测井曲线解释及其含义
- 格式:doc
- 大小:300.50 KB
- 文档页数:9
自然电位测井曲线的分析解释自然电位测井曲线是一种常见的地球物理测井方法,通过测量地层自然电位的变化来获取地下地质信息。
本文将对自然电位测井曲线的分析解释进行详细探讨,帮助读者更好地了解和应用该方法。
一、自然电位测井曲线的概述自然电位测井曲线是通过电极在地层中测量地下电场的差异而得到的测井曲线。
电极对地下电场的测量可以反映地层的电性、含水层、岩石类型和地下流体性质等信息。
自然电位测井曲线通常以深度为横坐标,电位值为纵坐标,形成一条随深度变化的曲线。
二、自然电位测井曲线的主要特征1. 深度响应特征:自然电位测井曲线随深度变化,可以发现一些特殊的变化规律,如异常电位值、陡降和平缓变化等。
2. 地层特征反映:自然电位测井曲线能够反映地下地层的一些特征,如含水层界面、地层厚度和地下流体类型等。
3. 岩性识别:不同岩石具有不同的导电特性,自然电位测井曲线可以通过岩性识别来帮助解释地下岩石类型。
4. 地下流体性质分析:自然电位测井曲线的变化可以推测地下流体(如水、油、气)的存在和特性。
三、自然电位测井曲线的解释方法1. 异常值分析:通过对自然电位测井曲线的异常值进行分析,可以判断是否存在异常地层或地下流体的存在。
异常值可能是由含水层边界、地下断层、堆积岩层等引起的。
2. 曲线趋势分析:对自然电位测井曲线的整体趋势进行分析,可以发现地层的变化规律,如地下流体的分布、地层的递增或递减等。
3. 地下流体判别:通过自然电位测井曲线的变化,结合其他地球物理测井数据,可以判别地下流体的类型和性质。
4. 岩性推测:利用自然电位测井曲线与岩石类型的关系,可以对地下岩石进行识别和推测。
四、自然电位测井曲线的应用领域1. 油气勘探:自然电位测井曲线在油气勘探中起到重要的作用,通过分析曲线特征和解释结果,可以确定油气藏的存在和性质。
2. 水源勘探:自然电位测井曲线可以用于水源勘探,通过测量地下含水层的特征,判断水源的位置和质量。
3. 工程应用:自然电位测井曲线在地质工程和水文地质工程中也有广泛应用。
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井资料综合解释经典测井是油气勘探开发过程中极为重要的一项技术手段,通过对地下岩层进行电磁、声波、核子等各种物理方法的测量,获取有关地层、含油气性质等基本参数的数据。
测井数据对于判断油气藏的性质、水文地质条件、岩性变化等都具有重要的参考价值。
本文将综合解释几种经典的测井资料,包括测井曲线、测井解释方法等。
一、测井曲线1. 自然伽马测井曲线(GR)自然伽马测井曲线测量的是地层的自然伽马辐射强度,是一种常用的测井曲线之一。
自然伽马辐射是由岩石中的放射性元素,如钍、钾和铀等的衰变所产生的。
GR曲线的峰值反映了岩石的放射性物质含量,通过与岩层进行对比分析,可以判断岩层的类型和含油气性质。
2. 电阻率测井曲线(ILD、Rt)电阻率是指物质对电流的阻碍程度,电阻率测井曲线测量了地层的电阻率值。
岩石的电阻率与其孔隙度、含水饱和度以及岩石的含油气性质密切相关。
ILD曲线是测量液体饱和度等含油气性质的重要参数,而Rt曲线通常用于描述岩石的电阻性质。
3. 声波测井曲线(DT、ΔT)声波测井曲线主要是通过测量岩石对声波的传播速度来获取有关地层岩性和孔隙度等参数。
DT曲线即声波传播时间曲线,反映了声波在地层中传播所需的时间,ΔT曲线是声波时差曲线,它可用于计算地层中流体的饱和度。
二、测井解释方法1. 直接解释法直接解释法是根据测井曲线的特征进行判断、推断,结合地层信息和岩性特征,直接得出结论。
例如,根据GR曲线的峰值及其分布情况,可以判断油气层的存在与否,以及油气层的厚度和含油饱和度等。
2. 相关系数法相关系数法是通过建立地层参数之间的统计关系来进行解释。
通过计算测井曲线之间的相关系数,可以得出地层岩性、岩相、孔隙度、饱和度等参数的推断。
例如,通过计算GR曲线与含油饱和度的相关系数,可以判断油气层的含油饱和度等。
3. 分层解释法分层解释法是根据地层的特点和垂向变化进行测井解释。
通过分析测井曲线的规律性变化和层段特点,将地层划分为若干层段,再对每个层段进行解释。
1.声波时差曲线:在泥砂岩剖面上,砂岩显示低时差,其数值随孔隙度的不同而不同;泥岩一般为高时差,其数值随压实程度的不同而变化;页岩的时差介于泥岩和砂岩之间;砾岩的时差一般都较低,并且越致密声波时差值越低.在碳酸盐剖面上,致密石灰岩和白云岩声波时差最低,如含有泥质时,声波时差增高,若有孔隙和裂缝,声波时差明显增大,甚至出现周波跳跃.石膏岩盐剖面,渗透性砂岩最高?,泥岩(含钙质、石膏多)与致密砂岩相近,泥质含量高时增大,岩盐扩径(井直径)严重,周波跳跃?气体比油水的时差要大的多,岩性一定时候,含气层段出现周波跳跃。
2.自然Gamma曲线:在泥砂岩剖面上,纯砂岩在自然Gamma曲线上显最底值,泥岩显最高值,粉砂岩和泥质砂岩介于二者之间,并随着岩层中泥质含量增加曲线幅度增加;在碳酸盐剖面上,泥岩和页岩显最高值,纯的石灰岩、白云岩有最低值,而泥灰岩、泥质石灰岩、泥质白云岩自然Gamma测井曲线值介于二者之间,并随泥质含量增加幅值增大.3.微电极测井曲线中砂岩异常幅度差大于粉沙岩异常幅度差.4.泥岩在密度测井曲线上值较高而煤层密度测井值在剖面上看很低5.在淡水泥浆的沙泥岩剖面井中,自然电位测井曲线以大断泥岩层部分的自然电位曲线为基线,此时出现负异常的井段都可认为是渗透性岩层。
在含有泥质的砂岩中由于泥质对溶液产生吸附电动势使总电动势降低。
所以纯砂岩的自然电位异常幅度要比泥质岩石的异常幅度大,而且随着砂岩中泥质含量的增加,自然电位异常幅度会随之减小自然电位与自然伽马对砂岩泥岩都很敏感,但是自然电位容易受到流体性质、岩层厚度的影响,含油气或者薄层时,幅度很低。
粉砂和泥的比值大于1:2,幅度趋于0.自然伽马虽然也受到层厚影响,层厚小于0.8米时才开始显现影响。
以上为一般情况(正常压实),如果欠压实,情况相反,砂岩出现高时差,如渤海湾明化镇组所以具体地区具体问题具体分析(要根据岩心资料建立具体解释模型)6.感应测井为了获取井下地层的原始含油饱和度资料,用油基钻井液钻井;为了不破坏井下地层的渗透率,有时采用空气钻井;这时井中没有导电介质,不能传导电流,为了解决这个问题,发明了感应测井。
主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw 的关系一致。
Rmf≈Rw时,SP几乎是平直的;Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
测井曲线1. 什么是测井曲线?测井曲线是指在地质勘探和石油工程中利用测井资料绘制出来的曲线图。
测井曲线能够反映地下地层的各种属性和特征,如岩性、含油气性、含水性、孔隙度等。
通过观察和分析测井曲线,可以判断地层的储集条件和物性参数,为地质勘探和油气开发提供重要的信息和依据。
2. 测井曲线的种类目前常见的测井曲线主要有以下几种:2.1 自然伽马测井曲线(GR)自然伽马测井曲线(Gamma Ray log)是一种常用的测井曲线。
它通过测量地下岩石自然辐射所产生的伽马射线强度,来表征地层的放射性特性。
GR曲线对比度较高,可以用于识别各种不同富含放射性矿物的地层,如砂岩、页岩、煤层等。
2.2 阻抗测井曲线(AI、RI)阻抗测井曲线(Acoustic Impedance log)是通过测量地层中声波的传播速度以及密度,来计算岩石的声阻抗。
阻抗测井曲线能够提供地层的弹性参数信息,对岩石的孔隙度、含油气性等特征有很好的反映。
常见的阻抗测井曲线有AI(Acoustic Impedance)曲线和RI(Reflection Index)曲线。
2.3 电阻率测井曲线(ILD、LLD)电阻率测井曲线(Resistivity log)是通过测量地层中岩石对电流的阻抗大小,来估算地层的电阻率。
电阻率测井曲线能够反映地层中的含水性和含油气性等特征,对于区分油层、水层和岩石层有很大的帮助。
常用的电阻率测井曲线有ILD (Induction Laterolog Deep)曲线和LLD(Laterolog Laterolog Deep)曲线。
2.4 速度测井曲线(DT、VS)速度测井曲线(Velocity log)是测量地下岩石中声波传播速度的测井曲线。
速度测井曲线可以提供地层介质的声速信息,对于预测地层的物态和孔隙度等参数有很大的帮助。
常见的速度测井曲线有DT(Delta-T)曲线和VS(Shear Wave Velocity)曲线。
常见测井曲线说明1、所有测井曲线经环境校正后,其前加C:如GR-CGR;CNL-CCNL;LLD-CLLDDEN-CDEN;LLS-CLLS;SNP(井壁中子)-CSNP等;2、易混淆测井曲线的中文名:NLL-中子寿命;SBL-泥岩基线;NEU-中子测井;CALC-微差井径SPEC-能谱曲线;SWN-井壁中子;RA T-来自中子寿命测井的比值曲线UR-铀;THOR-土;K40-钾;TPI-土/钾指数;SGMA-中子寿命;CTS-中子伽马计数率;TC-能谱测井总计数率;G2-中子寿命测井PORS-井壁中子;RA TO中子寿命短/长之比另外,还有电测井系列:MNOR-微电位;MINV-微梯度;NL-微电位;ML-微梯度;R1、R2、R3、R4、R6、R8、R45:分别为1米、2米、3米、4米、6米、8米、0.45米梯度测井;R04、R05:为0.4米、0.5米电位测井;3、常见测井解释成果曲线名:孔隙度系列:POR-孔隙度;PORT-总孔隙度;PORF-冲洗带含水孔隙度;PORW-地层含水孔隙度;PORX-流体孔隙度;PORH-含烃重量;POR2-次生孔隙度;EPOR-有效孔隙度;泥质系列:SH-泥质含量;CL-粘土含量;SI-粉砂岩含量;CLD-分散泥质含量;CLS-结构泥质含量;CLL-层状泥质含量TMON-粘土中蒙托石含量;TILL-粘土中伊利石含量;CEC-阳离子交换能力;QV-阳离子交换容量;BWCL-粘土束缚水含量渗透率系列:PERM-渗透率;PIW-水的渗透率;PIH-油的渗透率;KRW-水的相对渗透率;KRO-油的相对渗透率;PERW-水的有效渗透率;PERO-油的有效渗透率饱和度系列:SW-地层含水饱和度;SXO-冲洗带含水饱和度;SWIR-束缚水饱和度ESW-有效含水饱和度;HYCV-地层平均含烃体积;HYCW-地层平均含烃重量特殊岩性:CI-煤指示;BULK-出砂指数;CARB-炭的体积;SAND-砂岩体积;LIME-石灰岩体积;DOLO-白云岩体积;ANHY-硬石膏体积;C1、C2、C3、C4-附加矿物1、2、3、4的体积;。
主要测井曲线及其含义主要测井曲线及其含义一、自然电位测井:测量在地层电化学作用下产生的电位。
自然电位极性的“正”、“负”以及幅度的大小与泥浆滤液电阻率Rmf和地层水电阻率Rw的关系一致。
Rmf≈Rw时,SP几乎是平直的; Rmf>Rw时SP为负异常;Rmf<Rw时,SP在渗透层表现为正异常。
自然电位测井SP曲线的应用:①划分渗透性地层。
②判断岩性,进行地层对比。
③估计泥质含量。
④确定地层水电阻率。
⑤判断水淹层。
⑥沉积相研究。
自然电位正异常Rmf<Rw时,SP出现正异常。
淡水层Rw很大(浅部地层)咸水泥浆(相对与地层水电阻率而言)自然电位测井自然电位曲线与自然伽马、微电极曲线具有较好的对应性。
自然电位曲线在水淹层出现基线偏移二、普通视电阻率测井(R4、R2.5)普通视电阻率测井是研究各种介质中的电场分布的一种测井方法。
测量时先给介质通入电流造成人工电场,这个场的分布特点决定于周围介质的电阻率,因此,只要测出各种介质中的电场分布特点就可确定介质的电阻率。
视电阻率曲线的应用:①划分岩性剖面。
②求岩层的真电阻率。
③求岩层孔隙度。
④深度校正。
⑤地层对比。
电极系测井2.5米底部梯度电阻率进套管时有一屏蔽尖,它对应套管鞋深度;若套管下的较深,在测井图上可能无屏蔽尖,这时可用曲线回零时的半幅点向上推一个电极距的长度即可。
底部梯度电极系分层:顶:低点;底:高值。
三、微电极测井(ML)微电极测井是一种微电阻率测井方法。
其纵向分辨能力强,可直观地判断渗透层。
主要应用:①划分岩性剖面。
②确定岩层界面。
③确定含油砂岩的有效厚度。
④确定大井径井段。
⑤确定冲洗带电阻率Rxo及泥饼厚度hmc。
微电极确定油层有效厚度微电极测井微电极曲线应能反映出岩性变化,在淡水泥浆、井径规则的条件下,对于砂岩、泥质砂岩、砂质泥岩、泥岩,微电极曲线的幅度及幅度差,应逐渐减小。
四、双感应测井感应测井是利用电磁感应原理测量介质电导率的一种测井方法,感应测井得到一条介质电导率随井深变化的曲线就是感应测井曲线。
感应测井曲线的应用:①划分渗透层。
②确定岩层真电阻率。
③快速、直观地判断油、水层。
油层:RILD>RILM>RFOC水层:RILD< RILM< RFOC纯泥层: RILD、RILM基本重合五、双侧向测井双侧向测井是采用电流屏蔽方法,迫使主电极的电流经聚焦后成水平状电流束垂直于井轴侧向流入地层,使井的分流作用和低阻层对电流的影响减至最小程度,因而减少了井眼和围岩的影响,较真实地反映地层电阻率的变化,并能解决普通电极系测井所不能解决的问题。
双侧向测井资料的应用:①确定地层的真电阻率。
②划分岩性剖面。
③快速、直观地判断油、水层。
六、八侧向测井和微球形聚焦测井.⑴、八侧向是一种浅探测的聚焦测井,电极距较小,纵向分层能力强,主要用来反映井壁附近介质的电阻率变化。
⑵、微球形聚焦测井是一种中等探测深度的微聚焦电法测井,是确定冲洗带电阻率测井中较好的一种方法主要应用:①划分薄层。
②确定Rxo。
七、井径测井主要用途:计算固井水泥量;测井解释环境影响校正;提供钻井工程所需数据。
渗透层井径数值略小于钻头直径值。
致密层一般应接近钻头直径值。
泥岩段,一般大于钻头直径值。
八、声波时差测井根据岩石的声学物理特性发展起来的一种测井方法,它测量地层声波速度。
主要用途:①判断气层;②确定岩石孔隙度。
③计算矿物含量含气层,声波时差出现周波跳跃现象,或者测井值变大。
▲在大井眼处(大于0.4米),也会出现声波时差变大或跳跃九、补偿声波测井声波时差曲线数值不得低于岩石的骨架值,不得大于流体时差值。
补偿声波测井声波时差数值应符合地区规律(如孤东地区上馆陶),利用声波时差计算的地层孔隙度值与补偿中子、补偿密度或岩性密度计算的地层孔隙度值基本一致。
渗透层不得出现与地层无关的跳动,如有周波跳跃,测速应降至1200m/h以下重复测量。
十、自然伽马测井自然伽马测井是在井内测量岩层中自然存在的放射性核素衰变过程中放射出来的γ射线的强度来研究地质问题的一种测井方法。
GR的用途:①判断岩性。
②地层对比。
③估算泥质含量。
大井眼处,自然伽马低值显示十一、补偿中子测井(CNL,Φ%)补偿中子测井是采用双源距比值法的热中子测井,它沿井剖面测量由中子源所造成的热中子通量(即能量为0.025—0.01ev的热中子空间分布密度)。
补偿中子测井直接给出石灰岩孔隙度值曲线。
如果岩石骨架为其它岩性,则为视石灰岩孔隙度。
主要应用:①确定地层孔隙度。
②计算矿物含量③ΦD—ΦN曲线重叠直观确定岩性。
④与补偿密度曲线重叠判断气层。
补偿中子测井致密层测井值应与岩石骨架值相吻合。
十二、补偿密度测井(DEN,g/cm3)利用同位素伽马射线源向地层辐射伽马射线,再用与伽马源相隔一定距离的探测器来测量经地层散射、吸收之后到达探测器的伽马射线强度。
由于被探测器接收到的散射伽马射线强度与地层的岩石体积密度有关,故称为密度测井。
主要应用:①识别岩性。
②确定岩层的孔隙度。
③计算矿物含量。
测井曲线与补偿中子、补偿声波、自然伽马曲线有相关性。
十三、高频等参数感应测井高频感应是一个五线圈系探测系统,每个线圈系由一个发射线圈和两个接收线圈组成。
五个线圈系的长度分别为0.5、0.7、1.0、1.4、2.0m,工作频率分别为14.0、7.0、3.5、1.75、0.875MHz。
直接测量结果为五条相位差曲线,通过相位差与电阻率之间的对应关系,计算后得到五条电阻率曲线。
主要应用:①划分薄层;②计算地层电阻率、侵入带电阻率及侵入半径;③评价储集层流体饱和类型;④划分油气水界面;⑤评价储集层径向非均质性,进而研究储集层内可动油的分布。
⑥评价储集层的渗流能力较高的纵向分辨率高频感应图中的油/水分界面高频感应与双感应的比较裸眼井测井系列的选择砂泥岩剖面:泥岩、砂岩为主的地层。
碳酸盐岩剖面:灰岩、白云岩为主的地层。
复杂岩性剖面:火成岩、变质岩、砾岩及其它复杂碎屑岩地层。
测井系列选择原则能体现其先进性、有效性及可行性;能有效地划分储层;具有不同径向探测能力,能有效地求解地层真电阻率;能定量计算储层孔隙度、渗透率、含水饱和度及其它地质参数;能有效地判断油、气、水层;能进行地层对比。
裸眼井测井系列分类侧向和感应的选择方法测井资料质量检查测井曲线的准确性是保证测井解释结果可靠的前提,然而,由于测井环境中各种随机因素的影响,测井曲线的幅度不可避免地受到许多非地层因素的影响,因此,为了保证测井解释与数据处理的精度,要对测井资料进行质量检验。
通过测井资料质量检查过程,保证了测井曲线的质量。
测井曲线深度和幅度偏差的校正利用专门的处理程序,交会图是一种常用的检查测井质量的技术方法。
用中子—密度交会图检查测井曲线质量用中子—密度的GR-Z值图识别岩性,检查测井曲线质量。
测井资料的解释测井资料解释:利用测井资料分析地层的岩性,判断油、气、水层,计算孔隙度、饱和度、渗透率等地质参数,评价油气层的质量等。
定性解释人工定性地判断油气水层一般采用比较分析的方法,是一项地区性、经验性很强的工作。
⑴首先划分渗透层;⑵再对储集层的物性(孔隙性、渗透性等)进行分析;⑶最后分段解释油气水层:在地层水电阻率基本相同的井段内,对地层的岩性、物性、含油性进行比较,然后逐层作出结论。
用SP(GR)曲线异常确定储层位置用微电极曲线确定分层界面分层时环顾左右,考虑各曲线的合理性扣除夹层(泥层和致密层),厚层细分★划分界面:SP、GR、微电极、声波、感应、CNL、DEN半幅点。
R4、 R2.5极值★储层特征: SP幅度异常,GR低值,微电极有幅度差,AC、CNL、DEN 数值符合地区规律,CAL等于或略小于钻头值(平直)油层的电性特征:①电阻率高,在岩性相同的情况下,一般深探测电阻率是邻近水层的3-5倍以上。
岩性越粗,含油饱和度越高,电阻率数值也越高;②自然电位异常幅度略小于邻近水层;③浅探测电阻率小于或等于深探测电阻率数值,即侵入性质为低侵或无侵;④计算的含油饱和度大于50%,好油层可达60-80%。
水层的电性特征:①自然电位异常幅度大,一般大于油层;②深探测电阻率数值低。
砂泥岩剖面水层电阻率一般为2-3欧姆米;③明显高侵。
即浅探测电阻率数值大于深探测电阻率数值;④计算的含油饱和度数值接近0,或小于30%。
定性解释的方法①油层最小电阻率法;②标准水层对比法;③邻井资料对比法;④径向电阻率法。
径向电阻率法--泥浆侵入剖面冲洗带:岩石孔隙受到泥浆滤液的强烈冲洗,原始流体被挤走,孔隙中为泥浆滤液和残余地层水或残余油气。
过渡带:距井壁有一定的距离,泥浆滤液减少,原始流体增加。
未侵入带:未受泥浆侵入的原状地层。
高侵剖面泥浆高侵:Rxo>>Rt。
用淡水泥浆钻井的水层一般形成典型的高侵剖面,部分具有高矿化度地层水的油气层,也可能形成高侵剖面,但Rxo和Rt的差别比相应的水层小。
低侵剖面一般是油气层具有典型的低侵剖面( Rxo明显低于Rt),部分水层(Rmf<Rw)也可能出现低侵剖面,但Rxo和Rt的差别比相应的油气层小。
定量解释的基础—阿尔奇公式定量解释基础资料的了解:包括油田的构造特点和油气藏类型、各时代地层的分布规律、各主要含油层系的岩电变化规律;钻井过程中的油气显示、钻井取心、井壁取心、岩屑录井、气测资料、试油试水资料深度校正:在测井解释前,必须进行测井曲线校深,使所有测井曲线有完全一致的对应关系。
环境校正:对井眼、钻井液、围岩等因素造成的偏差进行校正。
地层水电阻率的确定地层水有时也称作原生水或孔隙水,是饱和在多孔地层岩石中未被钻井泥浆污染的水。
地层水电阻率Rw是重要的解释参数,因为利用电阻率测井资料计算含水饱和度(或含油饱和度)时,Rw是必不可少的。
有以下几种方法得到Rw数值:水分析资料自然电位曲线(水层) SSP=Klg(Rmf/Rt)电阻率--孔隙度资料(水层)F=Rt/Rw=a/φm根据地区统计规律储层参数计算—孔隙度AC计算:Φ=(Δt-Δtma)/(Δtmf-Δtma)/ CpCp为地层压实校正系数,约为(1.68-0.0002*地层深度H)Δtma为岩石骨架值,砂岩一般取180Δtmf为流体声波时差,一般取水的时差值620Δt为岩石声波时差读数。
DEN计算:Φ=(ρ-ρma)/(ρf -ρma)ρf为为孔隙流体密度,ρma为岩石骨架密度,砂岩一般为2.65,石灰岩为2.71,白云岩为2.87。
ρ为岩石密度读数。
CNL:直接读出储层参数计算—饱和度根据阿尔奇公式:F=Ro/Rw=a/φmI=Rt/Ro=b/Swn有Sw=(abRw/φmRt)1/n一般取a=0.7,b=1,n=2, m=2.06,得出:储层参数计算—渗透率lgK=D1+1.7lgMd+7.1lgФ其中D1为经验系数,取值范围为7~9.5lgMd=C0+C1ΔGR(C0、C1为经验系数)C0=lgMd0,Md0一般取0.20;C1=-1.75- lgMd0ΔGR=(GR-GRmin)/(GRmax-GRmin)储层参数计算—泥质含量泥质含量Vsh:Vsh= (2c*SH –1)/(2c-1)C为经验系数(新生界地层C=3.4-4,老地层C=2)。