语字母,特殊文字1、字-地址程序段格式:A:组成:词句号字,数据字,程序段结束B:优点:程序简短,直观以及容易校验,修改X Y Z F S T M LFN20 G01 X25 Y25 Z10 F100 S M03说明:1、语句号字:用以识别程序段的编号,用N及数字来表示2、准备功能字:使数控机床做某种操作的指令,用G及两位数字表示3、尺寸字:由地址码,+,_号及绝对值的数值构成尺寸字的+可省略地址码中的英文字母的含义地址码意义O ,P程序号,子程序号N程序段号X Y Z XYZ方向的主运动V W平行于XYZ的第二坐标系P Q R平行于XYZ的第三坐标系A B C绕XYZ坐标的转动I J K圆孤圆心坐标D H 补偿号指定4、进给功能字表示刀具中心运动时的进给速度由地址码F及后面若干位数字组成例:F××后面两位数既可是代码,以可以是进给值的数值5、主轴转速功能字由地址码S及后面的若二位数字组成表示主轴的转速6、刀具功能字由地址码T及若干位数字组成,数字表示刀号,位数由系统来决定7、辅助功能字表示一些机床辅助动作的指令用地址码以及后面两位数字组成M00-M99共计100种8、程序段结束EIA标准时,CR为结束符ISO标准时,NL,LF,;或*表示。
第二章数控机床加工程序的编制第一节数控编程基础一、数控编程的概念我们都知道,在普通机床上加工零件时,一般是由工艺人员按照设计图样事先制订好零件的加工工艺规程。
在工艺规程中给出零件的加工路线、切削参数、机床的规格及刀具、卡具、量具等内容。
操作人员按工艺规程的各个步骤手工操作机床,加工出图样给定的零件。
也就是说零件的加工过程是由工人手工操作的。
数控机床却不一样,它是按照事先编制好的加工程序,自动地对被加工零件进行加工。
我们把零件的加工工艺路线、工艺参数、刀具的运动轨迹、位移量、切削参数(主轴转数、进给量、吃刀量等)以及辅助功能(换刀、主轴正转、反转、切削液开、关等),按照数控机床规定的指令代码及程序格式编写成加工程序单,再把这一程序单中的内容记录在控制介质上(如穿孔纸带、磁带、磁盘、磁泡存储器),然后输入到数控机床的数控装置中,从而指挥机床加工零件。
这种从零件图的分析到制成控制介质的全部过程叫数控程序的编制。
从以上分析可以看出,数控机床与普通机床加工零件的区别在于数控机床是按照程序自动进行零件加工,而普通机床要由人来操作,我们只要改变控制机床动作的程序就可以达到加工不同零件的目的。
因此,数控机床特别适用于加工小批量且形状复杂精度要求高的零件。
由于数控机床要按照预先编制好的程序自动加工零件,因此,程序编制的好坏直接影响数控机床的正确使用和数控加工特点的发挥。
这就要求编程员具有比较高的素质。
编程员应通晓机械加工工艺以及机床、刀夹具、数控系统的性能,熟悉工厂的生产特点和生产习惯。
在工作中,编程员不但要责任心强、细心,而且还能和操作人员配合默契,不断吸取别人的编程经验、积累编程经验和编程技巧,并逐步实现编程自动化,以提高编程效率。
二、数控编程的内容和步骤(一)数控编程的内容数控编程的主要内容包括:分析零件图样,确定加工工艺过程;确定走刀轨迹,计算刀位数据;编写零件加工程序;制作控制介质;校对程序及首件试加工。
(二)数控编程的步骤数控编程的步骤一般如图2-1所示。
图2-1 数控编程过程1、分析零件图样和工艺处理这一步骤的内容包括:对零件图样进行分析以明确加工的内容及要求,选择加工方案、确定加工顺序、走刀路线、选择合适的数控机床、设计夹具、选择刀具、确定合理的切削用量等。
工艺处理涉及的问题很多,编程人员需要注意以下几点:(1)工艺方案及工艺路线应考虑数控机床使用的合理性及经济性,充分发挥数控机床的功能;尽量缩短加工路线,减少空行程时间和换刀次数,以提高生产率;尽量使数值计算方便,程序段少,以减少编程工作量;合理选取起刀点、切入点和切入方式,保证切入过程平稳,没有冲击;在连续铣削平面内外轮廓时,应安排好刀具的切入、切出路线。
尽量沿轮廓曲线的延长线切入、切出,以免交接处出现刀痕,如图2-2所示。
a) b)图2-2 刀具的切入切出路线(a)铣曲线轮廓板(b)铣直线轮廓(2)零件安装与夹具选择尽量选择通用、组合夹具,一次安装中把零件的所有加工面都加工出来,零件的定位基准与设计基准重合,以减少定位误差;应特别注意要迅速完成工件的定位和夹紧过程,以减少辅助时间,必要时可以考虑采用专用夹具。
(3)编程原点和编程坐标系编程坐标系是指在数控编程时,在工件上确定的基准坐标系,其原点也是数控加工的对刀点。
要求所选择的编程原点及编程坐标系应使程序编制简单;编程原点应尽量选择在零件的工艺基准或设计基准上,并在加工过程中便于检查的位置;引起的加工误差要小。
(4)刀具和切削用量应根据工件材料的性能,机床的加工能力,加工工序的类型,切削用量以及其他与加工有关的因素来选择刀具。
对刀具总的要求是:安装调整方便,刚性好,精度高,使用寿命长等。
切削用量包括:主轴转速、进给速度、切削深度等。
切削深度由机床、刀具、工件的刚度确定,在刚度允许的条件下,粗加工取较大切削深度,以减少走刀次数,提高生产率;精加工取较小切削深度,以获得表面质量。
主轴转速由机床允许的切削速度及工件直径选取。
进给速度则按零件加工精度、表面粗糙度要求选取,粗加工取较大值,精加工取较小值。
最大进给速度受机床刚度及进给系统性能限制。
2、数学处理在完成工艺处理的工作以后,下一步需根据零件的几何形状、尺寸、走刀路线及设定的坐标系,计算粗、精加工各运动轨迹,得到刀位数据。
一般的数控系统均具有直线插补与圆弧插补功能。
对于点定位的数控机床(如数控冲床)一般不需要计算;对于加工由圆弧与直线组成的较简单的零件轮廓加工,需要计算出零件轮廓线上各几何元素的起点、终点、圆弧的圆心坐标、两几何元素的交点或切点的坐标值;当零件图样所标尺寸的坐标系与所编程序的坐标系不一致时,需要进行相应的换算;若数控机床无刀补功能,则应计算刀心轨迹;对于形状比较复杂的非圆曲线(如渐开线、双曲线等)的加工,需要用小直线段或圆弧段逼近,按精度要求计算出其节点坐标值;自由曲线、曲面及组合曲面的数学处理更为复杂,需利用计算机进行辅助设计。
3、编写零件加工程序单在加工顺序、工艺参数以及刀位数据确定后,就可按数控系统的指令代码和程序段格式,逐段编写零件加工程序单。
编程人员应对数控机床的性能、指令功能、代码书写格式等非常熟悉,才能编写出正确的零件加工程序。
对于形状复杂(如空间自由曲线、曲面)、工序很长、计算烦琐的零件采用计算机辅助数控编程。
4、输入数控系统程序编写好之后,可通过键盘直接将程序输入数控系统,比较老一些的数控机床需要制作控制介质(穿孔带),再将控制介质上的程序输入数控系统。
5、程序检验和首件试加工程序送入数控机床后,还需经过试运行和试加工两步检验后,才能进行正式加工。
通过试运行,检验程序语法是否有错,加工轨迹是否正确;通过试加工可以检验其加工工艺及有关切削参数指定得是否合理,加工精度能否满足零件图样要求,加工工效如何,以便进一步改进。
试运行方法对带有刀具轨迹动态模拟显示功能的数控机床,可进行数控模拟加工,检查刀具轨迹是否正确,如果程序存在语法或计算错误,运行中会自动显示编程出错报警,根据报警号内容,编程员可对相应出错程序段进行检查、修改。
对无此功能的数控机床可进行空运转检验。
试加工一般采用逐段运行加工的方法进行,即每揿一次自动循环键,系统只执行一段程序,执行完一段停一下,通过一段一段的运行来检查机床的每次动作。
不过,这里要提醒注意的是,当执行某些程序段,比如螺纹切削时,如果每一段螺纹切削程序中本身不带退刀功能时,螺纹刀尖在该段程序结束时会停在工件中,因此,应避免由此损坏刀具等。
对于较复杂的零件,也先可采用石蜡、塑料或铝等易切削材料进行试切。
三、数控编程的方法数控编程一般分为手工编程和自动编程。
1.手工编程(Manual Programming)从零件图样分析、工艺处理、数值计算、编写程序单、程序输入至程序校验等各步骤均由人工完成,称为手工编程。
对于加工形状简单的零件,计算比较简单,程序不多,采用手工编程较容易完成,而且经济、及时,因此在点定位加工及由直线与圆弧组成的轮廓加工中,手工编程仍广泛应用。
但对于形状复杂的零件,特别是具有非圆曲线、列表曲线及曲面的零件,用手工编程就有一定的困难,出错的机率增大,有的甚至无法编出程序,必须采用自动编程的方法编制程序。
2. 自动编程(Automatic Programming )自动编程是利用计算机专用软件编制数控加工程序的过程。
它包括数控语言编程和图形交互式编程。
数控语言编程,编程人员只需根据图样的要求,使用数控语言编写出零件加工源程序,送入计算机,由计算机自动地进行编译、数值计算、后置处理,编写出零件加工程序单,直至自动穿出数控加工纸带,或将加工程序通过直接通信的方式送入数控机床,指挥机床工作。
数控语言编程为解决多坐标数控机床加工曲面、曲线提供了有效方法。
但这种编程方法直观性差,编程过程比较复杂不易掌握,并且不便于进行阶段性检查。
随着计算机技术的发展,计算机图形处理功能已有了极大的增强,“图形交互式自动编程”也应运而生。
图形交互式自动编程是利用计算机辅助设计(CAD )软件的图形编程功能,将零件的几何图形绘制到计算机上,形成零件的图形文件,或者直接调用由CAD 系统完成的产品设计文件中的零件图形文件,然后再直接调用计算机内相应的数控编程模块,进行刀具轨迹处理,由计算机自动对零件加工轨迹的每一个节点进行运算和数学处理,从而生成刀位文件。
之后,再经相应的后置处理(postprocessing ),自动生成数控加工程序,并同时在计算机上动态地显示其刀具的加工轨迹图形。
图形交互式自动编程极大地提高了数控编程效率,它使从设计到编程的信息流成为连续,可实现CAD/CAM 集成,为实现计算机辅助设计(CAD )和计算机辅助制造(CAM )一体化建立了必要的桥梁作用。
因此,它也习惯地被称为CAD/CAM 自动编程。
其详细内容见第四节。
四、程序的结构与格式每种数控系统,根据系统本身的特点及编程的需要,都有一定的程序格式。
对于不同的机床,其程序格式也不尽相同。
因此,编程人员必须严格按照机床说明书的规定格式进行编程。
1.程序结构一个完整的程序由程序号、程序的内容和程序结束三部分组成。
例如:O0001 程序号N10 G92 X40 Y30;N20 G90 G00 X28 T01 S800 M03;N30 G01 X-8 Y8 F200;N40 X0 Y0; N50 X28 Y30;N60 G00 X40;N70 M02; 程序结束(1) 程序号。
在程序的开头要有程序号,以便进行程序检索。
程序号就是给零件加工程序一个编号,并说明该零件加工程序开始。
如FUNUC数控系统中,一般采用英文字母O及其后4位十进制数表示(“O××××”),4位数中若前面为0,则可以省略,如“O0101”等效于“O101”。
而其他系统有时也采用符号“%”或“P”及其后4位十进制数表示程序号。
(2)程序内容。
程序内容部分是整个程序的核心,它有许多程序段组成,每个程序段由一个或多个指令构成,它表示数控机床要完成的全部动作。
(3)程序结束。
程序结束是以程序结束指令M02、M30或M99(子程序结束),作为程序结束的符号,用来结束零件加工。
2.程序段格式零件的加工程序是由许多程序段组成的,每个程序段由程序段号、若干个数据字和程序段结束字符组成,每个数据字是控制系统的具体指令,它是由地址符、特殊文字和数字集合而成,它代表机床的一个位置或一个动作。
程序段格式是指一个程序段中字、字符和数据的书写规则。
目前国内外广泛采用字-地址可变程序段格式。
所谓字-地址可变程序段格式,就是在一个程序段内数据字的数目以及字的长度(位数)都是可以变化的格式。
不需要的字以及与上一程序段相同的续效字可以不写。