2.2 正态总体均值的区间估计
- 格式:ppt
- 大小:444.00 KB
- 文档页数:21
区间估计公式正态总体二项总体与泊松总体的区间估计公式区间估计公式是统计学中常用的方法,用于估计总体参数的范围。
在正态总体、二项总体和泊松总体中,也存在相应的区间估计公式。
本文将分别介绍这三个总体的区间估计公式。
一、正态总体的区间估计公式在正态总体中,我们通常关注总体均值的估计。
假设样本容量为n,样本均值为x,总体标准差为σ。
若总体标准差已知,则总体均值的区间估计公式为:[公式1]其中zα/2是正态分布的分位数,代表了α/2的上分位数。
例如,若置信水平为95%,则α为0.05,z0.025为1.96。
若总体标准差未知,则总体均值的区间估计公式为:[公式2]其中s是样本标准差,tα/2是自由度为n-1的t分布的上分位数。
与正态分布不同,t分布考虑了样本容量的影响。
二、二项总体的区间估计公式在二项总体中,我们通常关注总体比例的估计。
假设样本容量为n,成功次数为x,总体成功率为p。
总体比例的区间估计公式为:[公式3]其中zα/2为正态分布的分位数,p为样本比例,n为样本容量。
三、泊松总体的区间估计公式在泊松总体中,我们关注总体平均到达率的估计。
假设样本容量为n,观测到的平均到达率为x。
总体平均到达率的区间估计公式为:[公式4]其中zα/2为正态分布的分位数,λ̂为样本平均到达率,n为样本容量。
以上是正态总体、二项总体和泊松总体的区间估计公式。
根据不同的总体类型和参数类型,选择合适的公式进行区间估计。
这些公式可以帮助我们对总体参数进行估计,并提供了对估计结果的置信区间,从而更好地理解总体特征。
在实际应用中,我们可以根据采样数据和问题背景选择适合的区间估计方法,得出有意义的结论。
双正态总体参数的区间估计双正态总体参数的区间估计是统计学中的一种方法,用于估计由两个正态分布组成的总体的参数。
这种方法适用于当我们需要估计两个总体的平均值或比例时,且这两个总体可以被假定为来自两个不同的正态分布。
下面我们将详细介绍双正态总体参数的区间估计的原理和步骤。
双正态总体参数的区间估计可以分为两种情况:一种是当我们需要估计两个总体的平均值,另一种是当我们需要估计两个总体的比例。
首先,假设我们需要估计两个总体的平均值。
我们可以用样本平均值来估计总体平均值,并通过计算标准误差来构建置信区间。
如果我们假设两个总体的方差相等,则可以使用统计学中的配对t检验方法来进行推断。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本的观测值。
2.计算样本平均值。
对于每个总体,计算对应样本的平均值。
3.计算差值。
对于每个配对样本,计算它们的差值。
如果我们关注的是总体平均值的差异,则用两个总体对应样本的平均值之差来作为差值。
4.计算标准差。
计算差值样本的标准差,用来估计差值的标准误差。
5.确定置信水平。
选择一个置信水平,通常为95%。
这意味着我们希望有95%的置信度认为估计的区间包含真实的总体差异。
6.计算临界值。
确定配对t检验的自由度,并使用自由度和置信水平来查找相应的t临界值。
7.构建置信区间。
使用差值平均值±t临界值*标准误差来构建置信区间,这个区间将包含真实的总体差异。
另一种情况是当我们需要估计两个总体的比例。
在这种情况下,我们可以使用两个样本中的比例差异来估计总体的比例差异。
具体步骤如下:1.收集样本数据。
从每个总体中随机抽取一定数量的样本,并记录下每个样本中的成功次数和总次数。
2.计算样本比例。
对于每个总体,计算对应样本的比例,即成功次数除以总次数。
3.计算差异。
对于每个配对样本,计算它们的比例之差。
4.计算标准误差。
计算比例差异样本的标准误差,用来估计比例差异的标准误差。
两个正态总体均值差的区间估计实验一一、实验目的熟悉SPSS的参数估计功能,熟练掌握两个正态总体均值之差(独立样本)的区间估计方法及操作过程,对SPSS运行结果能进行解释。
二、实验内容【例】(数据文件为data03—1。
sav)为估计两种方法组装产品所需要时间的差异,分别对两种不同的组装方法个随机安排12个工人,每个工人组装一件产品所需的时间(分钟)。
数据如表1所示:表1 两种方法组装产品所需的时间方法1方法2方法1方法228.330。
129.037。
632.128。
827.622.231.033.820.030.236.037。
238。
534。
428。
030.031.726。
032.031.233.426。
5试以95%的置信水平确定两种方法组装产品所需时间差值的置信区间。
解:第一步,打开数据文件“data03—1。
sav",选择菜单“Analyze→Compare Means→Independent-samples T Test”项,弹出“Independent- samples T Test”对话框。
从对话框左侧的变量列表中选“时间”,进入“Test Variable(s)”框,选择变量“方法”,进入“Grouping Variable”框。
如图4—7所示图4-7第二步:点击“Define Groups”按钮弹出“Define Groups"定义框,在Group 1中输入“1",在Group 2中输入“2".第三步:点击“Options”按钮弹出“Confidence Interval”定义框,在“Confidence Interval”框中输入“95”,点击“Continue”第四步:单击“OK"按钮,得到输出结果。
Independent Samples TestLevene'sTest forEqualityofVariances t-test for Equality of MeansF Sig.t dfSig.(2—tailed)MeanDifferenceStd。
第十九讲 正态总体均值及方差的区间估计1. 单个正态总体方差的区间估计设总体),(~2σμN X , ),,(21n X X X 为来自X 的一个样本,已给定置信度(水平)为α-1,求2σ的置信区间。
①当μ已知时,由于),(~2σμN X i ,因此,)1,0(~N X i σμ-(,2,1=i n , )。
由2χ分布的定义知:∑=-ni i n X 1222)(~)(χσμ,据)(2n χ分布上α分位点的定义,有:αχσμχαα-=<-<∑=-1)}()()({21222122n X n P ni i从而αχμσχμαα-=⎪⎪⎭⎪⎪⎬⎫-<<⎪⎪⎩⎪⎪⎨⎧--=-∑∑1)()()()(2112221222n X n X P ni i ni i 故2σ的置信度为α-1的置信区间为:⎪⎪⎪⎪⎭⎫ ⎝⎛---==∑∑)()(,)()(211221222n X n X ni i n i i ααχμχμ ②当μ未知时,据抽样分布有:)1(~)1(222--n S n χσ类似以上过程,得到第七章 参数估计第5节 正态总体均值及方差的区间估计单个正态总体均值的区间估计 ①当2σ已知时,μ的置信水平为α-1的置信区间为:⎪⎪⎭⎫ ⎝⎛±2ασz n X (5.1) ②当2σ未知时,μ的置信水平为α-1的置信区间为⎪⎪⎭⎫ ⎝⎛-±)1(2n t n SX α.(5.4)注意:当分布不对称时,如2χ分布和F 分布,习惯上仍然取其对称的分位点,来确定置信区间,但所得区间不是最短的。
αχσχαα-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧--<<---1)1()1()1()1(21222222n S n n S n P 2σ的置信度为α-1的置信区间为:⎪⎪⎭⎫⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 例2 有一大批袋装糖果, 现从中随机地取出16袋, 称得重量(以克计)如下:506 508 499 503 504 510 497 512 514 505 493 496 506 502 509 496 设袋装糖果的重量近似地服从正态分布, 求总体标准差σ的置信水平为0.95的置信区间.解:总体均值μ未知,σ的置信度为α-1的置信区间为:⎪⎪⎪⎭⎫ ⎝⎛-----)1()1(,)1()1(2122222n S n n S n ααχχ 此时,,975.021,025.02,05.0=-==ααα16=n ,查表得,488.27)15(025.0=χ,262.6)15(975.0=χ由给出的数据算得.4667.382=s 因此,σ的一个置信度为0.95的置信区间为(4.58,9.60).2. 两个正态总体均值差的区间估计设总体),(~),,(~222211σμσμN Y N X ,且X 与Y 相互独立,),,(21m X X X 来自X 的一个样本,),,,(21n Y Y Y 为来自Y 的一个样本,且设2221,,,S S Y X 分别为总体X 与Y 的样本均值与样本方差,对给定置信水平α-1,求21μμ-的一个置信区间。
两正态总体均值差的区间估计基于Wolfram Mathematica ,给出了两正态分布Ν[μ1,σ1]、Ν[μ2,σ2]总体均值差μ1-μ2在两总体方差已知、未知但相等、未知但样本量相等、未知但已知方差比、未知近似、未知精确的置信区间估计方法。
最后对理论结果进行程序模拟。
设X i ~Ν(μ1,σ1),i =1,2,...,n ,为正态总体X ~Ν(μ1,σ1)的一i.i.d.,样本均值X -=1n i =1n X i ,样本方差S X 2=1n -1 i =1n X i -X - 2。
设Y i ~Ν(μ2,σ2),i =1,2,...,m ,为正态总体Y ~Ν(μ2,σ2)的一i.i.d.,样本均值Y -=1m i =1m Y i ,样本方差S Y 2=1m -1 i =1m Y i -Y - 2。
一、两总体方差σ12=σ102、σ22=σ202已知定理1:X -Ν μ1,σ1n ,Y -Ν μ2,σ2m .CharacteristicFunction NormalDistribution [μ,σ],t n n;特征函数CharacteristicFunction 正态分布NormalDistribution μ,σn ,t ;%⩵%%//完全简化FullSimplify [#,n >0&&属于Element [n,整数域Integers ]]&True定理2:X --Y -Νμ1-μ2,⇔X --Y --(μ1-μ2)Ν[0,1].转换分布TransformedDistribution X -Y,X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m转换分布TransformedDistribution(X -Y )-(μ1-μ2), X 正态分布NormalDistribution μ1,σ1n ,Y 正态分布NormalDistribution μ2,σ2m //完全简化FullSimplifyNormalDistribution μ1-μ2,NormalDistribution [0,1]下面简要给出求μ1-μ2置信区间的方法:由α2≤Φ≤1-α2,得μ1-μ2的置信水平为1-α的置信区间为X --Y --Z1≤μ1-μ2≤X --Y --Zα2即X --Y --Z1-α2≤μ1-μ2≤X --Y -+Z1其长度:L =2Z 1-α2以下是程序模拟:需要Needs ["HypothesisTesting`"]μ10=10;μ20=1;σ10=3;σ20=4;X =伪随机变数RandomVariate [正态分布NormalDistribution [μ10,σ10],2000];Y =伪随机变数RandomVariate [正态分布NormalDistribution [μ20,σ20],1000];α=0.05;"(一)两方差已知""1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ102,σ202 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M "(二)两方差未知"清除Clear [μ,σ]{μ1,σ1}={μ,σ}/.求分布参数FindDistributionParameters [X,正态分布NormalDistribution [μ,σ]];2 正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb求分布参数正态分布{μ2,σ2}={μ,σ}/.求分布参数FindDistributionParameters [Y,正态分布NormalDistribution [μ,σ]];"1.计算法"n =长度Length [X ];m =长度Length [Y ];M =平均值Mean [X ]-平均值Mean [Y ];σ=Q =分位数Quantile 正态分布NormalDistribution [0,1],1-α2;{M -Q σ,M +Q σ}"2.MeanDifferenceCI"MeanDifferenceCI X,Y,KnownVariance → σ12,σ22 ,置信级别ConfidenceLevel →1-α"3.NormalCI"NormalCI [M,σ,置信级别ConfidenceLevel →1-α]"区间长度:"L =2Q σ"相对区间长度:"r =L M(一)两方差已知1.计算法{8.75322,9.31447}2.MeanDifferenceCI {8.75322,9.31447}3.NormalCI{8.75322,9.31447}区间长度:0.561248相对区间长度:0.0621273(二)两方差未知1.计算法{8.75899,9.30871}2.MeanDifferenceCI {8.75899,9.30871}3.NormalCI{8.75899,9.30871}区间长度:正态分布\\正态分布统计分析\\两正态总体均值差的置信区间.nb30.549724相对区间长度:0.0608516二、两总体方差σ12=σ22未知σ12=σ22未知,由定理2,知X--Y- Ν μ1-μ2,σ,X--Y- -(μ1-μ2)σΝ[0,1]。
两个正态总体均值差的区间估计两个正态总体均值差的区间估计实验一一、实验目的熟悉SPSS的参数估计功能,熟练掌握两个正态总体均值之差(独立样本)的区间估计方法及操作过程,对SPSS运行结果能进行解释。
二、实验内容【例】(数据文件为data03-1.sav)为估计两种方法组装产品所需要时间的差异,分别对两种不同的组装方法个随机安排12个工人,每个工人组装一件产品所需的时间(分钟)。
数据如表1所示:表1 两种方法组装产品所需的时间方法1 方法2 方法1 方法228.3 30.1 29.0 37.6 32.1 28.8 27.622.231.033.820.030.236.037.238.534.428.030.031.726.032.031.233.426.5试以95%的置信水平确定两种方法组装产品所需时间差值的置信区间。
解:第一步,打开数据文件“data03-1.sav”,选择菜单“Analyze→Compare Means→Independent-samples T Test”项,弹出“Independent- samples T Test”对话框。
从对话框左侧的变量列表中选“时间”,进入“Test Variable(s)”框,选择变量“方法”,进入“Grouping Variable”框。
如图4-7所示图4-7第二步:点击“Define Groups”按钮弹出“Define Groups”定义框,在Group 1中输入“1”,在Group 2中输入“2”。
第三步:点击“Options”按钮弹出“Confidence Interval”定义框,在“Confidence Interval”框中输入“95”,点击“Continue”学生编号试卷A 试卷B1 2 3 4 5 6 7 8 9 10 78.063.072.089.091.049.068.076.085.055.071.044.061.084.074.051.055.060.077.039.0试建立两套试卷平均分数之差在95%的置信区间。
第20讲 两个正态总体均值差与方差比的区间估计单侧置信区间教学目的:1. 使学生理解两个正态总体间主要参数之间的关系及有关统计量所服从的分布;2. 使学生理解两个正态总体均值差与方差比的区间估计;3. 使学生理解有关单侧置信区间的问题。
教学重点:两个正态总体均值差与方差比的区间估计。
教学难点:由有关统计量的分布推导出均值差及方差比的区间估计。
教学时数:2学时。
教学过程:第六章 参数估计§6.4两个正态总体均值差与方差比的区间估计1. 两个正态总体均值差的区间估计(1) 设总体),(~211σμN X ,总体),(~222σμN Y ,设21σ及22σ已知,则有),(~1211n N X σμ,),(~2222n N Y σμ,),(~22212121n n N Y X σσμμ+--得)1,0(~)()(22212121N n n Y X σσμμ+---对于已知置信水平α-1,则有ασσμμα-=<+---1)|)()(|(222212121u n n Y X P即122(|()()|)1P X Y u αμμα---<=-所以两个总体均值差21μμ-的α-1置信区间为22(, )X Y u X Y u αα---+(1)(2) 设总体),(~211σμN X ,),(~222σμN Y ,其中21σ及22σ未知,假定2221σσ=,由§5.5定理7知样本函数)2(~11)()(212121-++---=n n t n n S Y X T w μμ其中2)1()1(21222211-+-+-=n n S n S n S w对于已知的置信水平α-1,有αμμα-=-+<+---1))2(11|)()(|(2122121n n t n n S Y X P w即αμμα-=-+⋅⋅+<---1))2(11|)()((|2122121n n t S n n Y X P w 故可得两个总体均值差21μμ-的置信水平为α-1的置信区间为 ))2(11),2(11(2122121221-+⋅⋅++--+⋅⋅+--n n t S n n Y X n n t S n n Y X w w αα (2) 例1 为了估计磷肥对某种农作物的增产作用,分别各选10块土地,分别做施肥和不施肥的试验,设施肥的亩产量),(~211σμN X ,不施肥的亩产量),(~222σμN Y 。
双正态总体参数的区间估计双正态总体是指一个总体服从正态分布,且这两个分布的均值和方差都相等。
在双正态总体中,我们常常需要估计总体参数的区间估计,即估计参数的真实值落在哪个区间内。
对于双正态总体的均值μ,我们可以使用Z分数进行区间估计。
假设我们想要在95%的置信水平下估计μ的区间为(a,b),则有:P(μ-a < X < μ+b) = 0.95其中,X是从双正态总体中抽取的样本,a和b是未知的参数。
为了解决这个问题,我们可以利用双正态总体的对称性质,即在均值μ两侧的概率相等。
因此,我们可以使用Z分数的对称性质,得到:P(μ-a < X < μ+b) = 0.975这意味着,在95%的置信水平下,μ的区间为(a,b)的概率为0.975,也就是说,μ的真实值落在这个区间内的概率为0.975。
对于双正态总体的方差σ^2,同样可以使用Z分数进行区间估计。
假设我们想要在95%的置信水平下估计σ^2的区间为(d,e),则有:P(σ2-d < X2 <σ2+e) = 0.95其中,X2是从双正态总体中抽取的样本的方差,d和e 是未知的参数。
同样,我们可以利用双正态总体的对称性质,得到:P(σ2-d < X2 < σ2+e) = 0.975因此,在95%的置信水平下,σ2的区间为(d,e)的概率为0.975,也就是说,σ2的真实值落在这个区间内的概率为0.975。
需要注意的是,对于双正态总体的均值和方差的区间估计,我们需要先确定置信水平和区间长度。
一般来说,置信水平为95%是比较常见的选择,区间长度一般为2倍标准误差。
具体的参数和区间长度需要根据实际情况进行调整。