离散数学之近世代数讲义附件2014
- 格式:pdf
- 大小:542.95 KB
- 文档页数:21
《近世代数》课程教案第一章基本概念教学目的与教学要求:掌握集合元素、子集、真子集。
集合的交、并、积概念;掌握映射的定义及应注意的几点问题,象,原象的定义;理解映射的相同的定义;掌握代数运算的应用;掌握代数运算的一般结合运算,理解几个元素作代数运算的特点;理解代数运算的结合律;掌握并能应用分配律与结合律的综合应用;掌握满射,单射,一一映射及逆映射的定义。
理解满射,单射,一一映射及逆映射的定义;掌握同态映射、同态满射的定义及应用;掌握同构映射与自同构的定义;掌握等价关系的定义,理解模n的剩余类。
教学重点:映射的定义及象与原象的定义,映射相同的定义;代数运算的应用,对代数运算的理解;代数运算的结合律;对定理的理解与证明;同态映射,同态映射的定义;同构映射的定义以及在比较集合时的效果;等价关系,模n的剩余类。
教学难点:元素与集合的关系(属于),集合与集合的关系(包含);映射定义,应用该定义应注意几点;代数运算符号与映射合成运算符号的区别;结合率的推广及满足结合律的代数运算的定义;两种分配律与⊕的结合律的综合应用;满射,单射,一一映射及逆映射的定义;同态映射在比较两个集合时的结果;模n的剩余类.教学措施:网络远程。
教学时数:8学时.教学过程:§1 集合定义:若干个(有限或无限多个)固定事物的全体叫做一个集合(简称集)。
集合中的每个事物叫做这个集合的元素(简称元)。
定义:一个没有元素的集合叫做空集,记为∅,且∅是任一集合的子集。
(1)集合的要素:确定性、相异性、无序性。
(2)集合表示:习惯上用大写拉丁字母A ,B ,C …表示集合,习惯上用小写拉丁字母a ,b ,c …表示集合中的元素. 若a 是集合A 中的元素,则记为A a A a ∉∈否则记为,. 表示集合通常有三种方法: 1、枚举法(列举法):例:A ={1,2,3,4},B ={1,2,3,…,100}. 2、描述法:{})(,)(x p x p x A =—元素x 具有的性质。