北师大版七年级上册数学 第五单元 一元一次方程的认识
- 格式:ppt
- 大小:633.00 KB
- 文档页数:22
一元一次方程概念和解法【知识要点】1、一元一次方程的定义:在一个等式中,只含有一个未知数,并且未知数的次数(指数)是1,形如+=0(0)kx b k ≠这样的方程叫做一元一次方程。
注意三点:①方程是等式,要有“=”连接 ②只含有一个未知数 ③未知数的指数是12、一元一次方程的解法:去分母:等号两边同时乘以分母的最小公倍数,将未知数的系数变为整数。
去括号:①扩号前面有数字的先将数字按乘法分配律逐一与括号内数字相乘,符号不变。
②去括号时遵循减变加不变的原则。
(括号前是减号,括号内所有符号全部改变) 移项:把含有未知数的项移到一边,不含未知数的项移到另外一边。
合并同类项:同字母,同次数,字母次数不变,系数相加。
系数化为1:等号两边同时除以未知数的系数。
检验:将解得的根代入原式,看等号两边是否成立,若等式不成立说明你一定计算错了。
【知识应用】1、下列哪些是方程: ①523-x =1 ②316131-+=y y ③1+x ④22=+x x ⑤21+2=+22y y2、若方程|21|50m mx--=是一元一次方程,则=m3、若方程x y n xm 是关于5)2(22=++-的一元一次方程,求n m +的值。
4、接下列方程:(1)224)2(4+=+-x x (2)316131-+=y y(3)1%20)215()21(3%354-⨯-=-+⨯x x(4)1}8]6)4233(43[32{21=--+-x5、当=x _____时,代数式523-x 的值为 -1.6、x 取什么值时,式子93)25()1(3倍少的比式子x x +-?7、 已知x y y x 的代数式表示用含01232=+-_________________。
8、解关于)3(153≠+=+-b bx a x x 的方程9、若方程412-=-=+x x m x 的解是,那么m 的值为_____。
10、已知2是关于x 的方程0223=-a x 的一个根,求12-a 的值。
北师大版七年级上册第五章一元一次方程知识点总结一元一次方程是初中数学中的基础知识之一,它在我们的日常生活和解决问题中起到了重要的作用。
下面将对北师大版七年级上册第五章一元一次方程的相关知识点进行总结。
1. 什么是一元一次方程一元一次方程,顾名思义,是指方程中只含有一个未知量,并且未知量的最高次数为1。
一般形式为:ax + b = 0(其中a、b为已知数,a≠0)。
在方程中,字母x表示未知量,而系数a和常数b则是已知数。
2. 方程的解解是指能使方程等式成立的数值。
对于一元一次方程来说,它只有一个解或无解。
当方程有解时,这个解将满足方程的等式,当方程无解时,不存在满足方程等式的数。
3. 解方程的基本步骤解一元一次方程的基本步骤如下:a) 将方程中的项按照系数大小排列;b) 若方程中有常数项,则将常数项移到方程的另一边;c) 将方程两边的项合并,化简得到最简形式;d) 进行方程两边的运算,将未知量的系数化为1;e) 得出方程的解。
4. 方程的性质a) 方程等式两边可以交换位置,仍然保持等式成立;b) 方程等式两边可以同时乘以同一个数,等式仍然成立;c) 若方程两边乘以同一非零数的结果相等,那么方程有相同的解;d) 方程等式两边可以同时加上或减去同一数,等式仍然成立;e) 方程两边加上或减去一个数的结果相等,方程有相同的解;f) 方程等式两边可以同时乘以或除以同一个正数,等式仍然成立;g) 方程等式两边可以同时乘以或除以同一个负数,并且改变等号的方向,等式仍然成立。
5. 一元一次方程的应用一元一次方程在生活中有许多应用场景,例如:a) 解决购物问题:某商品原价x元,打折后降至80元,求原价;b) 解决分配问题:某汽车队规定每辆汽车运送16人,若共有128人,需要多少辆汽车;c) 解决工作时间问题:某人一天工作8小时,休息16小时,共工作多少天等。
总结:一元一次方程是初中数学的基础知识之一,通过对方程的解、解方程的步骤、方程的性质以及一元一次方程的应用进行总结,可以更好地理解和掌握一元一次方程的知识。
北师大版数学七年级上册5.1《认识一元一次方程》教案1一. 教材分析《认识一元一次方程》是北师大版数学七年级上册第五章第一节的内容。
本节课的内容是让学生初步了解一元一次方程的概念,学会解一元一次方程,培养学生解决实际问题的能力。
通过本节课的学习,学生能够理解一元一次方程的定义,掌握一元一次方程的解法,并能够应用一元一次方程解决实际问题。
二. 学情分析学生在学习本节课之前,已经学习了有理数、整式等基础知识,对数学符号和运算有一定的了解。
但是,对于一元一次方程这一概念,学生可能比较陌生。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握一元一次方程的概念和解法。
三. 教学目标1.知识与技能:让学生了解一元一次方程的概念,学会解一元一次方程。
2.过程与方法:通过实际问题,让学生感受数学与生活的联系,培养学生解决实际问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.重点:一元一次方程的概念和解法。
2.难点:理解一元一次方程的实际意义和解法。
五. 教学方法采用问题驱动法、案例教学法和小组合作法。
通过实际问题引导学生思考,用案例教学法讲解一元一次方程的解法,小组合作法让学生在讨论中巩固知识。
六. 教学准备1.准备一些实际问题,用于引导学生思考和练习。
2.准备PPT,用于展示和讲解一元一次方程的解法。
七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考如何用数学方法解决问题。
例如,假设小明有3个苹果,每天吃掉1个,问5天后他还剩下几个苹果?这个问题可以引导学生思考如何用数学方法表示这个问题,从而引入一元一次方程的概念。
2.呈现(10分钟)通过PPT展示一元一次方程的定义和解法。
一元一次方程的一般形式为ax+b=0,其中a和b是常数,x是未知数。
解一元一次方程的步骤为:移项、合并同类项、化简、求解。
3.操练(10分钟)让学生练习解一元一次方程。
北师大版七年级一元一次方程一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。
在北师大版的七年级数学教材中,一元一次方程被作为一个重要的主题进行讲解。
本文将探讨一元一次方程的概念、一元一次方程的应用以及如何求解一元一次方程。
一、一元一次方程的概念一元一次方程是一个包含未知数和常数的等式,未知数的次数为1。
例如,x + 5 = 7,这是一个简单的一元一次方程,其中x是未知数,5和7是常数。
二、一元一次方程的应用一元一次方程在日常生活和科学研究中有着广泛的应用。
例如,在购物时,我们可能需要计算找零或支付金额;在行程问题中,我们可能需要计算速度或时间;在科学研究中,我们可能需要测量或计算各种物理量。
这些问题都可以通过建立一元一次方程来解决。
三、如何求解一元一次方程求解一元一次方程通常需要遵循以下步骤:1、识别方程:首先需要识别方程的类型,确定未知数的次数和系数。
2、移项:将方程中的项移到等式的两边,使未知数单独出现在等式的左边。
3、合并同类项:将方程中的同类项合并,使未知数的系数更为明显。
4、化简:通过等式的性质,化简方程的左右两边,使未知数成为一个简单的系数。
5、求解:通过代数运算,求解未知数的值。
例如,对于方程 x + 5 = 7,我们可以先移项得到 x = 7 - 5,然后化简得到 x = 2。
因此,未知数 x的值为2。
四、总结一元一次方程是数学中的基本概念,也是解决各种实际问题的有力工具。
通过学习北师大版的七年级数学教材,我们可以更好地理解一元一次方程的概念和应用,掌握求解一元一次方程的方法。
这将有助于我们在日常生活和科学研究中解决各种问题。
在建筑工程经济学中,下列哪一项不是建筑成本的重要组成部分?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济性的重要指标?下列哪一项因素最可能影响建筑工程的经济性?在进行建筑工程经济学分析时,下列哪一项因素不应考虑?在进行建筑工程经济学分析时,下列哪一项指标是衡量工程经济效益的重要指标?下列哪一项措施可以有效地提高建筑工程的经济效益?A.提高建筑工人的工资水平以增加他们的积极性D.对建筑工程进行全面的经济学分析以优化资源利用下列哪一项措施可以有效地降低建筑成本?A、通过招标方式选择低价的建筑材料供应商B、加强对建筑工人的技能培训以提高他们的劳动生产率C、优化建筑工程的设计方案以减少不必要的浪费D、提高建筑材料的库存管理效率以减少材料的浪费判断题(每题2分,共20分)在建筑工程经济学中,“机会成本”是一个重要的概念。