常微分方程的差分方法
- 格式:pptx
- 大小:511.17 KB
- 文档页数:46
淮北师范大学2013届学士学位论文常微分方程数值解法的误差分析学院、专业数学科学学院数学与应用数学研究方向计算数学学生姓名李娜学号 20091101070指导教师姓名陈昊指导教师职称讲师年月日常微分方程数值解法的误差分析李娜(淮北师范大学数学科学学院,淮北,235000)摘要自然界与工程技术中的很多现象,往往归结为常微分方程定解问题。
许多偏微分方程问题也可以化为常微分方程问题来近似求解。
因此,研究常微分方程的数值解法是有实际应用意义的。
数值解法是一种离散化的数学方法,可以求出函数的精确解在自变量一系列离散点处的近似值。
随着计算机计算能力的增强以及数值计算方法的发展,常微分方程的数值求解方法越来越多,比较成熟的有Euler 法、后退Euler法、梯形方法、Runge—Kutta方法、投影法和多步法,等等.本文将对这些解的误差进行分析,以求能够得到求解常微分数值解的精度更好的方法。
关键词:常微分方程, 数值解法, 单步法, 线性多步法, 局部截断误差Error Analysis of Numerical Method for Solving theOrdinary Differential EquationLi Na(School of Mathematical Science, Huaibei Normal University, Huaibei, 235000)AbstractIn nature and engineering have many phenomena , definite solution of the problem often boils down to ordinary differential equations. So study the numerical solution of ordinary differential equations is practical significance. The numerical method is a discrete mathematical methods, and exact solution of the function can be obtained in the approximation of a series of discrete points of the argument.With the enhanced computing power and the development of numerical methods,ordinary differential equations have more and more numerical solution,there are some mature methods. Such as Euler method, backward Euler method, trapezoidal method, Runge-Kutta method, projection method and multi-step method and so on.Therefore, numerical solution of differential equation is of great practical significance. Through this paper, error of these solutions will be analyzed in order to get a the accuracy better way to solve the numerical solution of ordinary differential.Keywords:Ordinary differential equations, numerical solution methods, s ingle ste p methods, l inear multi-step methods, local truncation error目录引言 (1)一、常微分方程 (1)1、定义 (1)2、常微分方程初值问题描述 (2)3、数值解法的基本思想与途径 (2)4、数值解的分类 (3)5、问题(1)解的存在惟一性定理 (4)二、几种常用的数值解法及其误差分析 (4)1、单步法 (4)(一)、欧拉法 (5)(二)、向后EuIer方法 (6)(三)、- 法 (7)(四)、改进欧拉法 (7)(五)Runge—Kutta方法 (9)2、线性多步法 (14)总结 (16)参考文献: (17)引 言自然界中很多事物的运动规律可用微分方程来刻画。
第六章 常微分方程与差分方程 一、基本盖帘 1.常微分方程含有自变量、自变量未知函数及未知函数的导数或微分的方程,称为微分方程,当未知函数是一元函数时,则称为常微分方程 2.微分方程的阶在微分方程中出现的未知函数的最高阶导数的阶数,称为微分方程的阶 3.微分方程的解若把某函数及其导数代入微分方程能使该方程称为恒等式,则称这个函数是该微分方程的一个解。
通常要求微分方程的解具有和该微分方程的阶数同样阶数的连续导数 4.微分方程的通解和特解含有与微分方程的阶数同样个数的独立任意常数的解,称为微分方程的通解,不含任意常数的解,称为微分方程的特解 5.微分方程的初始条件给定微分方程中未知函数及其导数在指定点的函数值的条件,称为微分方程的初始条件,初始条件的个数应与微分方程的阶数相同二、一阶微分方程一阶微分方程的基本类型是变量可分离的方程和一阶线性微分方程,而齐次微分方程可通过变量代换为变量可分离的方程 (一)变量可分离的方程 1.变量可分离方程的概念称为变量可分离的方程或dy y N x Q dx y M x P y g x f y )()()()()()('==2.变量可分离方程的特解⎰⎰⎰⎰+=+=≠≠方程的通解就是分别上述两个微分分,然后求积分,所得积端,把变量分离分别同除微分方程的两或时,用或用变量分离法:当,)()()()()()()()()(0)()(,0)(C dx x Q y P dy y M y N C dx x f y g dyy N x Q y g y N x Q y g(二)齐次微分方程1.齐次微分方程的标准形式)('xy f y =2.齐次微分方程的求解丢掉解,在求解过程中不要常数的解也是原微分方程的或注意:即可得到原方程的通解换回最后把可得通解于是有则首先作变量代换,令)()(0)(,0)(;0)(ln )()(','',u u f y M x Q y g xyu Cx C x dxu u f du u u f xu xu u y xyu -===+=+=--=+==⎰⎰(三)一阶线性微分方程1.一阶线性微分方程的标准形式性微分方程否则称为一阶非齐次线方程,称为一阶齐次线性微分即方程,当其中的自由项0)(',0)()()('=+≡=+y x p y x q x q y x p y 2.一阶线性微分方程的求解[],即得通解公式两端积分后再同乘乘积的导数公式同乘方程的两端,根据,积分因子法,用方法:性微分方程的通解公式代入即得一阶非齐次线积分可求出满足微分方程,把它代入原来的非齐次解即设非齐次微分方程的该为函数把其中的常数的通解,性微分方程先求对应的一阶齐次线:常数变易法方法公式:公式法直接利用通解方法⎰⎰=+⎰=⎰+⎰=⎥⎦⎤⎢⎣⎡⎰⎰⎥⎦⎤⎢⎣⎡⎰+⎰=⎰+==⎰⎰=⎰==+⎥⎦⎤⎢⎣⎡⎰+⎰=⎰⎰⎰-----dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p dx x p dx x p dx x p dxx p dx x p dx x p e e x q y x p y e e x yp e y ye e e x q C e y e x q C x C x q e x C x C e x C y x C C Ce y y x p y e x q C e y )(-)()()()()()()()()()()()()()()()(')(''3)()()(),()(')()(),(0)('2)(1三、线性微分厂房解的性质与结构二阶线性方程的一般形式均为连续函数,其中)(),(),()()(')(''x f x q x p x f y x q y x p y =++ 否则称为非齐次方程称二阶线性齐次方程,当右端项0)(≡x f的特解是则的两个特解与分别是方程与,设解的性质(叠加原理))()()(')('')()()()(')('')()(')('')()(.121212121x f x f y x q y x p y x y x y x f y x q y x p y x f y x q y x p y x y x y +=+++=++=++是非齐次方程的解则其的任意特解一阶、二阶为齐次方程的一个特解,一阶、二阶为非齐次方程若的特解一阶、二阶是对应齐次方程则其差的两个特解一阶、二阶为非齐次方程,若的解一阶、二阶仍为齐次方程则其线性组合的两个特解一阶、二阶为齐次方程,若)()()()()()()3()()(-)()()()()2()()()()()()()1(2121221121x y x y x y x y x y x y x y x y x y C x y C x y x y ++**为任意常数其中的通解为解,则二阶非齐次方程是二阶非齐次方程的特由二阶齐次方程的通解为个线性无关的特解,则为二阶非齐次方程的两,若为任意常数解,其中是一阶非齐次方程的通则个特解是一阶非齐次方程的一又的通解为特解,则一阶齐次方程是一阶齐次方程的非零设通解的结构212211*********,)()()()()()()()()2()()()(),()()1(.2C C x y x y C x y C y x y x y C x y C y x y x y C x y x Cy y x y x Cy y x y ****++=+=+==四、二阶常系数齐次线性微分方程(一)二阶常系数齐次线性微分方程的形式,0)(')(''2=++=++q p q p y x q y x p y λλ为常数,其特征方程为,其中分方程二阶常系数齐次线性微(二)二阶常系数齐次线性微分方程通解的形式 依据特征方程判别式的符号,其通解有三种形式为两个任意实数,其中,通解,特种方程有共轭复根,通解,特种方程有重根,通解,的实根,特种方程有两个相异212121*********),sin cos ()(04.3)()(04.2)(04.11121C C x C x C e x y i q p e x C C x y q p e C e C x y q p x xx x βββαλλλλλλλλ+=±-=∆+===-=∆+=-=∆五、二次常系数非齐次线性微分方程(一)二阶常系数非齐次微分方程的一般形式自由项已知函数,称为方程的的为一个不恒等于为常数,,其中微分方程二阶常系数非齐次线性0)(,)()(')(''x f q p x f y x q y x p y =++(二)二阶常系数非齐次微分方程的通解形式为待定系数次多项式,为系数待定的表中的B A n x R n ,)(六、含变限积分的方程对某些含变限积分的方程,可通过对方程求导的方法,转化为求解相应的微分方程的通解或微分方程初值问题的特解七、差分的概念及其性质 (一)差分的概念tt t t t t t t t t t t t t t t t t n t y y y y y y y y y y y y y y y y y y y y y y y t t f y +-=--=∆-∆=∆∆=∆-=∆∆-=++++++++1211212112102)(-)()(,...,,...,,,)(二阶差分分,记为的差分,也称为一阶差称为函数差个数列,则其值可以排列成一记其函数值为取所有的非负整数,并中的自变量设函数(二)差分的性质tt t t t t t t t t t t t t z y y z z y y z z y b a z b y a bz ay ∆+∆=∆+∆=⋅∆∆+∆=+∆++11)()2(,,)()1(为常数其中八、一阶常系数线性差分方程(一)一阶常系数线性差分方程的概念及一般形式0),(11=+≠=+++t t t t ay y a t f ay y 对应的齐次方程为其中常数式为线性差分方程的一般形分方程,一阶常系数及其差分方程,称为差自变量,自变量未知数同微分方程类似,含有(二)一阶常系数线性差分方程的通解与特解tt t t t t t t t t t t a C y y y t f ay y a C y C y C a C y ay y )()()(,)(010001-+==+-==-==+**++通解之和,与对应齐次方程的一个特解其通解也是非齐次方程对于非齐次方程即为满足该条件的特解则定初始条件是一个任意常数,若给,其中的通解齐次方程为下表总结了几种常见情形下非齐次方程特解所应具有的形式形式两种情况来设定特解的他们可以分别归结为前,而当,或当是两个待定系数和次多项式,是待定系数的上表特解中t m M t N t M M t N t M B A m t Q )1(sin cos ,sin cos 20)(-=+∏==+∏==ωωωωωωω九、常考题型及其解题方法与技巧题型一、变量可分离的方程与齐次微分方程的解法 题型二、一阶线性微分方程的解法题型三、有关线性微分方程解的性质及解的机构问题题型四、二阶常系数线性微分方程的解法题型五、含变限积分方程的求解题型六、由自变量与因变量增量间的关系给出的一阶方程题型七、综合题与证明题题型八、一阶常系数线性差分方程的解法题型九、微分方程的应用问题。
毕业论文题目抛物型方程的差分解法学院数学科学学院专业信息与计算科学班级计算0802学生王丹丹学号20080901045指导教师王宣欣二〇一二年五月二十五日摘要偏微分方程的数值解法在数值分析中占有重要的地位,很多科学技术问题的数值计算包括了偏微分方程的数值解问题【1】。
近三十多年来,数值解法的理论和方法都有了很大的发展,而且在各个科学技术的领域中应用也愈来愈广泛。
本文的研究主要集中在依赖于时间的问题,借助于简单的常系数扩散方程,介绍抛物型方程的差分解法。
本文以基本概念和基本方法为主,同时结合算例实现算法。
第一部分介绍偏微分方程及差分解法的基本概念,引入本文的研究对象——常系数扩散方程:22,,0 u ua x R tt x∂∂=∈>∂∂第二部分介绍上述方程的几种差分格式及每种格式的相容性、收敛性与稳定性。
第三部分通过算例检验每种差分格式的可行性。
关键词:偏微分方程;抛物型;差分格式;收敛性;稳定性;算例ABSTRACTThe numerical solution of partial differential equation holds an important role in numerical analysis .Many problems of compution in the field of science and techology include the numerical solution of partial differential equation. For more than 30 years, the theory and method of the numerical computation made a great development and its applications in various fields of science and technology are more and more widely. This paper focuses on the problems based on time. I will use object-constant diffusion equation to introduces the finite difference method of parabolic equation. This paper mainly focus on the basic concept ,basic method and simple numerical example.The first part of this paper introduces partial differential equations and basic concepts of finite difference method.I will introduce the object-constant diffusion equation for thefirst time.22,,0 u ua x R tt x∂∂=∈>∂∂The second part of this paper introduces several difference schemes of the above equation and their compatibility ,convergence and stability.The third part tests the accuracy of each scheme.Key words:partial differential equation;parabolic;difference scheme;convergence;stability;application目录摘要 (I)ABSTRACT (II)目录 (III)1前言 (1)2基本概念和定理 (2)2.1抛物型方程的基本概念 (2)2.1.1偏微分方程的定义 (2)2.1.2抛物型方程的定义 (2)2.1.3初边值条件的定义 (3)2.2 差分方法的基本思想 (3)2.3网格剖分 (4)2.4截断误差的基本概念 (5)2.5相容性的基本概念 (7)2.6收敛性的基本概念 (7)2.7稳定性的基本概念 (8)2.7.1判断稳定性的直接法 (8)2.7.2判断稳定性的Fourier方法 (9)3常系数扩散方程的差分格式及其相容性、收敛性和稳定性分析 (12)3.1向前差分格式 (12)3.2向后差分格式 (13)3.3 Crank-Nicolson格式 (14)3.4 Richardson格式 (16)4差分解法的应用 (18)结论 (25)参考文献..................................................... .................. .. (26)致谢 (27)附录 (28)1前言微积分方程这门学科产生于十八世纪,欧拉在他的著作中最早提出了弦振动的二阶方程,随后不久,法国数学家达朗贝尔也在他的著作《论动力学》中提出了特殊的偏微分方程[2]。
常微分方程的差分方法-欧拉法一、摘要:人类社会已迈进电子计算机时代。
在今天,熟练地运用计算机进行科学计算,已成为广大科技工作者和学者的一项基本技能,数值分析的基本内容是数值算法的设计与分析,科学技术当中常常需要求解常微分方程的定解问题,本文中主要以解决此问题最简单形式(一阶方程的初值问题)来求解微分方程。
虽然求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程,求解从实际问题中归结出来的微分方程主要主要靠数值解法,本文就数值解法中的差分方法进行求解微分方程。
二、关键词:差分方法、初值问题、数值解法、MATLAB三、引言:科学计算不应当将计算方法片面的理解为各种算法的简单罗列和堆积,它也是一门内容丰富、思想方法深刻而有着自身理论体系的数学学科。
微积分的发明是人类智慧的伟大发展。
求解常微分方程有各种各样的解析方法,但解析方法只能用来求解一些特殊类型的方程,求解从实际问题中归结出来的微分方程主要主要靠数值解法。
怎样应用数值解法求解从实际问题中归结出来的微分方程呢?四、正文y′=f(x,y) (1)y(x0)=y0 (2)方程(1)中含有导数项y′(x),这是微分方程的本质特征,也正是它难以求解的症结所在。
数值解法的第一步就是设法消除其导数项,这项手续称离散化。
由于差分是微分的近似运算,实现离散化的基本途径是用差商替代导数。
譬如,若在点x n列出方程(1):y′(x n)=f(x n,y(x n))替代其中的导数项y′(x n),结果有:并用差商y(x n+1)−y(x n)hy(x n+1)≈y(x n)+hf(x n,y(x n))设用y(x x)的近似值y n代入上式的右端,记所得结果为y n+1,这样导出的计算公式:y(x n+1)=y(x n)+hf(x n,y(x n)),n=0,1,2, (3)这就是众所周知的欧拉(Euler)格式。
若初值y0是已知的,则据式(3)可以逐步算出数值解y1,y2,…。
‘P(x)dxC (x) =Q(x)e ,,再对其两边积分得fP(x) dxC(x)二.Q(x)e dx C ,于是将其回代入常微分方程解法归纳1. 一阶微分方程部分①可分离变量方程(分离变量法) 如果一阶微分方程 d^ = f (x, y)中的二元函数 f (x, y)可表示为f (x, y)二g(x)h(y) dx 的形式,我们称 3 =g(x)h(y)为可分离变量的方程。
dx 对于这类方程的求解我们首先将其分离变量为 -dy g(x)dx 的形式,再对此式两边积 h(y)分得到 型 g(x)dx C 从而解出 3二g(x)h(y)的解,其中C 为任意常数。
' h(y) ' dx 具体例子可参考书本 P10 — P11的例题。
②一阶线性齐次、非齐次方程(常数变易法) 如果一阶微分方程史=f (x, y)中的二元函数f (x, y)可表示为 dx f(x, y) =Q(x) - P(x)y 的形式,我们称由此形成的微分方程 dy P(x)y =Q(x)为一阶线 dx性微分方程,特别地,当 Q(x) =0时我们称其为一阶线性齐次微分方程,否则为一阶线性 非齐次微分方程。
对于这类方程的解法,我们首先考虑一阶线性齐次微分方程裂P(x)厂0,这是可 —P(x)dx分离变量的方程,两边积分即可得到 y 二Ce • ,其中 C 为任意常数。
这也是一阶线性 非齐次微分方程的特殊情况,两者的解存在着对应关系,设 C(x)来替换C ,于是一阶线性 非齐次微分方程存在着形如 y=C(x)e - …P(x)dx …P(x)dx得至U C (x)e —P(x)C(x)e-P(x)dx dy 的解。
将其代入 P(x)y 二Q(x)我们就可 dx…P(x)dxP(x)C(x)e • 二Q(x)这其实也就是 —'P(x)dx y = C(x)e 即得一阶线性微分方程鱼,P(x)y =Q(x)的通解 dx-P(x)dxy =e .Q(x)eP(x)dxdx + CI 。
常微分方程有限差分
常微分方程是描述自然界中许多现象的数学模型,它们通常用
于描述变化的速率和趋势。
而有限差分则是一种数值方法,用于对
微分方程进行离散化处理,从而可以通过计算机进行求解。
将这两
者结合起来,可以得到一种强大的工具,用于求解复杂的微分方程
问题。
在常微分方程有限差分的方法中,我们首先将微分方程转化为
差分方程,然后利用数值方法进行求解。
这种方法的优势在于,它
可以处理一些无法通过解析方法求解的复杂微分方程,同时也可以
通过计算机进行高效的数值求解。
常微分方程有限差分的方法在科学和工程领域有着广泛的应用。
例如,在物理学中,它可以用于描述物体的运动和变形;在工程领域,它可以用于分析电路的动态行为和控制系统的稳定性;在生物
学中,它可以用于描述生物种群的增长和衰减。
通过常微分方程有
限差分的方法,我们可以更好地理解和预测这些现象的变化规律。
总之,常微分方程有限差分是一种强大的数值方法,它为我们
解决复杂的微分方程问题提供了新的途径。
通过这种方法,我们可
以更深入地理解自然界中的各种现象,并且为科学和工程领域的发展提供了重要的数学工具。