定积分的应用(面积)(参考研究)
- 格式:ppt
- 大小:1.70 MB
- 文档页数:31
定积分求平面图形面积在实际生活中的应用定积分是数学中重要的概念,定积分可以用来计算函数在一定范围(定义域)内的积分值。
它是一种可以用来计算面积或计算曲线积分问题的一种技术。
在实际生活中,定积分用于求解平面图形面积的问题,广泛应用于水利、建筑、航空航天等各个领域。
首先,定积分可以用于求解椭圆面积的问题。
椭圆面积可以用定积分来计算,其计算公式为:S=[π/2*(a2-b2)],其中a是椭圆的长轴,b是椭圆的短轴。
这个公式能够准确地计算出椭圆的面积,在水利等领域中,椭圆管道的运用非常广泛,可以用定积分计算出椭圆管道的面积,从而帮助水利设计者准确地计算水利结构的尺寸。
其次,定积分可以用于求解三角形面积的问题。
三角形的面积也可以通过定积分进行计算,其计算公式为:S=*a*b*sin(C),其中a 和b是三角形的底边,C是三角形的内角。
这个公式可以准确的计算出三角形的面积,在建筑设计等领域中,三角形结构的运用非常广泛,可以用定积分计算出三角形结构的面积,从而帮助设计者准确地计算建筑结构的尺寸。
此外,定积分还可以用于求解复杂图形的面积。
复杂图形的面积可以用定积分来计算,例如可以用定积分计算圆柱体的表面积、圆柱管的表面积以及球的表面积等。
在航空航天等领域中,复杂图形的运用也非常广泛,例如飞机机身的设计、航天器的设计等,可以用定积分计算出复杂图形的面积,从而帮助设计者准确地计算机构的尺寸。
综上所述,定积分在实际生活中极具价值,它可以用于求解椭圆
面积、三角形面积以及复杂图形的面积等问题,在水利、建筑、航空航天等各个领域都有很广泛的应用,其准确的计算方法可以为实际生活中的设计者提供帮助。
定积分法求面积的探究教学系:_____________专业:_________________年级:______________________姓名:_____________________学号:__________导师及职称:定积分是数学中十分重要的工具,其中求图形的面积正是它的运用之一,它的思想就是切割求和,在不同的坐标系下可采用特定的方法求解面积。
本文介绍了几种运用定积分来求面积的方法,其中列举了特殊的例题以及重要的问题解决方法。
如果实际问题中的所求量与某一区间有关且在该区间上具有可加性,我们就可以用函数的定积分来表示这个所求的量,因此我们就可以运用定积分来解决一些实际问题。
同时利用定积分求不规则平面图形的面积,是定积分在几何中的重要应用之一。
如何灵活地运用定积分的定义及有关公式,巧妙地将求不规则图形的面积问题等价转化为求定积分的数值问题就是一大关键,本文结合实例,介绍几种常用的转化方法与求解策略。
从而充分的体现数形结合的数学思想方法。
关键词:定积分;封闭图形;曲面域;对称性Research of square in defi nite in tegralABSTRACTA definite integral is very important mathematical tools, for which the graphics area is one of its applicati on, its thought is to cut and, un der differe nt coordi nate systems can use specific method to find the area. This paper introduces several methods of using the integral area to seek the. Which lists the specific examples and an important method to solve the problem. If practical problems for quantity with a certain interval and in the interval is additive, we can use the definite integral of a function to represent the desired amount. Therefore, we can use the defi nite in tegral to solve some practical problems.At the same time, the use of definite integrals for the irregular plane graphics area, is one of the important applications of integral in geometry. How to flexibly use definite integral is defi ned and the related formulae and skillfully will seek irregular graphic area equivale nt transformation to calculate the numerical integral is one of key, the paper with examples, in troduces several common ly used tran sformati on method and soluti on strategy. I n order to fully reflect the comb in ati on of the mathematical thought and method.Keywords: defi nite in tegral; closed graph; surface area; symmetry目录一、引言 (5)二、相关概念 (5)1.1 定积分的定义 (5)1.2定积分的常用计算方法 (5)1.2.1直接利用公式及性质计算 (5)1.2.2利用定积分的区间可加性计算 (2)三、定积分在面积问题中的应用 (2)3.1直角坐标系下求面积 (2)3.1.1 平面面积 (2)3.1.2 曲面面积 (5)3.2 极坐标 (6)3.3求旋转曲面的面积 (7)四、常见方法 (10)4.1 巧选积分变量 (10)4.2巧用对称性 (11)4.3巧用分割计算 (11)五、结束语 (12)参考文献 (13)致谢 (13)、引言积分在自然科学、工程技术、经济管理中有着广泛的应用,比如利用积分求平面图 形的面积、变力做功等都是微积分中定积分的应用问题, 在数学分析中占据了重要地位。
用定积分求面积的两个常用公式求平面图形围成的面积是定积分重要应用之一,下面介绍求面积的两个常用公式及其应用.一、两个常用公式公式一:由连续曲线y =f ,直线=a ,=b 与y =0所围成的曲边梯形的面积A 为A =|()|ba f x dx ⎰.特别地,(1)当f ≥0时如图1,A =()ba f x dx ⎰;(2)当f ≤0时如图2,A =-()baf x dx ⎰;⑶当f 有正有负时如图3,A =()caf x dx ⎰-()bcf x dx ⎰.公式二:由连续曲线y =f ,y =g ,f ≥g 及直线=a ,=b 所围成的图形如图4的面积A 为A =[()()]ba f x g x dx -⎰.二、应用举例例1由y =3,=0,=2,y =1图2图3图0围成的图形面积.分析:先画出图象,利用公式1转化为定积分问题即可解决.解:(1)如图1,由公式1,得S =230x dx ⎰=42440111|204444x =⨯-⨯=.评注:注意定积分与利用定积分计算曲线围成图形的面积区别.定积分是一种积分和的极限,可为正,也可为负或零,而平面图形的面积在一般意义上总为正.一般情况下,借助定积分分别求出每一部分曲边梯形的面积,然后将它们加在一起.例2(1)由曲线y =2,y 2=所围成图形的面积. (2)由y =142-1,y =12,y =34x 在第一象限所围成图形的面积.分析:先画图象找出范围,利用公式2,用积分表示,再求积分.解:(1)如图2,所求面积为阴影部分. 解方程组22y xy x⎧=⎪⎨=⎪⎩,得交点0,0,1,1,由公式2,得S =120)x dx ⎰=331202211()|33333x x -=-=.(2)如图3,解方程组211412y x y x ⎧=-⎪⎪⎨⎪=⎪⎩和211434y x y x ⎧=-⎪⎪⎨⎪=⎪⎩,得=0,=1+的舍去,=4.由公式2,得图形面积S=1031()42x dx -⎰+42111[(1)]42x x dx --⎰216-=.3图。
第六讲 定积分的应用一、基础知识几何应用(一)平面图形的面积 1.直角坐标情形由曲线)0)(()(≥=x f x f y 及直线 x a =与 x b = ( a b < ) 与 x 轴所围成的曲边梯形面积A 。
()baA f x dx =⎰ 其中:f x dx ()为面积元素。
由曲线y f x =()与y g x =()及直线x a =,x b =(a b <)且f x g x ()()≥所围成的图形面积A 。
()()[()()]=-=-⎰⎰⎰b b baaaA f x dx g x dx f x g x dx2.极坐标情形设平面图形是由曲线 )(θϕ=r 及射线αθ=,βθ=所围成的曲边扇形。
取极角θ为积分变量,则 βθα≤≤,在平面图形中任意截取一典型的面积元素A ∆,它是极角变化区间为],[θθθd +的窄曲边扇形。
曲边梯形的面积元素 θθϕd dA 2])([21= ⎰=βαθθϕd A )(212(二)旋转体的体积计算由曲线y f x =()直线x a =,x b =及x 轴所围成的曲边梯形,绕x 轴旋转一周而生成的立体的体积。
取x 为积分变量,则],[b a x ∈,对于区间],[b a 上的任一区间],[dx x x +,它所对应的窄曲边梯形绕x 轴旋转而生成的薄片似的立体的体积近似等于以)(x f 为底半径,dx 为高的圆柱体体积。
即:体积元素为 []dx x f dV 2)(π=所求的旋转体的体积为 []dx x f V ba⎰=2)(π(三)平面曲线的弧长 1.直角坐标情形设函数)(x f 在区间],[b a 上具有一阶连续的导数,计算曲线)(x f y =的长度s 。
取x 为积分变量,则],[b a x ∈,在],[b a 上任取一小区间],[dx x x +,弧长元素为[]dx x f ds 2)(1'+= 弧长为 []⎰'+=badx x f s 2)(12.参数方程的情形若曲线由参数方程)()()(βαφϕ≤≤⎩⎨⎧==t t y t x 给出,弧微分[][]dt t t dy dx ds 2222)()()()(φϕ'+'=+=则 [][]⎰'+'=βαφϕdt t t s 22)()(3.极坐标情形若曲线由极坐标方程)()(βθαθ≤≤=r r 给出,将极坐标方程化成参数方程,曲线的参数方程为x r y r ==⎧⎨⎩≤≤()cos ()sin ()θθθθαθβ,弧长元素为θθθθθθθd r r d r r d r r dy dx ds 22222222)()cos sin ()()sin cos ()()('+=+'+-'=+= 从而有 ⎰'+=βαθd r r s 22(四).曲率与曲率半径 曲率记作,k 0lims d k s dsαα∆→∆==∆, 222''''tan '''sec sec 1'd d y y y y dx dx y ααααα=⇒=⋅⇒==+, 2''1'y d dx y α=+,又,ds =故322''(1')y d k dsy α==+.曲率半径 3221(1')''y k y ρ+==. 曲率圆二、例题1.平面图形的面积与旋转体的体积例 1. 已知抛物线2,y px qx =+(其中0,0p q <>)在第一象限内与直线5x y +=相切,且抛物线与x 轴所围成的平面图形的面积为s .问: (1)p q 和为何值时,s 达到最大值? (2)求出此最大值.【答案】,3p q =4=-5,22532s =例2.设⎪⎩⎪⎨⎧>≤=-0,0,)(22x ex e x F x x ,S 表示夹在x 轴与曲线()y F x =之间的面积. 对任何)(x f0t >,)(1t S 表示矩形t x t -≤≤,0()y F t ≤≤的面积. 求(I) 1()()S t S S t =-的表达式; (II) ()S t 的最小值.【答案】(I) t te t S 221)(--=,t ∈ (0 , +∞).(II) eS 11)21(-=. 例3.设曲线的极坐标方程为(0)a e a θρ=>,则该曲线上相应于θ从0到2π的一段弧与极轴所围成的图形的面积为41(1)4a e aπ-. 例 4.设1D 是由抛物线22y x =和直线x a =, 2x =及0y =所围成的平面区域; 2D 是由抛物线22y x =和直线x a =,0y =所围成的平面区域,其中02a <<.(1)试求1D 绕x 轴旋转而成的旋转体体积1V ;2D 绕y 轴旋转而成的旋转体体积2V . (2)问当a 为何值时,12V V +取得最大值?试求此最大值. 【答案】54(32)5a π- 4a π 1295π 例5.设曲线2(0,0)y ax a x =>≥与21y x =-交于点A ,过坐标原点O 和点A 的直线与曲线2y ax =围成一平面图形.问a 为何值时,该图形绕x 轴旋转一周所得的旋转体体积最大?最大体积是多少?【答案】4a =是体积最大,其最大体积为:522161518755V π=⋅= 例6.过坐标原点作曲线ln y x =的切线,该切线与曲线ln y x =及x 轴围成平面图形D . (1).求D 的面积A ;(2).求D 绕直线x e =旋转一周所得旋转体的体积V . 【答案】(1)112A e =- (2)2(5123)6V e e π=-+ 例7.(15-2) 设A>0,D 是由曲线段sin (0)2y A x x π=≤≤及直线0y =,2x π=所围成的平面区域,1V ,2V 分别表示D 绕x 轴与绕y 轴旋转成旋转体的体积,若12V V =,求A 的值.【答案】8π例8.(09-3-10 分)设曲线()y f x =,其中()y f x =是可导函数,且()0f x >,已知曲线()y f x =与直线0,1y x ==及(1)x t t =>所围成的曲边梯形,绕x 轴旋转一周所得的立体体积值是曲边梯形面积值的t π倍,求该曲线方程。
定积分的应用定积分是微积分中的重要概念,它在数学和实际问题的解决中扮演着关键的角色。
本文将探讨定积分的应用,并结合实例详细说明其在解决各类问题中的重要作用。
一、定积分的概念定积分是微积分中的一种运算符号,表示在一定区间上的函数曲线与坐标轴所围成的面积。
通常用符号∫ 表示,即∫f(x)dx,其中f(x)为被积函数,dx表示积分变量。
定积分的结果是一个数值。
二、定积分的几何意义定积分的几何意义是曲线与坐标轴所围成的面积。
例如,我们可以通过计算函数曲线与x轴之间的面积来求取定积分。
这种面积计算方法可以应用于各种形状的曲线,包括折线、曲线、圆弧等。
三、定积分的物理应用定积分在物理学中有广泛的应用。
例如,当我们需要计算物体的质量、体积、位移、功等物理量时,可以通过定积分来进行计算。
定积分可以将一个连续变化的物理量表示为无限个微小变化的和,从而得到准确的结果。
四、定积分的经济学应用定积分在经济学领域也被广泛应用。
例如,当我们需要计算市场供求曲线下的固定区间所代表的消费者剩余或生产者剩余时,可以通过定积分来计算。
定积分可以将变化的价格和数量转化为面积,以方便计算。
五、定积分的工程应用在工程学中,定积分也具有重要的应用价值。
例如,在力学领域,当需要计算曲线所代表的力的作用效果时,可以通过定积分来计算。
定积分可以将一个连续变化的力量表示为无限个微小作用力的和,从而得到准确的结果。
六、定积分的统计学应用再一个例子的统计学领域中,定积分同样发挥着重要作用。
例如,在概率密度函数下计算所得的面积可以表示某一事件发生的概率。
定积分可以将一个连续变化的概率密度函数表示为无限个微小概率的和,从而得到准确的概率结果。
七、定积分的计算方法定积分的计算方法有多种,例如,常用的有牛顿-莱布尼茨公式、变量替换法、分部积分法等。
根据不同的问题和函数形式,选择合适的计算方法对于准确求解定积分非常关键。
八、结语定积分作为微积分中的重要概念,在各个领域中均得到了广泛的应用。
定积分的几何应用定积分是微积分中的重要概念,它有着广泛的应用。
其中之一就是在几何学中的应用。
本文将探讨定积分在几何学中的具体应用,并解释其背后的原理和意义。
一、平面图形的面积通过定积分,我们可以计算出复杂平面图形的面积。
假设有一个曲线方程y=f(x),该曲线与x轴所围成的图形为A。
我们可以将A分解成无限个极小的矩形条,然后通过求和的方式来逼近A的面积。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应小矩形的高度为f(xi)。
由于每个小矩形的宽度Δx非常小,因此在计算总面积时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:A = ∫[a,b] f(x) dx其中[a,b]表示x的取值范围。
通过对上述定积分进行求解,即可得到图形A的面积。
二、曲线的弧长除了计算平面图形的面积外,定积分还可以用来计算曲线的弧长。
假设有一个曲线L,其方程为y=f(x)。
我们希望计算出曲线L的弧长。
与计算面积类似,我们同样可以将曲线L分解为无限个极小的线段,然后通过求和的方式来逼近曲线L的弧长。
具体而言,我们可以将横轴x划分为n个小区间,每个小区间的宽度为Δx。
然后,在每个小区间中,选择一个x值作为代表点,记作xi。
根据代表点xi和函数f(x)的值,我们可以计算出相应线段的长度为Δs。
同样地,由于每个小线段的长度Δs非常小,因此在计算总弧长时,可以通过求和的方式逼近。
即可以得到如下的定积分表达式:L = ∫[a,b] √(1 + [f'(x)]^2) dx其中[a,b]表示x的取值范围,f'(x)表示函数f(x)的导数。
通过对上述定积分进行求解,即可得到曲线L的弧长。
三、体积与质量除了平面图形的面积和曲线的弧长外,定积分还可以用来计算体积和质量。
当我们需要计算一个曲线绕某个轴旋转一周所形成的立体的体积时,定积分就派上用场了。
定积分的应用解析定积分是微积分中重要的一部分,它在物理学、经济学、统计学等各个领域都有广泛的应用。
本文将探讨定积分的应用,并通过具体的例子说明其解析过程。
一、图形面积的计算定积分可以用来计算曲线与坐标轴所围成的图形的面积。
设函数y=f(x)在区间[a,b]上连续且非负,可将该图形分割为许多矩形或梯形,并逐渐将分割趋于无穷细,那么这些矩形或梯形的面积之和就可以通过定积分来表示。
例如,我们计算函数y=x^2在区间[0,1]上的曲线与x轴所围成的图形面积。
首先,将该区间分为n个小区间,每个小区间的宽度为Δx=(b-a)/n,其中a=0,b=1。
然后,选取小区间中的一点xi,计算函数在该点的函数值f(xi),再计算出每个小区间的面积Ai=f(xi)Δx。
最后,将所有小区间的面积之和进行求和运算,即可得到图形的面积:S = ∑(i=1到n) Ai = ∑(i=1到n) f(xi)Δx当n趋近于无穷大时,即Δx趋近于0,上述求和运算将趋近于定积分∫(a到b) f(x)dx。
因此,图形的面积可以表示为:S = ∫(0到1) x^2dx二、物理学中的应用在物理学中,定积分在描述物体的运动、力学、流体力学等方面有着广泛的应用。
1. 位移、速度与加速度设一个物体在某一时刻t的位移为s(t),那么在时间区间[t1,t2]内的位移可以通过定积分来计算:∫(t1到t2) s(t)dt类似地,速度和加速度可以分别表示为位移的一阶和二阶导数。
通过对速度和加速度的定积分,我们可以获得物体在某一时间区间内的位移和速度。
2. 力学工作与功力学工作可以表示为力F在位移s下的力学作用。
假设力在位移方向上的大小与位移成正比,那么力学工作可以通过定积分来进行计算。
工作W = ∫(a到b) F(x)dx功则表示物体由于力的作用而发生的位移,并可以通过力的积分来计算。
功A = ∫(a到b) F(x)ds三、经济学中的应用在经济学中,定积分在计算总量、均值等方面有着广泛的应用。
定积分的应用求面积与弧长定积分是微积分中的一个重要概念,它有着广泛的应用。
其中之一就是通过定积分来求解曲线的面积和弧长。
本文将介绍定积分在求解面积和弧长问题中的应用方法。
一、定积分求解曲线下面积在平面直角坐标系中,考虑曲线y=f(x)与x轴所围成的封闭曲线。
我们希望求解这个封闭曲线所包围的面积。
设x的取值范围为[a, b]。
根据定积分的定义,可以用无穷小的矩形近似曲线下面积。
即将[a, b]区间分成n个小区间,每个小区间的长度为Δx=(b-a)/n,并在每个小区间内选择任意一个点xi。
那么第i个小区间的面积即为f(xi)Δx。
将所有小区间的面积累加起来,即可得到近似曲线下面积的总和:S≈Σf(xi)Δx当n趋向于无穷大时,即Δx趋向于0,这个近似值趋于真实的曲线下面积。
所以我们可以得到曲线下面积的定积分表示:S=∫[a, b] f(x) dx其中,f(x)是曲线的函数,而dx表示对x的积分。
通过计算定积分,就可以得到所求曲线下的面积。
二、定积分求解曲线的弧长另一个常见的问题是求解曲线的弧长。
考虑曲线y=f(x)在[a, b]区间上的一部分弧段。
我们可以将弧段分割成n个小弧段,每个小弧段的长度为Δs。
与求解面积类似,我们可以得到每个小弧段的长度:Δs≈√(Δx)²+(Δy)²其中Δy=f(xi+1)-f(xi),Δx=xi+1-xi。
将所有小弧段的长度累加起来,即可得到对曲线的弧长的近似值:L≈ΣΔs当n趋向于无穷大时,即Δx趋向于0,这个近似值趋于真实的曲线弧长。
所以我们可以得到曲线的弧长的定积分表示:L=∫[a, b] √(1+(f'(x))²) dx其中,f'(x)是曲线函数的导数。
通过计算定积分,就可以得到所求曲线的弧长。
综上所述,定积分的应用可以帮助我们求解曲线的面积与弧长问题。
无论是求解面积还是弧长,都可以通过将曲线划分为无穷小的小区间或小弧段,并使用定积分的方法进行累加求和,最终得到准确的结果。
定积分的应用在我们的生活中,有很多场景都需要用到定积分。
而在数学上,定积分也起到了重要的作用。
定积分可以计算曲线下的面积,如求函数 $f(x)$ 在区间 $[a,b]$ 上的面积。
接下来,我们将介绍一些常见的定积分的应用。
一、曲线下的面积假设我们有一个区间 $[a,b]$,以及一个函数 $f(x)$。
我们可以使用定积分来计算这个函数在该区间上的曲线下的面积。
这个面积可以用下面的式子来计算:$$ S=\int_{a}^{b}f(x)dx $$ 其中,$\int$ 表示定积分。
如果我们以 $f(x)\geq 0$ 的形式进行了定义,那么定积分就可以计算出曲线下的正面积。
例如,如果我们要计算函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积,我们可以通过下面的定积分来计算:$$ S=\int_{0}^{1}x^2dx $$利用积分的定义,可以将该式子化简为:$$ S=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}f(x_i)\Deltax=\lim_{n\rightarrow\infty}\sum_{i=1}^{n}x_i^2\Delta x $$ 其中,$\Delta x=\frac{1}{n}$ 且 $x_i=i\Delta x$。
如果我们取 $n=100$,你会发现:$$ S=0.010050167\cdots $$ 这时,我们就可以知道函数 $f(x)=x^2$ 在区间 $[0,1]$ 上的曲线下的面积为约为 $0.010050167$。
二、体积类似于计算曲线下的面积,定积分也可以用于计算体积。
我们可以使用定积分来计算旋转曲面的体积,例如旋转曲面、扫描曲面等。
例如,假设我们需要计算曲线 $y=x^2$ 从 $x=0$ 到 $x=1$ 周围在 $y$ 轴旋转一周所形成的立体的体积,我们可以使用下面的公式计算出体积:$$ V=\int_{0}^{1}\pi y^2dx $$替换掉 $y=x^2$ 的值,我们得到:$$ V=\int_{0}^{1}\pi x^4dx $$ 计算该定积分的结果为:$$ V=\frac{\pi}{5} $$ 所以,曲线$y=x^2$ 从 $x=0$ 到 $x=1$ 周围所形成的立体的体积为$\frac{\pi}{5}$。
定积分法求面积的探究教学系:专业:年级:姓名:学号:导师及职称:摘要定积分是数学中十分重要的工具,其中求图形的面积正是它的运用之一,它的思想就是切割求和,在不同的坐标系下可采用特定的方法求解面积。
本文介绍了几种运用定积分来求面积的方法,其中列举了特殊的例题以及重要的问题解决方法。
如果实际问题中的所求量与某一区间有关且在该区间上具有可加性,我们就可以用函数的定积分来表示这个所求的量,因此我们就可以运用定积分来解决一些实际问题。
同时利用定积分求不规则平面图形的面积,是定积分在几何中的重要应用之一。
如何灵活地运用定积分的定义及有关公式,巧妙地将求不规则图形的面积问题等价转化为求定积分的数值问题就是一大关键,本文结合实例,介绍几种常用的转化方法与求解策略。
从而充分的体现数形结合的数学思想方法。
关键词:定积分;封闭图形;曲面域;对称性Research of square in definite integralABSTRACTA definite integral is very important mathematical tools, for which the graphics area is one of its application, its thought is to cut and, under different coordinate systems can use specific method to find the area. This paper introduces several methods of using the integral area to seek the. Which lists the specific examples and an important method to solve the problem. If practical problems for quantity with a certain interval and in the interval is additive, we can use the definite integral of a function to represent the desired amount. Therefore, we can use the definite integral to solve some practical problems.At the same time, the use of definite integrals for the irregular plane graphics area, is one of the important applications of integral in geometry. How to flexibly use definite integral is defined and the related formulae and skillfully will seek irregular graphic area equivalent transformation to calculate the numerical integral is one of key, the paper with examples, introduces several commonly used transformation method and solution strategy. In order to fully reflect the combination of the mathematical thought and method.Keywords: definite integral; closed graph; surface area; symmetry目录一、引言 (5)二、相关概念 (5)1.1 定积分的定义 (5)1.2 定积分的常用计算方法 (5)1.2.1 直接利用公式及性质计算 (5)1.2.2 利用定积分的区间可加性计算 (6)三、定积分在面积问题中的应用 (6)3.1 直角坐标系下求面积 (6)3.1.1 平面面积 (6)3.1.2 曲面面积 (9)3.2 极坐标 (10)3.3 求旋转曲面的面积 (11)四、常见方法 (10)4.1 巧选积分变量 (14)4.2 巧用对称性 (15)4.3 巧用分割计算 (15)五、结束语 (16)参考文献 (17)致 (13)一、引言积分在自然科学、工程技术、经济管理中有着广泛的应用,比如利用积分求平面图形的面积、变力做功等都是微积分中定积分的应用问题,在数学分析中占据了重要地位。
定积分的简单应用--面积
积分在微积分学中是一个重要的概念,它可以用来求解有关函数的性质问题。
例如,在求解曲线上某一特定点的高度,求解曲线下某一段距离的和以及在求解曲线下某一区域的面积等。
从某种意义上来说,积分也可以看作是函数极限的概念的一种推广。
首先,为了求解曲线上某一特定点的高度,可以先求出曲线的函数表达式,然后在这函数的表达式中计算出特定点的高度值即可;再比如求解曲线下某一段距离的和,可以利用反积分的原理来解决,即可以把把要求求解的区间划分为若干小段,然后求出每一段的长度,最后将这些段的长度和起来就可以得到最终结果。
至于求解曲线下某一区域的面积,此处与前文讲述的求解曲线下某一段距离的和是相类似的。
但需要留意的是,求解曲线下某一区域的面积,是需要利用积分的概念,具体地说就是利用曲线下某一段持续的长度的时间,也就是利用反积分的原理实现的。
反之,在求解曲线下某一段距离的和时,则是靠前文提到的划分小段的方法实现的。