图解微流控芯片实验室
- 格式:pptx
- 大小:7.71 MB
- 文档页数:89
第二部分:芯片内部结构剖析虽然FilmArray芯片功能复杂,但整个FilmArray芯片可以简单分为两个部分,上面的储液管组和下面的反应层(由于其本质为具有多个密封泡的柔性塑料故命名为柔性袋)。
其基本结构如下图所示。
图2.1:测试芯片由储液管组和柔性袋结构垂直塑封组成。
注意这两个部分并不是重叠排列,而是相互垂直排列,即将储液管组通过热塑封垂直封接到下部分的柔性袋。
其结构类似于将离心管并排(储液管组)竖立粘接在一张水平放置的白纸上(柔性袋)。
2.1 储液管组的基本结构储液管组是由12个具有特殊结构的储液管并列而成,该储液管的材质为PP,或其他具有一定机械强度的材料,能够在内部真空的条件下不会发生明显变形。
储液管内部被抽成真空,便于内部固体试剂的长期保存和测试时液体试剂的吸入。
每个储液管内部预装有不同的冻干试剂,所以实际上内部储存的并非“液体”,而是“固体”。
在储液管组两端分别有样品入口和稀释液入口,用于加样。
如下图为了观察方便使用红色或蓝色液体填充储液管。
图2.2:上层储液管组和下层柔性袋结构。
如图2.2,从图中左到右的顺序,各储液管中冻干试剂分别为:1,过程对照材料(即裂殖酵母细胞,测试时同样经过细胞裂解,核酸提纯,巢式PCR,如果检测为阳性,说明仪器操作和化学过程正常,否则报错,不给出检测结果。
)2,-5, 清洗液,核酸纯化用。
6,核酸洗脱液7,逆转录/PCR-I反应液8,稀释液9,10,PCR-II反应液,含LCGreenplus+荧光染料11,空,或稀释液?反应液?12,空,用于收集PCR-II反应溢流液在专利US8409508中公开了这种储液管组的基本结构以及使用真空吸取液体的原理和过程。
如下图为单个储液管内部结构说明。
单个储液管通过热塑封的方式与柔性袋贴合在一起,其中储液管底部与柔性袋内部的反应池相连通。
储液管壁有两个开口,上面的开口为排气口,用于储液管封装时抽取内部的空气形成真空腔,下面的开口为试剂入口,一般为密封状态,刺破后试剂可被真空吸入。
微传感器,微执行器以及信号处理电路和控制电路,接口电路,通信和电源有机地集微机械(miceomechanics)低功耗、高速、高灵敏度、高效率等优点;工艺类似的方法进行大规模批量3其中ρ为密度为平均粘度v为运动粘度。
为扩散系数为表面张力)1011Epson Develops a Next-Generation Inkjet Print 12Vol 442, 2006:10.1038, Nature. Liang Dong et al.1316研发的器件与系统19功耗、尺寸、灵敏度、特异性、精确性、稳定性Piezoresistora. Microspike electrode arrayb. Barbed microspikes2425精确的靶向药物治疗对于一些慢26不能满足治疗的需要。
29<1 µL(University of Michigan)1998,Science>100 µL第三届μTAS会议,加拿大;420被评为当年世界十大科技突破之一3536成从样品引入到化学分离与检测的所有分析。
37“Microfluidics and Nanofluidics”创刊Business 2.0杂志的封面文章称,芯片实改变未来的七种技术”之一商业:(摘自2006年10月国际国际生物芯片技术论坛)40研究内容41微流控芯片实验室原则上适用于从核酸、蛋白质到有机、无机小分子的不同类型分子的反应、分离和检测, 涉及到了几乎全部生物和非生物过程中的化学问题。
42弹性材料——聚二甲基硅氧烷(PDMS) 具有疏水阀、混合器、计量器等功能。
Can we realise a nanoscale assay for a single cell?。
环形微流控芯片的设计与应用第一章:引言微流控芯片(microfluidic chip)由于其微小的尺寸和微流控制技术的应用,近年来获得了广泛的关注。
微流控芯片是一种微型实验室,可以在其中实现液体和气体的微流动、混合、分离、反应、分析和检测等功能。
由于其成本低、样品用量小、实验速度快、自动化程度高等特点,已经被广泛应用于生物医学、环境监测、食品安全、化学合成等领域。
环形微流控芯片是一种特殊的微流控芯片,其环形结构可以实现循环操作,可以用于溶液的混合、反应、分析等应用。
本文将介绍环形微流控芯片的设计原理和应用实例。
第二章:环形微流控芯片的设计原理环形微流控芯片的基本结构包括液体进出口、环形流道和控制电极等部分。
液体进出口通过微型通道连接流体源和芯片,环形流道是由微小的通道构成的,控制电极则用于调节流体的运动。
由于环形微流控芯片的流道是封闭的,因此,在芯片上循环操作时,液体在环道内不断地流动,形成稳定的流体环流。
环形微流控芯片的设计需要考虑以下几个因素:1.流道的尺寸和形状环形微流控芯片的流道直径通常在10~500 μm之间,流道的形状可以是圆形、椭圆形、矩形等。
流道的尺寸和形状的选择取决于应用的需要,越小的流道能够更好地控制流动,但同时对芯片制作工艺和性能也提出更高的要求。
2.控制电极的设计控制电极是环形微流控芯片中非常重要的一部分,可以通过改变电极电势来调整流道内部的电场分布,从而调控流体的运动。
常见的控制电极包括平板电极、圆柱电极、T型电极等。
这些电极设计的目的都是在不破坏微流控芯片环形结构的前提下,改变流体的流动速度和方向。
3.芯片制造技术的选择不同的芯片制造技术对环形微流控芯片性能的影响较大。
常用的芯片制造技术包括PDMS(聚二甲基硅氧烷)微流控芯片、玻璃微流控芯片、SU-8微流控芯片等。
PDMS微流控芯片的特点是制作工艺简单、成本低,但容易发生吸附现象;玻璃微流控芯片的优点是透明、化学稳定、生物相容、不易被吸附,但成本较高;SU-8微流控芯片的制作工艺比较复杂,但具有更高的抗化学性和抗高温性能。
第一部分:公司产品简介图1.1:BioFire公司LogoBioFire公司的FilmArray微流控芯片是目前已经成功商业化的微流控产品的经典之作,该芯片采用巢式多重PCR分析技术,对同一个血液样品进行一次测试便可以检测多达24种病原体,并且整个检测过程比传统PCR或RT-PCR方式要快得多,只需要大约一个小时的时间,非常适合于传染病的早期快速筛查。
如下图分别是FilmArray测试仪器和芯片实物图。
图1.2:FilmArray测试仪器实物图及各结构说明图1.3:呼吸道感染检测芯片及结构说明(图中液体仅仅为了可视化,实际测试芯片不含有液体部分)目前,在BioFire公司官方网站上已经公布了四种测试芯片,分别是:呼吸道感染检测芯片,血液感染检测芯片,胃肠道感染检测芯片,脑膜炎感染检测芯片。
虽然四种芯片针对的疾病不一样,所需要检测的样品种类也不一样,但是产品外观上基本一致,可以参考图1.3中呼吸道感染检测芯片的外观结构。
1,呼吸道感染检测芯片呼吸道感染检测芯片是BioFire公司最早开发出来的产品,也是目前该公司发展最为成熟的检测芯片。
早期的呼吸道感染检测芯片可以在一个小时之内检测多达20种不同的呼吸道细菌和病毒等病原菌。
目前,该公司已经开发出基于FilmArray2.0检测系统的新型呼吸道感染检测芯片,相比于早期的检测芯片,该新型芯片可以在45分钟之内完成测试,并且比早期芯片更准确,更高效,更快速,检测的病原菌种类也更多(21种)。
如下为该新型呼吸道检测芯片可以检测的细菌和病毒种类:图1.4:新型呼吸道感染检测芯片可以检测的病原菌列表2,血液感染检测芯片血液感染能引发全身炎症反应综合症,并可能发展为重度脓毒症和感染性休克,导致血液感染患者死亡率大大增加。
此外,为了防止出现耐药性,临床医师必须尽早开始有效治疗且避免让患者过度接触广谱抗生素。
因此,实验室快速鉴定病原菌以及耐药机制,对于选择合适疗法上极其关键。
微流控:芯片上的实验室Advanced Liquid Logic, Inc公司概况:在Duke的电子工程实验室中经过几年的技术发展后,Advanced Liquid Logic 作为Duke 大学Pratte工程学院的技术分支于2004年成立。
现在,Advanced Liquid Logic将其独特的技术转化为研究和诊断分析产品,应用于核心实验室和样本收集实验机构。
公司将于2010年前开发和推出一款分子诊断产品,而且得到了实力强大的诊断学合作伙伴的支持。
另外,Advanced Liquid Logic也占据了研发新生儿筛查和特殊研究设备的先机。
从2010年底或2011年初开始,公司将从产品中获得收益。
公司正在寻求投资和商务的合作伙伴,以加速产品的开发进程。
技术:尽管在自动化和精细方面有一些进展,物理原理在液体处理方面的应用在过去的200年基本没有很大的变化。
近期,工程学的进步加快“微流控”方法应用于液体处理。
除了小型化,微流控可以降低成本,减少样本量,提高自动程度,加快速度和增加产量。
Advanced Liquid Logic拥有独特专利的数字微流控技术有望改变这一新兴的领域,通过使用世界最完整、最灵活和最轻便的lab-on-a-chip (芯片上的实验室) 系统让各种综合的基于液体的实验室、医疗和其他分析机构的样品收集过程更加小型化和自动化。
现有的微流控方法强制液体流过预先设置的沟槽。
因为需要把液体限制在沟槽中,这些方法缺乏灵活性、可程控性和可量测性。
他们局限于在“持续流动”的情况下执行单一的功能。
开发一个包括所有应用功能的芯片是极其昂贵的,这也是为什么微流控技术没有演变为商业上成功的“芯片上的实验室”的最主要原因。
相反,Advanced Liquid Logic的数字微流控把液体处理分解为分散的、可编程处理的小液体滴,1升液体可分解为十亿个到几百万个不等。
这种新技术在电脑控制下,使用电子方法以可编程的顺序布置、传递、分离和结合液滴,形成高度可重塑和可测量的平台,这个平台能够在一个通用的芯片上完成不同种类的检测报告。