自然电位测井
- 格式:doc
- 大小:194.50 KB
- 文档页数:13
1自然电位测井 1 自然电位测井1.1 自然电场产生(原理)1.2 自然电位测井曲线特征1.3 自然电位曲线应用由于物体的高度h 而具有的能量叫重力势E=mgh重力势在A 点,重力势只与A 的高度h 有关,即A 点与参考零点(地面)的势差。
A类似地电场中任何一点的电势,就是该点相对于参考零点的电势差AOA U =ϕφA φBABo+电势1.1 自然电场产生¾电位与电势的关系?¾自然电位的发现。
(20年代电阻率测量)¾自然电场的产生由于泥浆和地层水的矿化度不同,在钻开岩层后,在井壁附近两种不同矿化度的溶液产生电化学过程,结果产生电动势造成自然电场。
(扩散、扩散吸附电动势,牢记!)一、扩散电动势1.1 自然电场产生Cw Cm ------++++++1.1 自然电场产生一、扩散电动势在NaCl溶液中,扩散电动势Ed可写成1.1 自然电场产生二、扩散吸附电动势Cw Cm------++++++阳离子交换1.1 自然电场产生二、扩散吸附电动势Cw>CmfK da 与阳离子交换能力有关若储层中泥质的阳离子交换量较高,则会导致低电阻率油层。
1.2 自然电位曲线特征一、井内总电动势二、自然电位测量(1)自然电位计算1.2 自然电位曲线特征二、自然电位测量(2)曲线测量三、自然电位测井曲线特征曲线以地层中点对称h>4d 时,SP=SSP ,半幅点对应地层界面。
h<4d 时,SP ≠SSP ,h 越小差别越大随h 减小地层界面界线向峰值移动,中点SP 取得最大值。
随h 减小,SP 幅度减小。
三、自然电位测井曲线特征当Cw>Cmf :负异常(淡水泥浆) 当Cw<Cmf :正异常(咸水泥浆) 当Cw=Cmf :无异常¾划分渗透性岩层(半幅点)¾估计泥质含量¾确定地层水电阻率Rw ¾判断水淹层1.3 自然电位曲线应用¾划分渗透性岩层(半幅点)1.3自然电位曲线应用¾估计泥质含量1.3自然电位曲线应用¾确定地层水电阻率(不做要求)1.3自然电位曲线应用¾判断水淹层(不做要求)1.3 自然电位曲线应用。
自然电位测井自然电位测井的基本原理、曲线形态、影响因素、地质应用。
测量自然电位随井深变化的曲线,用于划分岩性和研究储集层性质。
其测井的基本方法如下:如图所示,在井内放一测量电极M,地面放一测量电极N,将M 电极沿井筒移动,即可测出一条井内自然电位变化的曲线。
要对所测的SP曲线进行地质解释,首先应该了解自然电位是怎样产生的,它与地层的那些件质有关.一、自然电位产生的原因井内自然电位产生的原因是复杂的,对于油气井来说,主要有以下两个原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。
②地层压力与泥浆柱压力不同而引起的过滤电动势。
实践证明,在油气井中,这两种电动势以扩散电动势和吸附电动势占绝对优势。
1.扩散电位当两种不同浓度的溶液被半透膜隔开,离子在渗透压作用下,高浓度溶液的离子将穿过半透膜向较低浓度的溶液中移动。
这种现象叫扩散,形成的电位叫扩散电位,在油井中,此种扩散有两种途径:一是高浓度一方通过砂岩向低浓度泥浆中扩散;二是通过泥岩向泥浆中扩散。
其扩散电位大小取决于①正负离子的运移率(单价离子在强度为1伏特/厘米的电场作用下的移动速度);②温度、压力;③两种溶液的浓度差;④浓度、离子类型及浓度差。
离子由砂岩向泥浆中扩散时,由于Cl-比Na+的运移率大,因此在砂岩高浓度一侧聚集多余的正电荷,而在泥浆中聚集负电荷。
离子量移动到一定程度,形成动态平衡,此时电位叫扩散电位,经实验,扩散电位Ed可由以下公式求得:Ed=Kdlg(Cw/Cmf)Kd-扩散电位系数,与盐类的化学成份及温度有关。
在井中,18℃时若地层水浓度Cw 等于10倍的泥浆溶液矿化度Cmf时,经理论推算:kd=-11.6mv,其中负号表示低度一方井中的电位低Cmf、Cw-泥浆滤液和地层水矿化度。
当溶液矿化度不高时,溶液浓度与电阻率成反比,即Ed=Kdlg(Cw/Cmf)=Kdlg(Rmf/Rw) Rmf,Rw-泥浆滤液和地层水电阻率12. 吸附电位(隔膜作用-砂岩通过泥岩与泥浆之间交换离子)因为泥岩结构、化学成分等与砂岩不同,因此与泥浆之间形成的电位差大,且符号与扩散电位相反,这是由于粘土矿物表面具有选择吸附负离子的能力。