高等数学D8_5隐函数求导.
- 格式:doc
- 大小:812.00 KB
- 文档页数:15
第五节 隐函数的求导法则一、一个方程的情形隐函数存在定理 1 设函数(,)F x y 在点00(,)P x y 的某一邻域内具有连续偏导数,00(,)0F x y =,00(,)0y F x y ≠,则方程(,)0F x y =在点0x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()y f x =, 它满足条件00()y f x =,并有d d x yF yx F =-. 说明:1) 定理证明略,现仅给出求导公式的推导:将()y f x =代入(,)0F x y =,得恒等式(,())0F x f x ≡,等式两边对x 求导得d 0d F F y x y x∂∂+=∂∂, 由于0y F ≠ 于是得d d x yF yx F =-. 2) 若(,)F x y 的二阶偏导数也都连续, 则按上述方法还可求隐函数的二阶导数:22d d ()()d d x x y y F F y y x x F y F x∂∂=-+-⋅∂∂ 22()x x y y x xx y y y y xxy y yF F F F F F F F F F F F --=---2232x x y x y x y y y x yF F F F F F F F-+=-.例1 验证方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =,并求22d d ,00d d y yx x x x ==. 解 设(,)sin e 1x F x y y x y =+--, 则 1) e x x F y =-,cos y F y x =-连续; 2) (0,0)0F =; 3) (0,0)10y F =≠.因此由定理1可知,方程sin e 10x y x y +--=在点(0,0)的某一邻域内能唯一确定一个单值可导的隐函数()y f x =.d 0d y x x =0x y F x F =-=e 10,0cos x yx y y x -=-=-==-,22d 0d y x x = d e ()0,0,1d cos x yx y y x y x -=-'===-- 0201(e )(cos )(e )(sin 1)(cos )x x x y y y y x y y y y x =='=-''-----⋅-=--3=-.隐函数存在定理还可以推广到多元函数.一般地一个二元方程(,)0F x y =可以确定一个一元隐函数,而一个三元方程(,,)0F x y z =可以确定一个二元隐函数. 隐函数存在定理2 设函数(,,)F x y z 在点000(,,)P x y z 的某一邻域内具有连续的偏导数,且000(,,)0F x y z =,000(,,)0z F x y z ≠,则方程(,,)0F x y z =在点00(,)x y 的某一邻域内恒能唯一确定一个连续且具有连续偏导数的函数(,)z f x y =, 它满足条件000(,)z f x y =,并有x z F z x F ∂=-∂,y zF zy F ∂=-∂. 说明:定理证明略,现仅给出求导公式的推导:将(,)z f x y =代入(,,)0F x y z =, 得(,,(,))0F x y f x y ≡,将上式两端分别对x 和y 求导,得0=∂∂⋅+xz F F z x , 0=∂∂⋅+y z F F z y .因为z F 连续且000(,,)0z F x y z ≠,于是得x z F z x F ∂=-∂, y zF zy F ∂=-∂. 例2 设22240x y z z ++-=,求22zx∂∂.解 设222(,,)4F x y z x y z z =++-,则2x F x =,24z F z =-,2242x z F z x x x F z z∂=-=-=∂--,2222223(2)(2)()(2)2(2)(2)(2)z xx xx x zx x x z xz z z ∂-+-+∂-+∂-===∂---. 二、方程组的情形在一定条件下, 由方程组(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩ 可以确定一对二元函数(,)(,)u u x y v v x y =⎧⎨=⎩, 例如方程0xu yv -=和1yu xv +=可以确定两个二元函数22y x yu +=,22y x x v +=. 事实上,0xu yv -=u y x v =1=⋅+u yx x yu 22y x yu +=, 2222yx x y x yy x v +=+⋅=. 下面讨论如何由组求u ,v 的导数.隐函数存在定理3 设(,,,)F x y u v ,(,,,)G x y u v 点0000(,,,)P x y u v 的某一邻域内具有对各个变量的连续偏导数,又0000(,,,)0F x y u v =,0000(,,,)0G x y u v =,且偏导数所组成的函数行列式(或称雅可比(Jacobi )行列式)(,)(,)FF FG u v J G G u v uv∂∂∂∂∂==∂∂∂∂∂ 在点0000(,,,)P x y u v 不等于零,则方程组(,,,)0F x y u v =,(,,,)0G x y u v =,在点0000(,,,)P x y u v 的某一邻域内恒能唯一确定一组连续且具有连续偏导数的函数(,)(,)u u x y v v x y =⎧⎨=⎩,. 它们满足条件000(,)u u x y =,000(,)v v x y =,且有1(,)(,)xvxv u v u v F F G G u F G F F x J x v G G ∂∂=-=-∂∂,1(,)(,)ux u xu v uvF FG G v F G F F x J u x G G ∂∂=-=-∂∂, 1(,)(,)yv y vu v uv F F G G u F G F F y J y v G G ∂∂=-=-∂∂,1(,)(,)u yu y u v u vF FG G v F G F F y J u y G G ∂∂=-=-∂∂. 说明:方程组所确定的隐函数的偏导数可分别对方程组中各方程两边求偏导数,然后解关于各偏导数的方程组,其中偏导数xu ∂∂,x v ∂∂由方程组0,0x u v x uv u v F F F x xu v G G G x x ∂∂⎧++=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩确定;偏导数yu ∂∂,y v ∂∂由方程组⎪⎩⎪⎨⎧=∂∂+∂∂+=∂∂+∂∂+.0,0y vG y u G G yv F y u F F v u y v u y 确定.例3 设0xu yv -=,1yu xv +=,求u x ∂∂,v x∂∂,uy ∂∂和v y ∂∂.解 两个方程两边分别对x 求偏导,得关于u x ∂∂和vx∂∂的方程组 00u v u x y x xu v y v x x x ∂∂⎧+-=⎪⎪∂∂⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xu yv x x y ∂+=-∂+,22v yu xvx x y ∂-=∂+. 两个方程两边分别对y 求偏导,得关于u y ∂∂和vy∂∂的方程组 00uv x v y y y u v u y x y y ∂∂⎧--=⎪∂∂⎪⎨∂∂⎪++=⎪∂∂⎩,. 当220x y +≠时,解之得22u xv yu y x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 另解 将两个方程的两边微分得d d d d 0d d d d 0u x x u v y y v u y y u v x x v +--=⎧⎨+++=⎩,,即d d d d d d d d x u y v v y u x y u x v u y v x -=-⎧⎨+=--⎩,. 解之得2222d d d xu yv xv yu u x y x y x y +-=-+++,2222d d d yu xv xu yvv x y x y x y-+=-++. 于是22u xu yv x x y ∂+=-∂+,22u xv yu y x y ∂-=∂+,22v yu xv x x y ∂-=∂+,22v xu yvy x y ∂+=-∂+. 例 设函数(,),(,)x x u v y y u v ==在点(,)u v 的某一领域内连续且有连续偏导数,又(,)0(,)x y u v ∂≠∂. 1) 证明方程组(,)(,)x x u v y y u v =⎧⎨=⎩ 在点(,,,)x y u v (的某一领域内唯一确定一组单值连续且有连续偏导数的反函数(,),(,)u u x y v v x y ==.2)求反函数(,),(,)u u x y v v x y ==对,x y 的偏导数. 解 1)将方程组改写成下面的形式(,,,)(,)0(,,,)(,)0F x y u v x x u v G x y u v y y u v ≡-=⎧⎨≡-=⎩,,则按假设 (,)(,)0(,)(,)F G x y J u v u v ∂∂==≠∂∂,由隐函数存在定理3,即得所要证的结论.2)将方程组所确定的反函数(,),(,)u u x y v v x y ==代入原方程组,即得[(,),(,)][(,),(,)].x x u x y v x y y y u x y v x y ≡⎧⎨≡⎩,将上述恒等式两边分别对x 求偏导数,得10.x u x v u x v xy u y v u x v x ∂∂∂∂⎧=⋅+⋅⎪⎪∂∂∂∂⎨∂∂∂∂⎪=⋅+⋅⎪∂∂∂∂⎩, 由于0J ≠,故可解得1u y x J v ∂∂=∂∂, 1v yx J u∂∂=-∂∂. 同理,可得1u x y J v ∂∂=-∂∂, 1v x y J u∂∂=∂∂. .。
21第五节 隐函数的求导公式一、填空题1.设(,)z x y 为由方程22ln()0xz xyz xyz -+=确定的函数,则zx∂=∂z x -.2.设方程2210x y +-=确定了一个隐函数()y f x =,则22d d x yx==1±.二、单项选择题1.设(,)0x az y bz φ--=,则z zab x y∂∂+=∂∂ D . A .a B .b C .-1 D .1 提示:方程两边同时对x 求导:1210z z ab x x φφ∂∂⎛⎫⎛⎫-+-= ⎪ ⎪∂∂⎝⎭⎝⎭,同时对y 求导:1210z z ab y y φφ⎛⎫⎛⎫∂∂-+-= ⎪ ⎪∂∂⎝⎭⎝⎭;所以121212,z z x a b y a b φφφφφφ∂∂==∂+∂+,代入所求表达式化简,得D2.设e e e z y x z x y =+,则zy∂=∂ D . A .e e (1)e y x z y z ++ B .e e (1)e x y z x z +- C .e e (1)e y x z y z -- D .e e (1)ex y zx z ++ 3.设()y y x =,()z z x =是由方程()z xf x y =+和(,,)0F x y z =所确定的函数,其中,f F 具有一阶连续导数和一阶连续偏导数,则d d zx= A . A .()y x y zxf f F xf F F xf F ''+-'+,(0)y z F xf F '+≠B .()y z y xF xf F xf f F xf F '+''+-,()()0y x xf f F xf F ''+-≠C .()x yy zxf F xf f F F xf F ''-+'+,(0)y z F xf F '+≠22 D .y xy zf F xf F F xf F ''-'+,(0)y z F xf F '+≠提示:方程组()(,,)0z xf x y F x y z =+⎧⎨=⎩两边同时对x 求导,得d d ()()1d d d d 0d d x y z z y f x y xf x y x x y z F F F x x ⎧⎛⎫'=++++ ⎪⎪⎪⎝⎭⎨⎪++=⎪⎩,解之得:d d z x =()y x y zxf f F xf F F xf F ''+-'+三、计算题1.方程xyz =(,)z z x y =,求在点(1,0,1)-处的全微分.解:令(,,)F x y z=xyz则x F yz =y z F xz F xy ==+x zF zx F ∂=-=∂ 从而(1,0,1)1zx-∂=∂;y z F z y F ∂=-=∂从而(1,0,1)zy -∂=∂所以(1,0,1)d d z x y -=.2.设333z xyz a -=,求2zx y∂∂∂.解:令33(,,)3F x y z z xyz a =--,则3x F yz =-,3y F xz =-,233z F z xy =-;2x z F z yz x F z xy ∂∴=-=∂-,2y z F z xzy F z xy∂=-=∂-; ()()222222z z z y z xy yz z x y y z yz x y y z xy z xy ⎛⎫⎛⎫∂∂+--- ⎪ ⎪∂∂⎛⎫∂∂⎝⎭⎝⎭== ⎪∂∂∂--⎝⎭23()()222222xz xz z y z xy yz z x z xy z xy z xy ⎛⎫⎛⎫+--- ⎪ ⎪--⎝⎭⎝⎭=-()5322322z xyz x y z z xy --=-.3.由cos v x u u =,sin v y u u =可确定(,)u u x y =,(,)v v x y =,求ux∂∂. 解:由题意知,222x y u +=,对方程两边对x 求偏导,得22u x u x ∂=∂,u xx u∂∴=∂.或:将方程组cosv x u u =,sin vy u u=两边同时对x 求导,得 cos sin sin 1,sin cos cos 0v v v u v vu u u x u x v v v u v v u uu x u x ⎧∂∂⎛⎫+⋅-⋅= ⎪⎪∂∂⎪⎝⎭⎨∂∂⎛⎫⎪-⋅+⋅= ⎪⎪∂∂⎝⎭⎩解方程组得 1sin0coscos .cos sin sinsin cos cos vu vu v x u v v v v x u u u u u u v v v v u u u u-∂===∂+--。
第五节 隐函数的求导公式在一元函数中,我们已经提出了隐函数的概念,并且提出了不经过显化真接由方程()0,=y x F (1)求它所确定的隐函数的导数的方法。
现在介绍隐函数存在定理,并根据多元复合函数的求导法则导出多元隐函数的导数公式。
隐函数存在定理1 设函数()y x F ,在点()00,y x P 的某一邻域内具有连续偏导数,且()0,00=y x F , ()0,00'≠y x F y 。
则方程()0,=y x F 在点()00,y x 的某一邻域内恒能唯一确定一个连续且具有连续导数的函数()x f y =,它满足条件()00x f y =, 并有''yx FF dxdy -= (2)公式(2)就是隐含数的求导公式这个定理我们不证,现仅就公式)2(作如下推导。
将方程(1)所确定的函数()x f y =代入(1),得恒等式 ()()0,≡x f x F其左边可以看作是x 的一个复合函数,求这个函数的全导数,即有0=⋅∂∂+∂∂dxdy yF xF由于'y F 连续,且 ()0,00'≠y x F y ,所以存在()00,y x 的一个邻域,在这个邻域内 0'≠y F于是得''yx FF dxdy -=隐函数存在定理可以推广到多元函数,既然一个二元方程(1)可以确定一个一元隐函数,那么一个三元方程()0,,=z y x F 就有可能确定一个二元隐函数。
与定理1相仿,我们同样可以由三元函数()z y x F ,,的性质来断定由方程()0,,=z y x F 所确定的二元函数()y x f z ,=的存在性及这个函数的性质,这就是下面的定理。
隐函数存在定理2 设函数()0,,=z y x F 在点()000,,z y x P 的某一邻域内具有连续偏导数,且()0,,000=z y x F ,()0,,000'≠z y x F z 。
§8.5 隐函数的求导公式一、二元方程所确定的隐函数的情形由二元方程F x y(,)=0可确定一个一元的隐函数y f x=(),将之代入原方程,得到一个恒等式F x f x[,()]≡0对恒等式两边关于变量x求导,左边是多元复合函数,它对变量x的导数为F F dy dxx y+右边的导数自然为0,于是有F F dy dxx y+=0解出dydx,得到隐函数的导数dydxFFxy=-。
由多元复合函数的求导定理可知,当F x y(,)=0在(,)x y具有一阶连续偏导数,而y f x=()在x可导时,才可求出复合函数F x f x[,()]的导数,若Fy≠0时,才有dydxFFxy=-这一求导方法,实际上就是以往的直接求导数。
二、由三元方程所确定的二元隐函数的偏导数既然二元方程F x y(,)=0可以确定一个一元的隐函数y f x=(),那么三元方程F x y z(,,)=0便可确定一个二元的隐函数z f x y=(,)。
下面,我们介绍用直接求导法求此函数的偏导数。
对F x y z(,,)=0两边关于变量x求偏导,并注意z是x y,的函数,有F Fzxx z+⋅=∂∂解出∂∂zx ,得到二元隐函数的偏导数 ∂∂z xF F x z=-。
类似地,可得到F F z yy z +⋅=∂∂0,∂∂z yF F y z =-。
【例1】设x y z z 22240++-=, 求 ∂∂22zx 。
解: 将方程x y z z 22240++-=中的z 视为x y ,的隐函数,对x 求偏导数有2240x z z xz x+⋅-⋅=∂∂∂∂∂∂z xx z =-2再一次对x 求偏导数,仍然将z 视为x y ,的隐函数有∂∂∂∂222202z xz x z xz =--⋅--()()()=--⋅--()()2222z x x zz=-+-()()22223z x z也可以用下述方法来求二阶偏导数对422=⋅-⋅+xz xz z x ∂∂∂∂两边关于x 求偏导数,注意到x zz ∂∂,均为x y ,的函数,有2224022222+⋅+⋅-⋅=()∂∂∂∂∂∂z xz z xz x∂∂∂∂2222231222z xz xzz x z =+-=-+-()()()三、由两个函数方程所确定的隐函数的导数设有函数方程组F x y u vG x y u v (,,,)(,,,)==⎧⎨⎩00由此联立的方程组可消去一个变量v ,这样便得到由三个变量所构成的函数方程H x y u (,,)=0,而三元函数方程可确定一个二元隐函数 u u x y =(,),将之代入方程组的其中一个,得到另一个三元方程F x y u x y v (,,(,),)=0,于是,我们也可将变量v表示成x y ,的隐函数v v x y =(,)。