21.2.2公式法解一元二次方程第二课时
- 格式:ppt
- 大小:571.50 KB
- 文档页数:8
21.2解一元二次方程(2)【教学目标】知识与技能:1.理解一元二次方程求根公式的推导过程2.了解公式法的概念,会熟练应用公式法解一元二次方程3.会利用根的判别式判断一元二次方程根的情况过程与方法:经历探索求根公式的过程,发展学生合情的推理能力情感态度价值观:通过运用公式法解一元二次方程的训练,提高学生的运算能力,并让学生在学习活动中获得成功的体验,建立学好数学的自信心【教学重难点】教学重点:求根公式的推导和公式法的应用.教学难点:一元二次方程求根公式法的推导.【教学过程】一、复习引入1. 用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=522.用配方法解一元二次方程的步骤.(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.二、探索新知【探究】如果一元二次方程是一般形式ax 2+bx+c=0(a ≠0),你能否用上面配方法的步骤求出它的根,请同学独立完成这个问题.解:移项,得:ax 2+bx=-c 二次项系数化为1,得x 2+b a x=-c a配方,得:x 2+b a x+(2b a )2=-c a +(2b a )2 即(x+2b a)2=2244b ac a - 因为a ≠0,所以4a 2≥0.式子b 2-4ac 的值有以下三种情况:(1)当b 2-4ac>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根即x 1=2b a -+,x 2 (2)当b-4ac=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根即x 1=x 2=2b a-. (3)当b 2-4ac<0时,一元二次方程ax 2+bx+c=0(a ≠0)没有实数根.定义:一般地,式子b 2-4ac 叫做一元二次方程ax 2+bx+c=0(a ≠0)根的判别式.通常用“△”表示,即△=b 2-4ac 归纳:当△>0时,一元二次方程ax 2+bx+c=0(a ≠0)•有两个不相等实数根;当△=0时,一元二次方程ax 2+bx+c=0(a ≠0)有两个相等实数根;当△<0时,一元二次方程ax 2+bx+c=0(a ≠0)无实数根.定义:当△≥0时,一元二次方程ax 2+bx+c=0(a ≠0)的实数根可写为 的形式,这个式子叫做一元二次方程的求根公式.利用求根公式解一元二次方程的方法叫公式法.总结:用公式法解一元二次方程的一般步骤:(1)先把方程化成一般形式,确定a 、b 、c 的值。
XXX中学统一备课用纸二、知识提升例1:已知关于x的一元二次方程()011222=-+++mxmx有两个不相等的实数根,则m 的取值范围为___________.变式训练:1.已知关于x的一元二次方程()01212=+--xxa有两个不相等的实数根,则a的取值范围为_______________.2.已知关于x的一元二次方程()01212=+--xxa有两个实数根,则a的取值范围为_____.3.已知关于x方程()01212=+--xxa有实数根,则a的取值范围为_______________. 4.若关于x的一元二次方程x2-2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是( )三、拓展训练().kkxkxx的取值范围,求)若方程有一根小于(实数根;)求证:方程总有两个(的一元二次方程:已知关于例121202232=+++-挑战自我:已知平行四边形ABCD的两边AB,AD的长是关于x的方程04122=-+-mmxx的两个实数根。
(1)求证:无论m取何值,方程总有两个实数根;(2)若方程有一个根为负数,求m的取值范围;(2)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?。
第二十一章一元二次方程21.2解一元二次方程公式法教学设计一、教学目标1.探索利用公式法解一元二次方程的一般步骤.2.能够利用公式法解一元二次方程.二、教学重点及难点重点:用公式法解一元二次方程.难点:用公式法解一元二次方程三、教学用具多媒体课件。
四、相关资源《复习配方法解一元二次方程》动画。
五、教学过程【温故知新,提出问题】XE燃解方程s h+2s+c=0此图片是动画绪略图,此处插入交互动画《【数学探完】一元二次方程的儿何解法》,可以通过几何的方法展现一元二次方程的解法。
问题1你能用配方法解卜列方程吗?(1)m+ll=O;(2)9/=12x+14.解:<1)移项,得x2 -7入=一11.配方,得x2-7a-+^|J=-11+r2>7即七2=5 3开方,得x—;=±g.7-757+必所以X]=—-—•^2=—5-(2)移项,得9F-12x=14・,414系数化为1,得『一二工二方.配方,得广一§+仲卜?+停).即厂:<--2=2.开方,得x-|=±>/2,所以“甲®夸问题2用配方法解一元二次方程的步骤?化:把原方程化成r+p.x+q=O的形式.移项:把常数项移到方程的右边,如F+px=迫.配方:方程两边都加上一次项系数一半的平方,如/+px+(W)2=-g+(S(x+S=F+(9求解:解一元一次方程.定解:写出原方程的解.师生活动:学生独立完成,复习归纳。
(X潞瘢配方法任何一个一元二次方程都可以写成一般形式十取-c-m z=0),能否用配方法俾出能否用配方法街出or2me=O(aMO)的观]一元二次方程M+既13(/0)的二次坎系救u,—次敏卒致b以及常敏项c.<1>移项;将方程中含有耒知数的氐移对方程的左边.巧常数璜玛勤方程的右边.ar2—fez=—cQ)二次项系散化为卜若二次项的系敢不为1.划在方程两边同时序以二次项的系敷.将二次项的系敖化为I.X2+-Z=—-a aU>配方,方程的两边鄙加上一次咬系?I一半的平方鸟方程靛左遮配成一个完全平方式・/十打十(粉2=弋十(粉2flHk整电饵(工+y=静因为a*0.4a2>0,代数式62-iac来决定一元二次方程+hx+c=Oia^O)根的唁况.此图片是动画垸略图,此处插入交互动画《【教学探究】配方法》,可以逐步展现配方法的步曜.设计意图:通过复习,巩固旧知,钠垫新知,设置问题,引出新课.【合作探究,形成知识】问题2—元二次方程的一般形式是什么?你能否也用配方法解出方程的根呢?杯+皈+^=0(醇0)己知a『+M+c=0(再0),请用配方法推导出它的两个根.解:移项,得ar2+fer=-c.K c二次项系数化为1,得《?+-X=——.a a配方,得+-X+(A)2=-£+(A)2…gp(X+=)2=\二"(JI).a la a2a2。
第2课时 用公式法解一元二次方程基础题知识点 用公式法解一元二次方程1.用公式法解一元二次方程3x 2-2x +3=0时,首先要确定a ,b ,c 的值,下列叙述正确的是(D)A.a =3,b =2,c =3B.a =-3,b =2,c =3C.a =3,b =2,c =-3D.a =3,b =-2,c =32.方程x 2+x -1=0的一个根是(D)A.1- 5B.1-52C.-1+ 5D.-1+523.一元二次方程x 2-px +q =0的两个根是(A)A.p±p 2-4q 2B.-p±p 2-4q 2C.p±p 2+4q 2D.-p±p 2+4q24.一元二次方程a 2-4a -7=0的解为5.用公式法解下列方程: (1)4x 2-4x +1=0;解:Δ=(-4)2-4×4=0, x =4±08=12.∴x 1=x 2=12.(2)x 2+2x =0;解:Δ=22-4×1×0=4, x =-2±42×1,∴x 1=0,x 2=-2. (3)2x 2-3x -1=0;解:Δ=(-3)2-4×2×(-1)=17, x =3±172×2,∴x 1=3+174,x 2=3-174.(4)(兰州中考)2y 2+4y =y +2;解:2y 2+3y -2=0,Δ=32-4×2×(-2)=25, y =-3±252×2,∴y 1=12,y 2=-2.(5)x 2+10=25x ;解:x 2-25x +10=0,∵Δ=(-25)2-4×1×10=-20<0, ∴此方程无实数解. (6)x(x -4)=2-8x. 解:x 2+4x -2=0,Δ=42-4×1×(-2)=24, x =-4±242×1,∴x 1=-2+6,x 2=-2- 6. 易错点 错用公式6.用公式法解方程:2x 2+7x =4. 解:∵a =2,b =7,c =4, ∴b 2-4ac =72-4×2×4=17. ∴x =-7±174,即x 1=-7+174,x 2=-7-174.上述解法是否正确?若不正确,请指出错误并改正.解:不正确.错误原因:没有将方程化成一般形式,造成常数项c 的符号错误. 正解:移项,得2x 2+7x -4=0, ∵a =2,b =7,c =-4,∴b 2-4ac =72-4×2×(-4)=81. ∴x =-7±812×2=-7±94.即x 1=-4,x 2=12.中档题7.方程2x 2+43x +62=0的根是(D)A.x 1=2,x 2= 3B.x 1=6,x 2= 2C.x 1=22,x 2= 2D.x 1=x 2=- 6 8.若(x +y)(1-x -y)+6=0,则x +y 的值是(C)A.2B.3C.-2或3D.2或-39.(攀枝花中考)若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为(C)A.-1或4B.-1或-4C.1或-4D.1或410.(许昌长葛月考)若实数m ,n 满足(m 2+n 2)(m 2+n 2-2)-8=0,则m 2+n 2=4.11.(商丘拓城县月考)若代数式4x 2-2x -5与2x 2+1的值互为相反数,则x 的值是1或-23.12.用公式法解下列方程:(1)3x(x -3)=2(x -1)(x +1); 解:原方程可化为x 2-9x +2=0. x =9±732.∴x 1=9+732,x 2=9-732.(2)(x +2)2=2x +4.解:原方程可化为x 2+2x =0. x =-2±42=-1±1.∴x 1=0,x 2=-2.13.一元二次方程x 2+2x -54=0的某个根,也是一元二次方程x 2-(k +2)x +94=0的根,求k的值.解:解x 2+2x -54=0,得x 1=12,x 2=-52.把x =12代入x 2-(k +2)x +94=0,得(12)2-12(k +2)+94=0,解得k =3;把x =-52代入x 2-(k +2)x +94=0,得(-52)2+52(k +2)+94=0,解得k =-275. ∴k 的值为3或-275.综合题(1)将你发现的结论一般化,并写出来; (2)在实数范围内分解因式: ①x 2-5x +1; ②3x 2-7x +4.解:(1)发现的一般结论为:若一元二次方程ax 2+bx +c =0的两个根为x 1、x 2,则ax 2+bx +c =a(x -x 1)(x -x 2).(2)①解方程x 2-5x +1=0,得 x 1=5+212,x 2=5-212.∴x 2-5x +1=(x -5+212)(x -5-212).②解方程3x 2-7x +4=0,得 x 1=43,x 2=1.∴3x 2-7x +4=3(x -43)(x -1)=(3x -4)(x -1).。