近世代数简介
- 格式:ppt
- 大小:496.50 KB
- 文档页数:35
近世代数发展简史根据课程教学安排,通过查阅近世代数发展历史的相关资料,了解了相关的知识,并对近世代数的知识结构和发展脉络有了更清楚的认识和理解,以下是我将对近世代数及其发展历史的认识。
一、近世代数的定义代数学是以数、多项式、矩阵、变换和它们的运算,以及群、环、域、模等为研究对象的学科,而近世代数(又称抽象代数)是代数学研究的一个重要分支,主要研究群、环、域、模这四种抽象的代数结构,并深入研究了具有一定特性的群、环、域、模及其子结构、商结构、同态和同构、以及作为它们支柱的具体例子,它不仅在代数学中,而且在现代数学的理论与应用中都具有基本的重要性。
二、近世代数的发展代数学的起源较早,在挪威数学家阿贝尔(Abel,N.H.)证明五次以上方程不能用根式求解的进程中就孕育着群的概念;1830年,年仅19岁的伽罗瓦(Galois,E.)彻底解决了代数方程的根式求解问题,从而引进数域的扩张、置换群、可解群等概念;后来,凯莱(Cayley,A.)在1854年的文章中给出有限抽象群;戴德金(Dedekind,J.W.R.)于1858年在代数数域中又引入有限交换群和有限群;克莱因(Klein,C.F.)于1872年建立了埃尔朗根纲领,这些都是抽象群产生的主要源泉。
然而抽象群的公理系统直到1882年凯莱与韦伯(Weber,H.)在Math.Annalen的同一期分别给出有限群的公理定义,1893年韦伯又给出无限抽象群的定义。
由于李(Lie,M.S.)对连续群和弗罗贝尼乌斯(Frobenius,F.G.)对群表示的系统研究,对群论发展产生了深刻的影响。
同时,李在研究偏微分方程组解的分类时引入李代数的概念,然而,它的发展却是19世纪末和20世纪初,由基灵(Killing,W.K.J.)、外尔(Weyl,(C.H.)H.)和嘉当(Cartan)等人的卓越工作才建立了系统理论。
域这个名词虽是戴德金较早引入的,但域的公理系统却是迪克森(Dickson,L.E.)与亨廷顿(Huntington,E.V.)于19世纪初才独立给出。
近世代数中左陪集的定义
摘要:
一、近世代数简介
二、左陪集的定义
三、左陪集的重要性质
四、左陪集在近世代数中的应用
正文:
近世代数是研究抽象代数结构的数学分支,它涉及到群、环、域等基本代数概念。
在近世代数中,左陪集是一个重要的概念,它有助于我们更好地理解和分析群的性质。
左陪集的定义如下:设G 是一个群,a 是G 的一个元素。
对于任意元素x∈G,我们定义左陪集A(a, x) 为满足以下条件的元素集合:A(a, x) = {y∈G | x * y = a}。
换句话说,左陪集A(a, x) 包含了所有满足与x 的乘积等于a 的元素y。
左陪集具有以下几个重要性质:
1.A(a, e) = {a},其中e 是群的单位元。
2.A(a, x) = A(a, x^(-1)),即对于任意元素x,其左陪集与自身的逆元的左陪集相同。
3.A(a, x) A(a, y),当且仅当x ≤ y,其中“≤”表示群中的元素关系。
4.A(a, x) = G,当且仅当x = e 或x = a。
左陪集在近世代数中具有广泛的应用,例如:
1.研究群的结构:通过分析左陪集的性质,可以揭示群中元素之间的关系,进一步了解群的结构。
2.群的表示:给定一个群G 和一个域F,我们可以通过将群中的每个元素表示为其左陪集中的元素来研究群的表示。
这有助于我们理解群在特定域上的性质。
3.群的子结构:通过研究左陪集,我们可以找到群中的子结构,如子群、正规子群等,从而更好地分析群的性质。
总之,左陪集是近世代数中的一个重要概念,它有助于我们深入理解群的性质和结构。
近世代数发展简史近世代数是数学中的一个重要分支,它研究的是数与符号之间的关系。
代数的发展可以追溯到古代,但近世代数的起源可以追溯到16世纪。
以下是近世代数发展的简史。
1. 文艺复兴时期(16世纪)在文艺复兴时期,代数开始浮现了一些重要的发展。
意大利数学家Cardano首次提出了解三次方程的方法,并发表了《代数学大全》。
同时,法国数学家Viète 提出了代数中的符号表示法,开创了代数符号的使用。
2. 方程论的发展(17世纪)17世纪,方程论成为代数中的重要研究领域。
法国数学家Fermat和英国数学家Descartes分别独立地发展了代数几何学,将代数与几何相结合。
Fermat提出了著名的“费马大定理”,并在边注中提到了他的证明思路,这成为了代数中的一个重要问题。
3. 群论的兴起(19世纪)19世纪,代数的发展进入了一个新的阶段。
法国数学家Galois提出了群论的概念,并建立了现代代数的基础。
他研究了方程的可解性,并提出了著名的“Galois理论”,解决了费马大定理中的一些特殊情况。
Galois的工作对代数的发展产生了深远的影响。
4. 现代代数的建立(20世纪)20世纪,代数的发展进入了一个全新的阶段。
德国数学家Hilbert提出了代数基础的问题,并提出了一系列的公理化方法。
同时,抽象代数成为了代数中的重要分支,研究了各种代数结构的性质。
在这一时期,代数的研究范围得到了极大的扩展。
5. 应用领域的发展近世代数的发展不仅仅局限于理论研究,还涉及到了许多实际应用领域。
代数在密码学、编码理论、计算机科学等领域都有广泛的应用。
代数的发展为这些领域提供了强大的工具和方法。
总结:近世代数的发展经历了多个阶段,从文艺复兴时期的代数基础研究,到方程论的发展,再到群论和现代代数的建立,代数的研究范围不断扩展。
近世代数的发展不仅仅是理论上的突破,还涉及到了许多实际应用领域。
代数的发展为数学和其他学科的发展做出了巨大贡献。
近世代数
近世代数是数学中的一个分支,它研究的对象是代数结构,如群、环、域等,以及它们之间的关系和性质。
这个领域的主要目标是揭示这些结构的本质和共性,并开发出一些通用的技术和方法来处理这些结构和它们之间的关系。
近世代数主要研究群、环、域等代数结构的性质和关系。
群是一种代数结构,它由一个集合以及一个二元运算组成,满足封闭性、结合律、存在单位元素以及每个元素都有逆元素等性质。
环是另一种代数结构,它由一个集合以及两个二元运算组成,分别满足加法和乘法的封闭性、结合律、分配律、存在单位元素和每个元素都有加法和乘法的逆元素等性质。
域是群和环的进一步推广,它不仅满足群和环的所有性质,还满足乘法的交换律。
近世代数的研究方法主要是利用抽象代数的思想,即将一些常见的代数概念抽象出来,从而得到一些通用的性质和方法来处理这些抽象的代数结构。
例如,通过将群、环、域等代数结构抽象出来,我们可以得到一些通用的定理,如拉格朗日定理、卡氏定理、高斯引理等,它们在处理各种具体的代数问题时都具有广泛的应用价值。
总之,近世代数是数学中的一个重要分支,它研究的对象是代数结构及其性质和关系,通过抽象代数的思想和方法,揭示了这些结构的本质和共性,为解决各种具体的代数问题提供了一些通用的技术和方法。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
近世代数发展简史近世代数是数学领域中的一个重要分支,它的发展历史可以追溯到16世纪。
在这个时期,欧洲的数学家们开始对代数进行系统的研究,逐渐形成为了近世代数的基本理论和方法。
本文将从欧洲数学家的贡献、代数的基本概念和主要发展阶段三个方面,详细介绍近世代数的发展历程。
一、欧洲数学家的贡献近世代数的发展离不开一系列杰出数学家的贡献。
其中最重要的是意大利数学家斯拉马、法国数学家笛卡尔和德国数学家高斯。
斯拉马(Niccolò Fontana Tartaglia)是16世纪意大利的一位数学家,他是近世代数的奠基人之一。
他首次提出了求解三次方程的方法,并将其应用于实际问题的解决中。
斯拉马的贡献为后来代数学的发展奠定了基础。
笛卡尔(René Descartes)是17世纪法国的一位伟大数学家,他提出了坐标系的概念,并将代数与几何相结合,创立了解析几何学。
这一理论的浮现,极大地推动了近世代数的发展。
高斯(Carl Friedrich Gauss)是18世纪德国的一位杰出数学家,他被誉为近世代数的创始人之一。
高斯在代数领域做出了许多重要的贡献,他提出了复数的概念,并建立了复数域的理论基础。
这一理论对于解决代数方程中的根的问题具有重要意义。
二、代数的基本概念近世代数是研究数与数之间关系的一门学科,它主要研究代数方程、代数结构和代数运算等内容。
在近世代数中,有一些基本概念是必须了解的。
1. 代数方程:代数方程是近世代数中的重要概念,它是将数与未知数之间的关系用等式表示出来的方程。
代数方程可以是一元方程,也可以是多元方程。
2. 代数结构:代数结构是近世代数研究的重要内容,它是指在一定的运算规则下,数集合上的一种代数性质。
常见的代数结构有群、环、域等。
3. 代数运算:代数运算是近世代数中的核心内容,它是指对数进行加、减、乘、除等运算的过程。
代数运算具有封闭性、结合律、交换律、分配律等基本性质。
三、主要发展阶段近世代数的发展经历了几个主要的阶段,每一个阶段都有不同的特点和重要的贡献。
伯克霍夫的《近世代数概论》-概述说明以及解释1.引言1.1 概述概述部分是文章的开头,用于引入伯克霍夫的《近世代数概论》一书的背景和主题。
这部分内容可以包括以下方面的描述:伯克霍夫的《近世代数概论》是一本经典的数学著作,该书是近现代代数学的里程碑之一。
它首次详细系统地介绍了近世代数的基本概念、原理和理论。
该书的出版填补了当时代数学发展中的空白,为后来代数学的研究和应用奠定了基础。
近世代数是数学中重要的分支领域,它主要研究代数结构、群论、环论、域论等概念和性质。
迄今为止,这些代数思想和理论在科学研究和工程技术中都发挥着不可替代的作用。
在伯克霍夫的《近世代数概论》中,他以其独特的写作风格和逻辑思维,系统地阐述了近世代数的发展历程、基本概念和主要原理。
通过对代数学思想的深入剖析和清晰的逻辑推导,伯克霍夫帮助读者理解和掌握了这些抽象的数学概念,并将它们应用到实际问题中。
此外,《近世代数概论》也为后来代数学的研究提供了广阔的发展空间,其深远的影响力也体现在数学教育和学术交流中。
无论是对于数学学生还是专业研究人员,这本著作都是不可或缺的参考书。
正因为如此,《近世代数概论》一书在数学学术界享有极高的声誉和影响力。
综上所述,伯克霍夫的《近世代数概论》阐述了近世代数的基本理论和概念,填补了代数学发展中的空白,对于后来代数学的研究和应用起到了重要的推动作用。
它的出版不仅对于数学学术界具有深远的意义,也为广大数学爱好者提供了重要的学习资料。
1.2文章结构文章结构部分的内容可以包括以下几个方面:1.2 文章结构《近世代数概论》是伯克霍夫在19世纪中叶撰写的一部重要著作,该书分为引言、正文和结论三个主要部分。
接下来,我将为您逐一介绍这些章节的内容和主要讨论点。
引言部分主要包括概述、文章结构和目的三个小节。
首先,在概述中,伯克霍夫对近世代数的背景和研究现状进行了简要介绍,引出了他撰写此书的动机和重要性。
其次,在文章结构部分,伯克霍夫详细列出了本书的章节和内容安排,让读者能够清晰地了解整个书籍的组织架构。
近世代数引言近世代数是数学中的一个分支,是研究代数结构的一种方法。
它主要研究了群、环、域等代数结构,以及它们之间的关系和性质。
本文将介绍近世代数的基本概念和一些重要的定理。
群群是近世代数的基础概念之一,它是一个集合和一个二元运算的组合。
这个二元运算满足封闭性、结合律、单位元存在性和逆元存在性等性质。
封闭性对于群中的任意两个元素a和b,它们的运算结果ab也必须属于群中的元素。
结合律群中的运算满足结合律,即对于群中的任意三个元素a、b 和c,满足(a·b)·c = a·(b·c)。
单位元存在性群中存在一个元素e,称为单位元,对于群中的任意元素a,满足a·e = e·a = a。
逆元存在性对于群中的任意元素a,存在一个元素a’,称为逆元,满足a·a’ = a’·a = e,其中e是单位元。
环环是一种比群更一般的代数结构,它是一个集合和两个运算的组合。
这两个运算分别是加法和乘法,并且满足封闭性、结合律、分配律和单位元存在性等性质。
封闭性对于环中的任意两个元素a和b,它们的加法和乘法结果a+b和a·b也必须属于环中的元素。
结合律环中的加法和乘法满足结合律,即对于环中的任意三个元素a、b和c,满足(a+b)+c = a+(b+c)和(a·b)·c = a·(b·c)。
分配律环中的加法和乘法满足分配律,即对于环中的任意三个元素a、b和c,满足a·(b+c) = a·b + a·c和(b+c)·a = b·a + c·a。
单位元存在性环中存在一个元素0,称为加法的单位元,对于环中的任意元素a,满足a+0 = 0+a = a。
同时,环中存在一个元素1,称为乘法的单位元,对于环中的任意元素a,满足a·1 = 1·a = a。
近世代数的基础知识初等代数、高等代数和线性代数都称为经典代数(Classical algebra ),它的研究对象主要是代数方程和线性方程组)。
近世代数(modern algebra )又称为抽象代数(abstract algebra ),它的研究对象是代数系,所谓代数系,是由一个集合和定义在这个集合中的一种或若干种运算所构成的一个系统。
近世代数主要包括:群论、环论和域论等几个方面的理论,其中群论是基础。
下面,我们首先简要回顾一下集合、映射和整数等方面的基础知识,然后介绍本文需要用到的近世代数的相关知识。
3.1 集合、映射、二元运算和整数3.1.1 集合集合是指一些对象的总体,这些对象称为集合的元或元素。
“元素a 是集合A 的元”记作“A x ∈”,反之,“A a ∉”表示“x 不是集合A 的元”。
设有两个集合A 和B ,若对A 中的任意一个元素a (记作A a ∈∀)均有B a ∈,则称A 是B 的子集,记作B A ⊆。
若B A ⊆且A B ⊆,即A 和B 有完全相同的元素,则称它们相等,记作B A =。
若B A ⊆,但B A ≠,则称A 是B 的真子集,或称B 真包含A ,记作B A ⊂。
不含任何元素的集合叫空集,空集是任何一个集合的子集。
集合的表示方法通常有两种:一种是直接列出所有的元素,另一种是规定元素所具有的性质。
例如:{}c b a A ,,=;{})(x p x S =,其中)(x p 表示元素x 具有的性质。
本文中常用的集合及记号有:整数集合{} ,3,2,1,0±±±=Z ;非零整数集合{}{} ,3,2,10\±±±==*Z Z ; 正整数(自然数)集合{} ,3,2,1=+Z ;有理数集合Q ,实数集合R ,复数集合C 等。
一个集合A 的元素个数用A 表示。
当A 中有有限个元素时,称为有限集,否则称为无限集。
用∞=A 表示A 是无限集,∞<A 表示A 是有限集。
近世代数近世代数是数学中的一个重要分支,它主要研究代数结构及其应用。
近世代数产生于19世纪中叶,一开始被视为是整数理论的一部分,但随着研究的深入,近世代数逐渐发展成为一门独立的数学分支。
在这篇文章中,我们将对近世代数的概念、发展以及主要结论进行探讨。
一、近世代数的概念近世代数是指从巴格-瓦列理公式出发,发展起来的一种代数学,它主要研究代数结构的一般理论。
在近世代数中,我们主要研究群、环和域这三种代数结构,这三种代数结构都可以看作一组数以及对这些数进行运算的一种集合。
群:群是一种代数结构,它包含了一组有限或无限个元素以及一种二元运算。
这种运算满足结合律、单位元素存在和逆元素存在的条件,这里的逆元素指的是一个元素与之相乘可以得到单位元素。
环:环是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律和分配律。
域:域是一种代数结构,它包含了一组有限或无限个元素以及两种二元运算。
这两种运算被称作加法和乘法,加法满足结合律、交换律、单位元素存在以及逆元素存在的条件,乘法满足结合律、交换律、单位元素存在以及逆元素存在的条件。
此外,对于任意的非零元素,都有其乘法逆元素存在。
二、近世代数的发展1、伽罗华理论伽罗华理论是19世纪中期出现的一种代数理论,该理论最初的研究对象是方程的根式解。
伽罗华理论的主要思想是利用群论的方法研究方程的根的性质。
2、李群和黎曼猜想20世纪初,李群的概念被引入到了数学中。
李群是一种具有光滑结构和群结构的数学对象,它将代数和几何联系起来,是现代微分几何和物理学中不可或缺的数学工具之一。
黎曼猜想是数论中的一个著名猜想,它关于大约150年前被提出,至今尚未证明。
其主要内容是,对于任意正整数n,大于1的所有素数p都满足:p的虚部等于n的平方根。
3、格罗滕迪克定理格罗滕迪克定理是当代近世代数的一个重要定理,该定理表明,任何有限群都可以表示为一些简单有限群的直积。