2_两个计数原理及其综合应用(
- 格式:ppt
- 大小:234.50 KB
- 文档页数:15
计数原理【命题趋势】两个基本计数原理是高考必考内容,有时会单独考查,有时会出现在解答题的过程之中,我们必须掌握.(1)理解分类加法计数原理和分步乘法计数原理.(2)会用分类加法计数原理或分步乘法计数原理分析和解决一些简单的实际问题.排列组合是高考中的必考内容,必须掌握.有时会是单独一道小题,有时会是在概率统计解答题中涉及,分值至少5分.(1)理解排列、组合的概念.(2)能利用计数原理推导排列数公式、组合数公式.(3)能解决简单的实际问题.二项式定理和排列组合在高考中一般交替考查,二者必出其一,二项式定理好拿分,熟练掌握即可.(1)能用计数原理证明二项式定理.(2)会用二项式定理解决与二项展开式有关的简单问题.【重要考向】考向一分类加法、乘法计数原理考向二两个计数原理的综合应用考向三排列与组合的综合应用考向四二项展开式通项的应用考向一分类加法、乘法计数原理(1)分类加法计数原理的特点:①根据问题的特点能确定一个适合于它的分类标准.②完成这件事的任何一种方法必须属于某一类.(2)使用分类加法计数原理遵循的原则:有时分类的划分标准有多个,但不论是以哪一个为标准,都应遵循“标准要明确,不重不漏”的原则.(3)应用分类加法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些办法,怎样才算是完成这件事.②完成这件事的n类方法是相互独立的,无论哪种方案中的哪种方法都可以单独完成这件事,而不需要再用到其他的方法.③确立恰当的分类标准,准确地对“这件事”进行分类,要求每一种方法必属于某一类方案,不同类方案的任意两种方法是不同的方法,也就是分类时必须既不重复也不遗漏. (4)应用分步乘法计数原理要注意的问题:①明确题目中所指的“完成一件事”是什么事,单独用题目中所给的某一步骤的某种方法是不能完成这件事的,也就是说必须要经过几步才能完成这件事.②完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步骤,这件事都不可能完成.③根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步地去做,才能完成这件事,各步骤之间既不能重复也不能遗漏. (5)两个计数原理的区别与联系定义:若数列 {a n } 满足所有的项均由 ﹣1,1 构成且其中-1有m 个,1有p 个 (m +p ≥3) ,则称 {a n } 为“ (m,p) ﹣数列”.(1)a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项,则使得 a i a j a k =1 的取法有多少种? (2)a i ,a j ,a k (i <j <k) 为“ (m,p) ﹣数列” {a n } 中的任意三项,则存在多少正整数 (m,p) 对使得 1≤m ≤p ≤100, 且 a i a j a k =1 的概率为 12 .【答案】 (1)解:三个数乘积为1有两种情况:“ ﹣1,﹣1,1 ”,“ 1,1,1 ”,其中“ ﹣1,﹣1,1 ”共有: C 32C 41=12 种, “ 1,1,1 ”共有: C 43=4 种,利用分类计数原理得:a i ,a j ,a k (i <j <k) 为“ (3,4) ﹣数列” {a n } 中的任意三项, 则使得 a i a j a k =1 的取法有: 12+4=16 种.(2)解:与(1)同理,“ ﹣1,﹣1,1 ”共有 C m 2C p 1种, “ 1,1,1 ”共有 C P 3 种,而在“ (m,p) ﹣数列”中任取三项共有 C m+p3种, 根据古典概型有:C m 2C p 1+C p 3C m+p3=12 ,再根据组合数的计算公式能得到: (p ﹣m)(p 2﹣3p ﹣2mp +m 2﹣3m ﹣2)=0 , ①p =m 时,应满足 {1≤m ≤p ≤100m +p ≥3p =m ,∴(m,p)=(k,k),k ∈{2,3,4,…,100} ,共 99 个,②p 2﹣3p ﹣2mp +m 2﹣3m ﹣2=0 时,应满足 {1<m ≤p <100m +p ≥3p 2−3p −2mp +m 2−3m −2=0 , 视 m 为常数,可解得 p =(2m+3)±√24m+12,∵m ≥1, ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,∵m ≥1 , ∴√2m +1≥5 , 根据 p ≥m 可知, p =(2m+3)+√24m+12,(否则 p ≤m ﹣1 ),下设 k =√2m +1 ,则由于 p 为正整数知 k 必为正整数, ∵1≤m ≤100 , ∴5≤k ≤49 ,化简上式关系式可以知道: m =k 2−124=(k−1)(k+1)24,∴k ﹣1,k +1 均为偶数,∴设k=2t+1,(t∈N∗),则2≤t≤24,∴m=k2−124=t(t+1)6,由于t,t+1中必存在偶数,∴只需t,t+1中存在数为3的倍数即可,∴t=2,3,5,6,8,9,11,…,23,24,∴k=5,11,13,…,47,49.检验:p=(2m+3)+√24m+12=(k−1)(k+1)24≤48+5024=100,符合题意,∴共有16个,综上所述:共有115个数对(m,p)符合题意.【考点】古典概型及其概率计算公式,分类加法计数原理,组合及组合数公式【解析】(1)易得使得a i a j a k=1的情况只有“ ﹣1,﹣1,1”,“ 1,1,1”两种,再根据组合的方法求解两种情况分别的情况数再求和即可.(2)易得“ ﹣1,﹣1,1”共有C m2C p1种,“ 1,1,1”共有C P3种.再根据古典概型的方法可知C m2C p1+C p3C m+p3=12,利用组合数的计算公式可得(p﹣m)(p2﹣3p﹣2mp+m2﹣3m﹣2)=0,当p=m时根据题意有(m,p)=(k,k),k∈{2,3,4,…,100},共99个;当p2﹣3p﹣2mp+m2﹣3m﹣2=0时求得p=(2m+3)±√24m+12,再根据1≤m≤p≤100,换元根据整除的方法求解满足的正整数对即可.某商场举行元旦促销回馈活动,凡购物满1000元,即可参与抽奖活动,抽奖规则如下:在一个不透明的口袋中装有编号为1、2、3、4、5的5个完全相同的小球,顾客每次从口袋中摸出一个小球,共摸三次(每次摸出的小球均不放回口袋),编号依次作为一个三位数的个位、十位、百位,若三位数是奇数,则奖励50元,若三位数是偶数,则奖励100m元(m为三位数的百位上的数字,如三位数为234,则奖励100×2= 200元).(1)求抽奖者在一次抽奖中所得三位数是奇数的概率;(2)求抽奖者在一次抽奖中获奖金额X的概率分布与期望E(X).【答案】(1)解:因为总的基本事件个数n1=A53=60,摸到三位数是奇数的事件数n2=A31A42=36,所以P1=3660=35;所以摸到三位数是奇数的概率35.(2)解:获奖金额 X 的可能取值为50、100、200、300、400、500, P(X =50)=35 , P(X =100)=1×3×260=110, P(X =200)=1×3×160=120,P(X =300)=1×3×260=110 , P(X =400)=1×3×160=120 , P(X =500)=1×3×260=110 ,获奖金额 X 的概率分布为均值 E(X)=50×35+100×110+200×120+300×110+400×120+500×110=150 元. 所以期望是150元.【考点】古典概型及其概率计算公式,离散型随机变量及其分布列,离散型随机变量的期望与方差,分步乘法计数原理【解析】(1)首先利用排列求出摸三次的总的基本事件个数: n 1=A 53=60 ;然后利用分步计数原理求出个位的排法、十位百位的排法求出三位数是奇数的基本事件个数,再利用古典概型的概率计算公式即可求解.(2)获奖金额X 的可能取值为50、100、200、300、400、500,求出各个随机变量的分布列,利用均值公式即可求解考向二 两个计数原理的综合应用(1)利用两个原理解决涂色问题解决着色问题主要有两种思路:一是按位置考虑,关键是处理好相交线端点的颜色问题;二是按使用颜色的种数考虑,关键是正确判断颜色的种数.解决此类应用题,一般优先完成彼此相邻的三部分或两部分,再分类完成其余部分.要切实做到合理分类,正确分步,才能正确地解决问题. (2)利用两个原理解决集合问题解决集合问题时,常以有特殊要求的集合为标准进行分类,常用的结论有123,,,,{}n a a a a 的子集有2n 个,真子集有21n个.对有 n(n ≥4) 个元素的总体 {1,2,3,⋅⋅⋅,n} 进行抽样,先将总体分成两个子总体 {1,2,3,⋅⋅⋅,m} 和 {m +1,m +2,⋅⋅⋅,n} ( m 是给定的正整数,且 2≤m ≤n −2 ),再从每个子总体中各随机抽取2个元素组成样本.用 P ij 表示元素 i 和 j 同时出现在样本中的概率. (1)求 P 1n 的表达式(用m ,n 表示); (2)求所有 P ij (1≤i <j ≤n) 的和.【答案】 (1)解:由题意,从m 和 m −m 个式子中随机抽取2个,分别有 C m 2 和 C n−m2 个基本事件, 所以 P 1n 的表达式为 P 1n =m−1C m2⋅n−m−1C n−m2=4m(n−m) .(2)解:当 i,j 都在 {1,2,⋅⋅⋅,m} 中时,可得 P ij =1C m2 ,而从 {1,2,⋅⋅⋅,m} 中选两个数的不同方法数为 C m 2 ,则 P ij 的和为1;当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,同理可得 P ij 的和为1; 当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时, P ij =4m(n−m) ,而从 {1,2,⋅⋅⋅,m} 中选取一个数,从 {m +1,m +2,⋅⋅⋅,n} 中选一个数的不同方法数为 m(n −m) , 则 P ij 的和为4,所以所有 P ij 的和为 1+1+4=6 .【考点】相互独立事件的概率乘法公式,古典概型及其概率计算公式,计数原理的应用,组合及组合数公式【解析】(1)根据组合数的公式,以及古典概型的概率计算公式和相互独立事件的概率计算公式,即可求解;(2)当 i,j 都在 {1,2,⋅⋅⋅,m} 中时求得 P ij 的和为1,当 i,j 同时在 {m +1,m +2,⋅⋅⋅,n} 中时,求得 P ij 的和为1,当 i 在 {1,2,⋅⋅⋅,m} 中, j 在 {m +1,m +2,⋅⋅⋅,n} 中时得到 P ij 的和为4,即可求解.6男4女站成一排,求满足下列条件的排法各有多少种?(用式子表达) (1)男甲必排在首位; (2)男甲、男乙必排在正中间; (3)男甲不在首位,男乙不在末位; (4)男甲、男乙必排在一起; (5)4名女生排在一起; (6)任何两个女生都不得相邻; (7)男生甲、乙、丙顺序一定.【答案】 解:(1)男甲必排在首位,则其他人任意排,故有A 99种, (2)男甲、男乙必排在正中间,则其他人任意排,故有A 22A 77种,(3)男甲不在首位,男乙不在末位,利用间接法,故有A 1010﹣2A 99+A 88种,(4)男甲、男乙必排在一起,利用捆绑法,把甲乙两人捆绑在一起看作一个复合元素和另外全排,故有A 22A 88种,(5)4名女生排在一起,利用捆绑法,把4名女生捆绑在一起看作一个复合元素和另外全排,故有A 44A 77种,(6)任何两个女生都不得相邻,利用插空法,故有A 66A 74种, (7)男生甲、乙、丙顺序一定,利用定序法,A 1010A 33=A 107种【考点】计数原理的应用【解析】(1)男甲必排在首位,则其他人任意排,问题得以解决. (2)男甲、男乙必排在正中间,则其他人任意排,问题得以解决, (3)男甲不在首位,男乙不在末位,利用间接法,故问题得以解决, (4)男甲、男乙必排在一起,利用捆绑法,问题得以解决, (5)4名女生排在一起,利用捆绑法,问题得以解决, (6)任何两个女生都不得相邻,利用插空法,问题得以解决, (7)男生甲、乙、丙顺序一定,利用定序法,问题得以解决.考向三 排列与组合的综合应用先选后排法是解答排列、组合应用问题的根本方法,利用先选后排法解答问题只需要用三步即可完成. 第一步:选元素,即选出符合条件的元素;第二步:进行排列,即把选出的元素按要求进行排列;第三步:计算总数,即根据分步乘法计数原理、分类加法计数原理计算方法总数.7名学生,按照不同的要求站成一排,求下列不同的排队方案有多少种. (1)甲、乙两人必须站两端; (2)甲、乙两人必须相邻.【答案】 (1)甲、乙为特殊元素,先将他们排在两头位置,有 A 22 种站法,其余5人全排列,有 A 55种站法.故共 A 22⋅A 55 有=240种不同站法.(2)(捆绑法):把甲、乙两人看成一个元素,首先与其余5人相当于六个元素进行全排列,然后甲、乙两人再进行排列,所以共 A 66⋅A 22 有=1440种站法.【考点】排列、组合的实际应用,排列、组合及简单计数问题 【解析】(1)运用捆绑法直接求解即可; (2)运用特殊元素分析法直接求解即可.一个笼子里关着10只猫,其中有7只白猫,3只黑猫.把笼门打开一个小口,使得每次只能钻出1只猫.猫争先恐后地往外钻.如果 10 只猫都钻出了笼子,以X 表示7只白猫被3只黑猫所隔成的段数.例如,在出笼顺序为“□■□□□□■□□■”中,则 X =3 . (1)求三只黑猫挨在一起出笼的概率; (2)求X 的分布列和数学期望.【答案】 (1)解:设“三只黑猫挨在一起出笼”为事件A ,将三只黑猫捆绑在一起,与其它7只白猫形成 8 个元素, 所以, P(A)=A 33A 88A 1010=115,因此,三只黑猫挨在一起出笼的概率为 115 ;(2)解:由题意可知,随机变量X 的取值为1、2、3、4, 其中 X =1 时,7只白猫相邻,则 P(X =1)=A 77A 44A 1010=130 ,P(X =2)=(A 32C 21C 21C 61+6A 33+A 32C 61)A 77A 1010=310 ,P(X =3)=(A 31C 21A 62+A 32A 62)A 77A 1010=12 ;P(X =4)=A 63A 77A 1010=16, 所以,随机变量 X 的分布列如下表所示:因此, E(X)=1×130+2×310+3×12+4×16=145.【考点】古典概型及其概率计算公式,离散型随机变量的期望与方差,排列及排列数公式,排列、组合的实际应用【解析】(1)利用捆绑法计算三只黑猫挨在一起出笼的情况种数,再利用古典概型的概率公式可求得所求事件的概率;(2)由题意可知,随机变量X 的可能取值有1、2、3、4,利用排列组合思想求出随机变量X 在不同取值下的概率,可得出随机变量X 的分布列,利用数学期望公式可求得随机变量X 的数学期望.考向四 二项展开式通项的应用求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k ,再将k 的值代回通项求解,注意k 的取值范围(0,1,2,,k n ).(1)第m 项::此时k +1=m ,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程. (3)有理项:令通项中“变元”的幂指数为整数建立方程.已知 f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗).(1)若 a n =n −1 ,求 f(n) ;(2)若 a n =3n−1 ,求 f(20) 除以5的余数【答案】 (1)因为 f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n . 所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n0 2f(n)=nC n 0+nC n 1+nC n 2+⋯+nC n n =n(C n 0+C n 1+C n 2+⋯+C n n)=n ⋅2n ,∴f(n)=n ⋅2n−1(2)因为 f(n)=30C n 0+31C n 1+32C n 2+⋯+3n C n n =(1+3)n =4n .f(20)=420=(5−1)20=C 200520−C 201519+C 202518−⋯+C 201852−C 201951+C 202050 除以5余数为1,所以 f(20) 除以5的余数为1. 【考点】二项式系数的性质,二项式定理的应用【解析】(1) 因为f(n)=a 1+a 2C n 1+⋯+arC n r−1+⋯a n+1C n n(n ∈N ∗),再结合a n =n −1 , 得出f(n)=0C n 0+1⋅C n 1+2C n 2+3⋅C n 3⋯+nC n n ,再利用倒序求和法,所以 f(n)=nC n n +(n −1)C n n−1+(n −2)C n n−2+⋯+1⋅C n 1+0⋅C n 0 , 再利用两式求和法结合二项式的系数的性质,得出 f(n) 。
计数方法和应用计数是一种非常基础和普遍的数学概念,也称为计数学。
在日常生活和工作中,计数方法和技术被广泛应用。
本文将从计数方法和应用两个方面进行阐述。
一、计数方法1.1 基本计数原理基本计数原理是计数领域最基础的公理之一,也称为加法计数原理,是指如果一个事件发生的次数是 m,而另一个事件发生的次数是 n,则这两个事件连续发生的总次数是 m+n。
举个例子,假设一个学校有三个年级,每个年级有30 个学生,那么这个学校的学生总人数就是 3 × 30 = 90 人。
1.2 排列和组合排列和组合是计数中两个基本的概念。
排列是指 n 个元素中任取 r 个元素进行排列,不考虑元素的顺序。
排列数用 P(n,r) 来表示。
组合是指n 个元素中任取r 个元素进行组合,考虑元素的顺序。
组合数用 C(n,r) 来表示。
举个例子,假设有 ABC 三个字母,我们从中任取两个字母进行排列和组合,其结果如下:- 排列:AB, AC, BA, BC, CA, CB,共 6 种。
- 组合:AB, AC, BC,共 3 种。
1.3 树状图树状图是计数中一种常用的图形表示方法,也被称为树状图法。
它通过树的枝干和节及其上的符号来表示问题的分支和可能的结果。
树状图通常用于组合问题和排列问题。
举个例子,假设一个口袋里有三个苹果和两个梨,从中任取两个水果,可能的取法有:苹果-苹果、苹果-梨、梨-苹果、梨-梨、共 4 种可能。
这个问题的树状图可以如下表示:二、计数应用2.1 组合优化组合优化是计算机科学中的一个重要分支,其应用于各种领域,如图形学、数据库、网络等,旨在寻找最优的组合方案。
举个例子,在网络优化中,如何在一个有向图中找到最短或最快的路径是一个经典问题,可以用 Dijkstra 算法或 Bellman-Ford算法以及其他更高级的算法来解决。
而求解这些问题的基础,则是组合优化的概念和算法。
2.2 计算概率计数方法还可以用于计算概率,这是概率论的基础之一。
两个计数原理的综合应用引言计数原理是数字电路中的重要概念,它在许多领域中都有广泛的应用。
本文将介绍两个常用的计数原理,并通过实际案例来展示它们的综合应用。
1. 二进制计数原理二进制计数是计算机中最基本的计数方式,也是数字电路中最常用的计数原理之一。
在二进制计数中,数字由0和1组成,每增加1个计数值,就会发生一次进位。
利用二进制计数原理,我们可以实现很多实用的功能。
比如,可以将计数器的输出与一些逻辑电路相连接,实现各种复杂的计算和控制功能。
下面是二进制计数原理的一些典型应用: - 数字时钟:通过将计数器和数码管连接,可以实现24小时制的数字时钟。
- 二进制加法器:利用进位位的特性,我们可以将多个二进制数相加得到结果。
- 路灯控制系统:利用二进制计数器可以实现多种路灯控制方案,例如交替点亮、闪烁等。
2. 基于触发器的计数原理基于触发器的计数原理是数字电路中常用的计数方式之一。
在这种计数方式中,计数器由多个触发器组成,触发器的输出状态会随着时钟信号的变化而改变。
基于触发器的计数原理具有以下特点: - 可以实现复杂的计数模式:通过设计合适的触发器连接方式,我们可以实现各种复杂的计数模式,如递增、递减、循环、非连续等。
- 可以灵活地控制计数速度:通过调节时钟信号的频率,我们可以实现控制计数速度的功能。
- 可以实现多位计数器:通过连接多个触发器,我们可以实现多位计数器,扩展计数范围。
下面是基于触发器的计数原理的一些具体应用案例: - 计步器:通过将触发器与脉冲传感器相连接,可以实现步行人数的计数功能。
- 电梯控制系统:通过触发器的连接方式和控制逻辑,可以实现电梯的各种运行模式和控制功能。
- 程序计数器:在计算机中,我们通过触发器来实现程序计数器,以记录当前指令的地址。
3. 两种计数原理的综合应用案例为了更好地展示两种计数原理的综合应用,我们将介绍一个实际案例——交通灯控制系统。
3.1 系统概述交通灯控制系统是基于数字电路和控制逻辑的典型应用案例之一。
两个计数原理的应用知识点1. 二进制计数原理•二进制计数是一种使用只有两个数字0和1的数字系统。
•二进制计数系统是计算机中最常用的计数系统之一。
•二进制计数原理是基于权值计数的,每一位的权值是2的指数值。
1.1 二进制加法•二进制加法是在二进制计数系统中进行加法运算的方法。
•在二进制加法中,当两个位数相加为0时,结果位为0;当两个位数相加为1时,结果位为1;当两个位数相加为2时,结果位为0并向前一位进位1。
1.2 二进制减法•二进制减法是在二进制计数系统中进行减法运算的方法。
•在二进制减法中,当被减数位大于减数位时,结果位为1;当被减数位等于减数位时,结果位为0;当被减数位小于减数位时,需要向前一位借位。
1.3 二进制位运算•二进制计数系统中有一些特殊的位运算操作,如与(AND)、或(OR)、非(NOT)、异或(XOR)等。
•位运算可以对二进制数据进行快速、高效的操作。
2. 十进制计数原理•十进制计数是我们常见的十个数字0-9的计数系统。
•十进制计数原理是基于权值计数的,每一位的权值是10的指数值。
2.1 十进制加法和减法•十进制加法和减法是在十进制计数系统中进行加法和减法运算的方法。
•十进制加法和减法与二进制加法和减法类似,根据位数的相加或相减进行计算。
2.2 十进制乘法和除法•十进制乘法和除法是在十进制计数系统中进行乘法和除法运算的方法。
•十进制乘法和除法与二进制乘法和除法类似,根据位数的相乘或相除进行计算。
2.3 小数计算•十进制计数系统还包括小数的计算方法。
•小数计算通过十进制点的位置来确定权值,根据位数的相加、相减、相乘或相除进行计算。
总结•二进制计数原理和十进制计数原理是计算机科学中非常重要的基础知识。
•了解和掌握二进制计数原理和十进制计数原理可以帮助我们更好地理解和使用计算机。
•通过学习和应用这些知识点,我们可以更加高效地进行二进制和十进制的计算和处理任务。
两个计数原理的综合应用1. 引言计数原理是电子学和计算机科学中非常重要的基础理论之一。
在实际应用中,往往需要综合利用两个不同的计数原理来解决问题。
本文将介绍两个计数原理的综合应用。
2. 二进制计数和十进制计数的转换二进制计数和十进制计数是常见的两种计数方式。
在许多场景中,我们需要将二进制计数转换为十进制计数,或者将十进制计数转换为二进制计数。
下面是一些常用的转换规则: - 二进制转十进制:将每位上的数字与对应的权重相乘,再将结果求和。
例如,二进制数1101转换为十进制数的计算过程如下:1 × 2^3 + 1 × 2^2 + 0 × 2^1 + 1 × 2^0 = 13 - 十进制转二进制:将十进制数不断除以2,并将余数记录下来,直到商为0为止。
将记录的余数从下往上组合即可得到二进制数。
例如,十进制数13转换为二进制数的计算过程如下:13 ÷ 2 = 6 余 1 6 ÷ 2 = 3 余 0 3 ÷ 2 = 1 余 1 1 ÷ 2 = 0 余 1所以,十进制数13对应的二进制数为1101。
3. 二进制计数器和十进制计数器的应用二进制计数器和十进制计数器是能够自动实现计数的电子元件。
它们在实际应用中有广泛的用途。
下面列举了几个常见的应用场景:3.1 时钟时钟中使用的计数器常常是十进制计数器。
它能够按照固定的频率进行自动计数,从而实现时间的显示和计时功能。
例如,当时钟计数器达到24时,会重新从0开始计数,完成一天的计时。
3.2 计数器控制计数器在许多控制系统中被用来实现计数和控制功能。
通过设定计数器的初始值和步进值,可以控制特定事件的发生次数和时间间隔。
例如,在流水线生产系统中,可以使用计数器来控制产品的进程和时间。
3.3 数据传输计数器可以用来控制数据的传输和接收。
例如,在串行通信中,计数器可以用来计算和控制数据的传输速度和数据包的大小。
§6.1第1课时两个计数原理及其简单应用教学目标1.理解分类加法计数原理与分步乘法计数原理.2.会利用两个计数原理分析和解决一些简单的计数问题.知识梳理知识点一分类加法计数原理(加法原理)完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,……,在第n类办法中有m n种方法.那么,完成这件事共有N=m1+m2+…+m n种方法.知识点二分步乘法计数原理(乘法原理)完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,……,做第n步有m n种方法,那么,完成这件事共有N=m1×m2×…×m n种方法.题型探究一、分类加法计数原理例1高二·一班有学生50人,男生30人;高二·二班有学生60人,女生30人;高二·三班有学生55人,男生35人.(1)从中选一名学生任学生会主席,有多少种不同选法?(2)从一班、二班男生中,或从三班女生中选一名学生任学生会体育部长,有多少种不同的选法?解(1)要完成“选一名学生任学生会主席”这件事有三类不同的选法:第一类,从高二·一班选一名,有50种不同的方法;第二类,从高二·二班选一名,有60种不同的方法;第三类,从高二·三班选一名,有55种不同的方法.根据分类加法计算原理,共有N=50+60+55=165(种)不同的选法.(2)要完成“选一名学生任学生会体育部长”这件事有3类不同的选法:第一类,从高二·一班男生中选,有30种不同的方法;第二类,从高二·二班男生中选,有30种不同的方法;第三类,从高二·三班女生中选,有20种不同的方法.根据分类加法计数原理共有N=30+30+20=80(种)不同的选法.反思感悟应用分类加法计数原理应注意如下问题(1)明确题目中所指的“完成一件事”是什么事,完成这件事可以有哪些方法,怎样才算是完成这件事.(2)无论哪类方案中的哪种方法都可以独立完成这件事,而不需要再用到其他的方法.即各类方法之间是互斥的,并列的,独立的.(3)不同方案的任意两种方法是不同的方法,也就是分类时必须做到既“不重复”也“不遗漏”.跟踪训练1某中学高一年级有优秀班干部5人,高二年级有优秀班干部7人,高三年级有优秀班干部8人,现在学校组织他们去参加旅游活动,需要推选一人为总负责人,有________种不同的选法.【答案】20【解析】分三类:第一类,从高一年级优秀班干部中选1人,有5种不同的选法;第二类,从高二年级优秀班干部中选1人,有7种不同的选法;第三类,从高三年级优秀班干部中选1人,有8种不同的选法.所以共有5+7+8=20(种)不同的选法.二、分步乘法计数原理例2一种密码锁有4个拨号盘,每个拨号盘上有从0到9共十个数字,那么这4个拨号盘可以组成多少个四位数的号码?(各位上的数字允许重复)解按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,所以m1=10;第二步,有10种拨号方式,所以m2=10;第三步,有10种拨号方式,所以m3=10;第四步,有10种拨号方式,所以m4=10.根据分步乘法计数原理,共可以组成N=10×10×10×10=10 000(个)四位数的号码.延伸探究若各位上的数字不允许重复,那么这个拨号盘可以组成多少个四位数的号码?解按从左到右的顺序拨号可以分四步完成:第一步,有10种拨号方式,即m1=10;第二步,去掉第一步拨的数字,有9种拨号方式,即m2=9;第三步,去掉前两步拨的数字,有8种拨号方式,即m3=8;第四步,去掉前三步拨的数字,有7种拨号方式,即m4=7.根据分步乘法计数原理,共可以组成N=10×9×8×7=5 040(个)四位数的号码.反思感悟(1)应用分步乘法计数原理时,完成这件事情要分几个步骤,只有每个步骤都完成了,才算完成这件事情,每个步骤缺一不可.(2)利用分步乘法计数原理解题的一般思路①分步:将完成这件事的过程分成若干步;②计数:求出每一步中的方法数;③结论:将每一步中的方法数相乘得最终结果.跟踪训练2有三个盒子,分别装有不同编号的红色小球6个,白色小球5个,黄色小球4个,现从盒子里任取红色、白色、黄色小球各一个,有________种不同的取法.【答案】120【解析】完成这件事可分三步:第一步:取红球,有6种不同的取法;第二步:取白球,有5种不同的取法;第三步:取黄球,有4种不同的取法.根据分步乘法计数原理,共有N=6×5×4=120(种)不同的取法.辨析两个计数原理典例现有5幅不同的国画,2幅不同的油画,7幅不同的水彩画.(1)从中任选一幅画布置房间,有几种不同的选法?(2)从这些国画、油画、水彩画中各选一幅布置房间,有几种不同的选法?(3)从这些画中选出两幅不同种类的画布置房间,有几种不同的选法?解(1)分为三类:第一类,从国画中选,有5种不同的选法;第二类,从油画中选,有2种不同的选法;第三类,从水彩画中选,有7种不同的选法.根据分类加法计数原理,共有5+2+7=14(种)不同的选法.(2)分为三步:国画、油画、水彩画各有5种,2种,7种不同的选法,根据分步乘法计数原理,共有5×2×7=70(种)不同的选法.(3)分为三类:第一类,一幅选自国画,一幅选自油画,由分步乘法计数原理知,有5×2=10(种)不同的选法;第二类,一幅选自国画,一幅选自水彩画,有5×7=35(种)不同的选法;第三类,一幅选自油画,一幅选自水彩画,有2×7=14(种)不同的选法.根据分类加法计数原理,共有10+35+14=59(种)不同的选法.[素养提升](1)计数原理的应用技巧①当题目无从下手时,可考虑要完成的这件事是什么,即怎样做才算完成这件事,然后给出完成这件事的一种或几种方法,从这几种方法中归纳出解题方法.②分类时标准要明确,做到不重不漏,有时要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.③混合问题一般是先分类再分步.(2)理解运算对象,掌握运算法则,选择运算方法,求得运算结果,通过运算促进数学思维发展,提升数学运算核心素养.课堂小结1.知识清单:(1)分类加法计数原理.(2)分步乘法计数原理.2.方法归纳:列举法、分类讨论.3.常见误区:分不清两个原理,混淆“分类”和“分步”.随堂演练1.从3名女同学和2名男同学中选出一人主持一次本班班会,则不同的选法种数为()A.6B.5C.3D.2【答案】B【解析】根据分类加法计数原理,共有3+2=5(种)不同选法.2.从A地到B地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法数为()A.1+1+1=3B.3+4+2=9C.3×4×2=24D.以上都不对【答案】B【解析】分三类:第一类,乘汽车,从3次中选1次有3种走法;第二类,乘火车,从4次中选1次有4种走法;第三类乘轮船,从2次中选1次有2种走法,所以共有3+4+2=9(种)不同的走法.3.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为()A.7B.12C.64D.81【答案】B【解析】要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同的选法;第2步,选长裤,从3条长裤中任选一条,有3种不同的选法.故共有4×3=12(种)不同的配法.4.有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中任取两本不同类的书,共有________种不同的取法.【答案】242【解析】分三类:第一类,取的两本书中,一本数学、一本语文,根据分步乘法计数原理有10×9=90(种)不同取法;第二类,取的两本书中,一本语文、一本英语,有9×8=72(种)不同取法;第三类,取的两本书中,一本数学、一本英语,有10×8=80(种)不同取法.根据分类加法计数原理,共有90+72+80=242(种)不同取法.5.完成某项工作需4个步骤,每一步方法数相等,共有81种完成方法,若改革后完成这项工作减少了一个步骤,则改革后完成这项工作有________种方法.【答案】27【解析】设改革前每一个步骤有n种方法,则n4=81,∴n=3.故减少一个步骤后,共有3×3×3=27(种)方法.。
学习目标 1.进一步理解和掌握分类加法计数原理和分步乘法计数原理.2.进一步深化排列与组合的概念.3.能综合运用排列、组合解决计数问题.类型一两个计数原理的应用命题角度1“类中有步”的计数问题例1电视台在某节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封,现由主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有________种不同的结果.答案28 800解析在甲箱或乙箱中抽取幸运之星,决定了后边选幸运伙伴是不同的,故要分两类分别计算:(1)幸运之星在甲箱中抽,先确定幸运之星,再在两箱中各确定一名幸运伙伴,有30×29×20=17 400(种)结果;(2)幸运之星在乙箱中抽,同理有20×19×30=11 400(种)结果.因此共有17 400+11 400=28 800(种)不同结果.反思与感悟用流程图描述计数问题,类中有步的情形如图所示:具体意义如下:从A到B算作一件事的完成,完成这件事有两类办法,在第1类办法中有3步,在第2类办法中有2步,每步的方法数如图所示.所以,完成这件事的方法数为m1m2m3+m4m5,“类”与“步”可进一步地理解为:“类”用“+”号连接,“步”用“×”号连接,“类”独立,“步”连续,“类”标志一件事的完成,“步”缺一不可.跟踪训练1现有4种不同颜色,要对如图所示的四个部分进行着色,要求有公共边界的两部分不能用同一种颜色,则不同的着色方法共有()A.24种B.30种C.36种D.48种答案 D解析将原图从上而下的4个区域标为1,2,3,4.因为1,2,3之间不能同色,1与4可以同色,因此,要分类讨论1,4同色与不同色这两种情况.故不同的着色方法种数为4×3×2+4×3×2×1=48.故选D.命题角度2“步中有类”的计数问题例2有4位同学在同一天的上、下午参加“身高与体重”、“立定跳远”、“肺活量”、“握力”、“台阶”五个项目的测试,每位同学上、下午各测试一个项目,且不重复.若上午不测“握力”项目,下午不测“台阶”项目,其余项目上、下午都各测一人,则不同的安排方式共有________种.(用数字作答)答案264解析上午总测试方法有4×3×2×1=24(种);我们以A、B、C、D、E依次代表五个测试项目.若上午测试E的同学下午测试D,则上午测试A的同学下午只能测试B、C,确定上午测试A的同学后其余两位同学上、下午的测试方法共有2种;若上午测试E的同学下午测试A、B、C之一,则上午测试A、B、C中任何一个的同学下午都可以测试D,安排完这位同学后其余两位同学的测试方式就确定了,故共有3×3=9(种)测试方法,即下午的测试方法共有11种,根据分步乘法计数原理,总的测试方法共有24×11=264(种).反思与感悟用流程图描述计数问题,步中有类的情形如图所示:从计数的角度看,由A到D算作完成一件事,可简单地记为A→D.完成A→D这件事,需要经历三步,即A→B,B→C,C→D.其中B→C这步又分为三类,这就是步中有类.其中m i(i=1,2,3,4,5)表示相应步的方法数.完成A→D这件事的方法数为m1(m2+m3+m4)m5.以上给出了处理步中有类问题的一般方法.跟踪训练2如图所示,使电路接通,开关不同的开闭方式共有()A.11 B.12 C.20 D.21答案 D解析根据题意,设5个开关依次为1、2、3、4、5,若电路接通,则开关1、2与3、4、5中至少有1个接通,对于开关1、2,共有2×2=4(种)情况,其中全部断开的有1种情况,则其至少有1个接通的有4-1=3(种)情况,对于开关3、4、5,共有2×2×2=8(种)情况,其中全部断开的有1种情况,则其至少有1个接通的有8-1=7(种)情况,则电路接通的情况有3×7=21(种).故选D.类型二有限制条件的排列问题例33个女生和5个男生排成一排.(1)如果女生必须全排在一起,有多少种不同的排法?(2)如果女生必须全分开,有多少种不同的排法?(3)如果两端都不能排女生,有多少种不同的排法?(4)如果两端不能都排女生,有多少种不同的排法?(5)如果甲必须排在乙的右面(可以不相邻),有多少种不同的排法?解(1)(捆绑法)因为3个女生必须排在一起,所以可先把她们看成一个整体,这样同5个男生合在一起共有6个元素,排成一排有A66种不同排法.对于其中的每一种排法,3个女生之间又有A33种不同的排法,因此共有A66·A33=4 320(种)不同的排法.(2)(插空法)要保证女生全分开,可先把5个男生排好,每两个相邻的男生之间留出一个空,这样共有4个空,加上两边两个男生外侧的两个位置,共有6个位置,再把3个女生插入这6个位置中,只要保证每个位置至多插入一个女生,就能保证任意两个女生都不相邻.由于5个男生排成一排有A55种不同的排法,对于其中任意一种排法,从上述6个位置中选出3个来让3个女生插入有A36种方法,因此共有A55·A36=14 400(种)不同的排法.(3)方法一(特殊位置优先法)因为两端不能排女生,所以两端只能挑选5个男生中的2个,有A25种不同排法,对于其中的任意一种排法,其余六位都有A66种排法,所以共有A25·A66=14 400(种)不同的排法.方法二(间接法)3个女生和5个男生排成一排共有A88种不同的排法,从中扣除女生排在首位的A13·A77种排法和女生排在末位的A13·A77种排法,但这样两端都是女生的排法在扣除女生排在首位时被扣去一次,在扣除女生排在末位时又被扣去一次,所以还需加一次,由于两端都是女生有A23·A66种不同的排法,所以共有A88-2A13·A77+A23·A66=14 400(种)不同的排法.方法三(特殊元素优先法)从中间6个位置中挑选出3个让3个女生排入,有A36种不同的排法,对于其中的任意一种排法,其余5个位置又都有A55种不同的排法,所以共有A36·A55=14 400(种)不同的排法.(4)方法一因为只要求两端不能都排女生,所以如果首位排了男生,则末位就不再受条件限制了,这样可有A15·A77种不同的排法;如果首位排女生,有A13种排法,这时末位就只能排男生,这样可有A13·A15·A66种不同的排法.因此共有A15·A77+A13·A15·A66=36 000(种)不同的排法.方法二3个女生和5个男生排成一排有A88种排法,从中扣去两端都是女生的排法有A23·A66种,就能得到两端不都是女生的排法种数.因此共有A88-A23·A66=36 000(种)不同的排法.(5)(顺序固定问题)因为8人排队,其中两人顺序固定,共有A 88A 22=20 160(种)不同的排法.反思与感悟 (1)排列问题的限制条件一般表现为:某些元素不能在某个位置,某个位置只能放某些元素等.要先处理特殊元素或先处理特殊位置,再去排其他元素.当用直接法比较麻烦时,可以用间接法,先不考虑限制条件,把所有的排列数算出,再从中减去全部不符合条件的排列数,这种方法也称为“去杂法”,但必须注意要不重复,不遗漏(去尽).(2)对于某些特殊问题,可采取相对固定的特殊方法,如相邻问题,可用“捆绑法”,即将相邻元素看成一个整体与其他元素排列,再进行部排列;不相邻问题,则用“插空法”,即先排其他元素,再将不相邻元素排入形成的空位中. 跟踪训练3 用0到9这10个数字:(1)可以组成多少个没有重复数字的四位数?在这些四位数中,奇数有多少个? (2)可以组成多少个只含有2个相同数字的三位数?解 (1)可以组成9A 39=4 536个四位数.适合题意的四位奇数共有A 15·A 18·A 28=2 240(个).(2)0到9这10个数字构成的三位数共有900个,分为三类:第1类:三位数字全相同,如111,222,…,999,共9个;第2类:三位数字全不同,共有9×9×8=648(个),第3类:由间接法可求出,只含有2个相同数字的三位数,共有900-9-648=243(个). 类型三 排列与组合的综合应用命题角度1 不同元素的排列、组合问题例4 有4分别标有数字1,2,3,4的红色卡片和4分别标有数字1,2,3,4的蓝色卡片,从这8卡片中取出4卡片排成一行.如果取出的4卡片所标的数字之和等于10,则不同的排法共有多少种? 解 分三类:第一类,当取出的4卡片分别标有数字1,2,3,4时,不同的排法有C 12·C 12·C 12·C 12·A 44种.第二类,当取出的4卡片分别标有数字1,1,4,4时,不同的排法有C 22·C 22·A 44种. 第三类,当取出的4卡片分别标有数字2,2,3,3时,不同的排法有C 22·C 22·A 44种.故满足题意的所有不同的排法种数为C 12·C 12·C 12·C 12·A 44+2C 22·C 22·A 44=432.反思与感悟 (1)解排列、组合综合问题的一般思路是“先选后排”,也就是先把符合题意的元素都选出来,再对元素或位置进行排列.(2)解排列、组合综合问题时要注意以下几点:①元素是否有序是区分排列与组合的基本方法,无序的问题是组合问题,有序的问题是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合综合问题的一般方法.跟踪训练4从1,3,5,7,9中任取3个数字,从0,2,4,6,8中任取2个数字,一共可以组成多少个没有重复数字的五位偶数?解(1)五位数中不含数字0.第1步,选出5个数字,共有C35C24种选法.第2步,排成偶数——先排末位数,有A12种排法,再排其他四位数字,有A44种排法.所以N1=C35·C24·A12·A44.(2)五位数中含有数字0.第1步,选出5个数字,共有C35·C14种选法.第2步,排顺序又可分为两小类:①末位排0,有A11·A44种排列方法;②末位不排0.这时末位数有C11种选法,而因为零不能排在首位,所以首位有A13种排法,其余3个数字则有A33种排法.所以N2=C35·C14(A11·A44+A13·A33).所以符合条件的偶数个数为N=N1+N2=C35C24A12A44+C35C14(A11A44+A13A33)=4 560.命题角度2含有相同元素的排列、组合问题例5将10个优秀名额分配到一班、二班、三班3个班级中,若各班名额数不小于班级序号数,则共有________种不同的分配方案.答案15解析先拿3个优秀名额分配给二班1个,三班2个,这样原问题就转化为将7个优秀名额分配到3个班级中,每个班级中至少分配到1个.利用“隔板法”可知,共有C26=15(种)不同的分配方案.反思与感悟凡“相同小球放入不同盒中”的问题,即为“n个相同元素有序分成m组(每组的任务不同)”的问题,一般可用“隔板法”求解:(1)当每组至少含一个元素时,其不同分组方式有N=C m-1种,即将n个元素中间的n-1个n-1空格中加入m-1个“隔板”.(2)任意分组,可出现某些组含元素为0个的情况,其不同分组方式有N=C m-1种,即将nn+m-1个相同元素与m-1个相同“隔板”进行排序,在n+m-1个位置中选m-1个安排“隔板”.跟踪训练5用2,3,4,5,6,7六个数字,可以组成有重复数字的三位数的个数为________.答案96解析用间接法:六个数字能构成的三位数共6×6×6=216(个),而无重复数字的三位数共有A36=6×5×4=120(个).故所求的三位数的个数为216-120=96.1.芳有4件不同颜色的衬衣,3件不同花样的裙子,另有两套不同样式的连衣裙.“五一”节需选择一套服装参加歌舞演出,则不同的选择方式有()A.24种B.14种C.10种D.9种答案 B解析由题意可得芳不同的选择方式有4×3+2=14(种).故选B.2.设4名学生报名参加同一时间安排的3项课外活动方案有a种,这4名学生在运动会上共同争夺100米、跳远、铅球3项比赛的冠军的可能结果有b种,则(a,b)为() A.(34,34) B.(43,34)C.(34,43) D.(A34,A34)答案 C解析首先每名学生报名有3种选择,有4名学生,根据分步乘法计数原理知共有34种选择,每项冠军有4种可能的结果,3项冠军根据分步乘法计数原理知共有43种可能结果,故选C. 3.从0,2,4中取一个数字,从1,3,5中取两个数字,组成无重复数字的三位数,则所有不同的三位数的个数是()A.48 B.50 C.52 D.54答案 A解析第一类:从2,4中任取一个数,有C12种取法,同时从1,3,5中取两个数字,有C23种取法,再把三个数全排列,有A33种排法.故有C12C23A33=36(种)取法.第二类:从0,2,4中取出0,有C11种取法,从1,3,5三个数字中取出两个数字,有C23种取法,然后把两个非0的数字中的一个先安排在首位,有A12种排法,剩下的两个数字全排列,有A22种排法,共有C11C23A12A22=12(种)方法.共有36+12=48(种)排法,故选A.4.某电视台连续播放5个广告,其中有3个不同的商业广告和2个不同的公益宣传广告,要求最后播放的必须是公益宣传广告,且2个公益宣传广告不能连续播放,则不同的播放方式有________种.答案36解析先安排后2个,再安排前3个,由分步乘法计数原理知,共有C12C13A33=36(种)不同的播放方式.5.已知x i∈{-1,0,1},i=1,2,3,4,5,6,则满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x5,x6)的个数为________.答案90解析根据题意,∵x1+x2+x3+x4+x5+x6=2,x i∈{-1,0,1},i=1,2,3,4,5,6,∴x i中有2个1和4个0,或3个1、1个-1和2个0,或4个1和2个-1,共有C26+C36C23+C46=90(个),∴满足x1+x2+x3+x4+x5+x6=2的数组(x1,x2,x3,x4,x5,x6)的个数为90.1.分类加法计数原理与分步乘法计数原理是两个最基本、也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.解排列、组合综合题一般是先选元素、后排元素,或充分利用元素的性质进行分类、分步,再利用两个基本计数原理作最后处理.3.对于较难直接解决的问题则可用间接法,但应做到不重不漏.4.对于分配问题,解题的关键是要搞清楚事件是否与顺序有关,对于平均分组问题更要注意顺序,避免计数的重复或遗漏.课时作业一、选择题1.从甲地到乙地,每天有直达汽车4班,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,则从甲地到乙地不同的乘车方法有()A.12种B.19种C.32种D.60种答案 B解析分两类:第一类直接到达,甲地到乙地,每天有直达汽车4班共有4种方法;第二类间接到达,从甲地到丙地,每天有5个班车,从丙地到乙地,每天有3个班车,共有5×3=15(种)方法.根据分类加法计数原理可得4+15=19.2.在100,101,102,…,999这些数中,各位数字按严格递增(如“145”)或严格递减(如“321”)顺序排列的数的个数是()A.120 B.168 C.204 D.216答案 C解析由题意知本题是一个计数原理的应用,首先对数字分类,当数字不含0时,从9个数字中选三个,则这三个数字递增或递减的顺序可以确定两个三位数,共有2C39=168(个),当三个数字中含有0时,从9个数字中选2个数,它们只有递减一种结果,共有C29=36(个),根据分类加法计数原理知共有168+36=204(个),故选C.3.用六种不同的颜色给如图所示的六个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A.4 320种B.2 880种C.1 440种D.720种答案 A解析第一个区域有6种不同的涂色方法,第二个区域有5种不同的涂色方法,第三个区域有4种不同的涂色方法,第四个区域有3种不同的涂色方法,第五个区域有3种不同的涂色方法,第六个区域有4种不同的涂色方法.根据分步乘法计数原理知,共有6×5×4×3×3×4=4 320(种)涂色方法.4.5个人站成一排,甲、乙两人中间恰有1人的排法共有( ) A .72种 B .36种 C .18种 D .12种 答案 B解析 甲乙两人有2种站法,中间恰有一个人,从其余三人中选一人有3种选法,故第一步三人绑定在一起的方法有2×3=6(种),将此三人看作一个元素与剩余两人组成三个元素进行排列,排列方法有A 33=6(种),故5个人站成一排,甲、乙两人中间恰有1人的排法共有6×6=36(种).5.在某次数学测验中,学号i (i =1,2,3,4)的四位同学的考试成绩f (i )∈{90,92,93,96,98},且满足f (1)<f (2)≤f (3)<f (4),则这四位同学的考试成绩的所有可能情况的种数为( ) A .9 B .5 C .23 D .15 答案 D解析 从所给的5个成绩中,任意选出4个的一个组合,即可得到四位同学的考试成绩按f (1)<f (2)<f (3)<f (4)排列的一个可能情况,故方法有C 45=5(种).从所给的5个成绩中,任意选出3个的一个组合,即可得到四位同学的考试成绩按f (1)<f (2)=f (3)<f (4)排列的一个可能情况,故方法有C 35=10(种).综上可得,满足f (1)<f (2)≤f (3)<f (4)的这四位同学的考试成绩的所有可能情况共有5+10=15(种),故选D.6.登山运动员10人,平均分为两组,其中熟悉道路的有4人,每组都需要2人,那么不同的分配方法种数是( )A .30B .60C .120D .240 答案 B解析 先将4个熟悉道路的人平均分成两组,有C 24C 22A 22种,再将余下的6人平均分成两组,有C 36C 33A 22种,然后这四个组自由搭配还有A 22种,故最终分配方法有12A 22×12C 24C 36=60(种). 二、填空题7.如果在一周(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校只参观一天,那么不同的安排方法有________种. 答案 120解析 先安排甲学校的参观时间,一周两天连排的方法一共有6种:(1,2),(2,3),(3,4),(4,5),(5,6),(6,7),任选一种为C16,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有A25种,由分步乘法计数原理可知,共有不同的安排方法C16A25=120(种).8.小明、小红等4位同学各自申请甲、乙两所大学的自主招生考试资格,则每所大学恰有两位同学申请,且小明、小红没有申请同一所大学的可能性有________种.答案 4解析设小明、小红等4位同学分别为A,B,C,D,小明、小红没有申请同一所大学,则组合为(AC,BD)与(AD,BC).若AC选甲学校,则BD选乙学校,若AC选乙学校,则BD 选甲学校;若AD选甲学校,则BC选乙学校,若AD选乙学校,则BC选甲学校.故共有4种方法.9.将A,B,C,D,E五个不同的文件放入一排编号依次为1、2、3、4、5、6的六个抽屉,每个抽屉至多放一种文件.若文件A、B必须放入相邻的抽屉,文件C、D也必须放入相邻的抽屉,则文件放入抽屉满足条件的所有不同的方法有________种.答案96解析利用“捆绑法”,AB、CD分别捆在一起,此时问题相当于把3个不同文件放入4个不同的抽屉,每个抽屉至多放一个文件,则有A34(A22·A22)=96(种).10.由1,2,3,4,5,6组成没有重复数字的六位数,要求奇数不相邻,且4不在第四位,则这样的六位数共有________个.答案120解析1,2,3,4,5,6组成没有重复数字的六位数,奇数不相邻,有A33A34=144(个),若4在第四位,则前3位是奇偶奇,后两位是奇偶或偶奇,共有2C13C12A22=24(个),∴所求六位数共有120个.11.连接正三棱柱的6个顶点,可以组成________个四面体.答案12解析从正三棱柱的6个顶点中任取4个,有C46种方法,其中4个点共面的有3种情况,故可以组成C46-3=12(个)四面体.12.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是________.答案336解析根据题意,每级台阶最多站2人,所以,分两类:第一类,有2人站在同一级台阶,共有C23A27种不同的站法;第二类,一级台阶站1人,共有A37种不同的站法.根据分类加法计数原理,得共有C23A27+A37=336(种)不同的站法.三、解答题13.4位同学参加辩论赛,比赛规则如下:每位同学必须从甲、乙两道题中任选一题作答,选甲题答对得100分,答错得-100分;选乙题答对得90分,答错得-90分.若4位同学的总分为0分,则这4位同学有多少种不同的得分情况?解本题分两种情况讨论.(1)如果4位同学中有2人选甲,2人选乙.若这4位同学的总分为0分,则必须是选甲的2人一人答对,另一人答错,选乙的2人一人答对,另一人答错.有C24A22A22=24(种)不同的情况.(2)如果4位同学都选甲或者都选乙.若这4位同学的总分为0分,则必须是2人答对,另2人答错,有C12C24C22=12(种)不同的情况.综上可知,一共有24+12=36(种)不同的情况.四、探究与拓展14.巴蜀中学第七周将安排高二年级的5名学生会干部去食堂维持秩序,要求星期一到星期五每天只安排一人,每人只安排一天,其中甲同学不能安排在星期一,乙同学不能安排在星期五,丙同学不能和甲同学安排在相邻的两天,则满足要求的不同安排方法的种数为() A.46 B.62 C.72 D.96答案 A解析若甲安排在星期五,丙从星期一到星期三选一天,剩下的三人任意安排,故有A13A33=18(种),若甲不安排在星期五,丙安排在星期五,则甲排在星期二或星期三,其余三人任意排,有A12 A33=12(种),若甲不安排在星期五,丙安排在星期四,则甲排在星期二,再从其余两人(不含乙)中选一人排在星期五,其余任意,有A12A22=4(种),若甲不安排在星期五,丙安排在星期二,则甲排在星期四,再从其余两人(不含乙)中选一人排在星期五,其余任意,有A12A22=4(种),若甲不安排在星期五,丙安排在星期一,则甲排在星期三或星期四,再从其余两人(不含乙)中选一人排在星期五,其余任意,有A 12A 12A 22=8(种),根据分类加法计数原理可得共有18+12+4+4+8=46(种).15.有编号分别为1,2,3,4的4个盒子和4个小球,把小球全部放入盒子中.(1)共有多少种放法?(2)恰有1个空盒,有多少种放法?(3)恰有2个盒子不放球,有多少种放法?解 (1)1号小球可放入任意1个盒子,有4种放法.同理,2,3,4号小球也各有4种放法.故共有44=256(种)放法.(2)恰有1个空盒,则这4个盒子中只有3个盒子有小球,且小球数只能是1,1,2.从4个小球中任选2个放在一起,有C 24种方法,然后与其余2个小球看成三组,分别放入4个盒子中的3个盒子中,有A 34种放法.由分步乘法计数原理,知共有C 24A 34=144(种)不同的放法.(3)恰有2个盒子不放球,也就是把4个小球只放入2个盒子,有两类放法:第一类,一个盒子放1个球,另一个盒子放3个球.先把小球分为两组,一组1个,另一组3个,有C 14种分法,再放到2个盒子,有A 24种放法.共有C 14A 24种放法. 第二类,2个盒子各放2个小球.先从4个盒子中选出2个盒子,有C 24种选法,然后把4个小球平均分成2组,每组2个,放入2个盒子,有A 24种放法.共有12C 24A 24种放法. 由分类加法计数原理,知共有C 14A 24+12C 24A 24=84(种)不同的放法.。
课时跟踪训练(二)两个计数原理的综合应用(时间45分钟)题型对点练(时间20分钟)题组一选(抽)取与分配问题1.某年级要从3名男生,2名女生中选派3人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方法有()A.6种B.7种C.8种D.9种[解析]可按女生人数分类:若选派一名女生,有2×3=6种不同的选派方法;若选派2名女生,则有3种不同的选派方法.由分类加法计数原理,共有9种不同的选派方法.[答案]D2.把10个苹果分成三堆,要求每堆至少1个,至多5个,则不同的分法共有()A.4种C.6种B.5种D.7种[解析]共有4种方法.列举如下:1,4,5;2,4,4;2,3,5;3,3,4.[答案]A3.有4位教师在同一年级的4个班中各教1个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种C.10种B.9种D.11种[解析]设4位监考教师分别为A,B,C,D,4个班级分别为a,b,c,d,假设A监考b,则余下3人监考剩下的3个班,共有3种不同方法.同理A监考c或d时,也分别有3种不同方法.根据分类加法计数原理,监考的方法共有3+3+3=9(种).[答案]B题组二用计数原理解决组数问题4.由数字1,2,3,4组成的三位数中,各位数字按严格递增(如“134”)或严格递减(如“421”)顺序排列的数的个数是()A.4B.8C.16D.24[解析]由题意分析知,严格递增的三位数只要从4个数中任取3个,共有4种取法;同理严格递减的三位数也有4个,所以符合条件的数的个数为4+4=8.[答案]B5.现有某类病毒记作Xm Yn,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为________.[解析]因为正整数m,满足m≤7,≤9,所以(m,)所有可能的取值有7×9=63(种),n n n其中m,n都取到奇数的情况有4×5=20(种),因此所求概率为.[答案]202063636.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字回答)[解析]用数字2,3可以组成24=16个四位数.其中,只由2可构成1个四位数,只由3可构成1个四位数,故数字2,3至少都出现一次的四位数的个数为16-1-1=14.[答案]14题组三用计数原理解决涂色(种植)问题7.如图所示,花坛内有5个花池,有5种不同颜色的花卉可供栽种,每个花池内只能种同种颜色的花卉,相邻两池的花色不同,则栽种方案最多有()A.180种B.240种C.360种D.420种[解析]区域2,3,4,5地位相同(都与其他4个区域中的3个区域相邻),故应先种区域1,有5种种法,再种区域2,有4种种法,接着种区域3,有3种种法,种区域4时应注意:区域4与区域2同色时区域4有1种种法,此时区域5有3种种法;区域4与区域2不同色时区域4有2种种法,此时区域5有2种种法,故共有5×4×3×(3+2×2)=420种栽种方案.故选D.[答案]D8.湖北省(鄂)分别与湖南(湘)、安徽(皖)、陕西(陕)三省交界(如图),且湘、皖、陕互不交界,在地图上分别给各省地域涂色,要求相邻省涂不同色,现有五种不同颜色可供选用,则不同的涂色方法有________种.[解析]由题意知本题是一个分步乘法计数问题,第一步涂陕西,有5种结果,再涂湖北,有4种结果,第二步涂安徽,有4种结果,再涂湖南有4种,即5×4×4×4=320(种).[答案]3209.用6种不同颜色的彩色粉笔写黑板报,板报设计如图所示,要求相邻区域不能用同一种颜色的彩色粉笔.问:该板报有多少种书写方案?[解]第一步,选英语角用的彩色粉笔,有6种不同的选法;第二步,选语文学苑用的彩色粉笔,不能与英语角用的颜色相同,有5种不同的选法;第三步,选理综视界用的彩色粉笔,与英语角和语文学苑用的颜色都不能相同,有4种不同的选法;第四步,选数学天地用的彩色粉笔,只需与理综视界的颜色不同即可,有5种不同的选法,共有6×5×4×5=600种不同的书写方案.综合提升练(时间25分钟)一、选择题1.已知两条异面直线a,b上分别有5个点和8个点,则这13个点可以确定不同的平面个数为()A.40B.16C.13D.10[解析]分两类:第1类,直线a与直线b上8个点可以确定8个不同的平面;第2类,直线b与直线a上5个点可以确定5个不同的平面.故可以确定8+5=13个不同的平面.2.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不重复(除交汇点O外)的不同游览线路有()A.6种C.12种B.8种D.48种[解析]每个景区都有2条线路,所以游览第一个景点有6种选法,游览第二个景点有4种选法,游览第三个景点有2种选法,故共有6×4×2=48种不同的游览线路.[答案]D3.用0,1,2,3,4,5六个数字组成无重复数字的四位数,比3542大的四位数的个数是()A.360B.240C.120D.60[解析]因为3542是能排出的四位数中千位为3的最大的数,所以比3542大的四位数的千位只能是4或5,所以共有2×5×4×3=120个比3542大的四位数.[答案]C二、填空题4.5只不同的球,放入2个不同的箱子中,每箱不空,共有________种不同的放法.[解析]第1只球有2种放法,第2只球有2种放法,…,第5只球有2种放法,总共有25=32种放法,但要每箱不空,故有2种情况不合要求,因此,符合要求的共有25-2=30种不同的放法.[答案]305.直线方程Ax+By=0,若从0,1,2,3,5,7这六个数字中每次取两个不同的数作为系数A、B的值,则方程表示不同直线的条数是________.[解析]若A=0,则B从1、2、3、5、7中任取一个,均表示直线y=0;同理,当B =0时,表示直线x=0;当A≠0且B≠0时,能表示5×4=20条不同的直线.故方程表示直线的条数是1+1+20=22.D 5三、解答题6.如图所示,将四棱锥 S -ABCD 的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,如果只有 5 种颜色可供使用,求不同的染色方法总数.[解] 解法一:由题意,四棱锥 S -ABCD 的顶点 S ,A ,B 所染的颜色互不相同,它们共有 5×4×3=60(种)染色方法.当 S ,A ,B 染色确定时,不妨设其颜色分别为 1,2,3.若 C染 2,则 D 可染 3 或 4 或 5,有 3 种染法;若 C 染 4,则 D 可染 3 或 5,有 2 种染法;若 C染 5,则 D 可染 3 或 4,有 2 种染法.由分类加法计数原理,当 S ,A ,B 已染确定时,C ,D 有 7 种染法.由分步乘法计数原理得,不同的染色方法有 60×7=420(种).解法二:第一步,S 点染色,有 5 种方法.第二步,A 点染色,由于 A 与 S 在同一条棱上,所以有 4 种方法.第三步,B 点染色,由于 B 与 S ,A 分别在同一条棱上,所以有 3 种方法.第四步,C 点染色,也有 3 种方法,但考虑到 D 点与 S ,A ,C 相邻,需要针对 A 与 C是否同色进行分类.当 A 与 C 同色时,D 点有 3 种染色方法,由分步乘法计数原理,有5×4×3×1×3=180(种)方法;当 A 与 C 不同色时,因为 C 与 S ,B 也不同色,所以 C 点有2 种染色方法,点也有 2 种染色方法,再由分步乘法计数原理,有 5×4×3×2×2=240(种)方法.由分类加法计数原理得,不同的染色方法共有 180+240=420(种).解法三:第一类, 种颜色全用,有 5×4×3×2×1=120(种)不同的染色方法;第二类,只有 4 种颜色,则必有某两个顶点同色(A 与 C 或 B 与 D ),共有 5×4×3×2+5×4×3×2=240(种)不同的染色方法;第三类,只用 3 种颜色,则 A 与 C 、B 与 D 必定同色,有 5×4×3=60(种)不同的染色方法.由分类加法计数原理得,不同的染色方法共有 120+240+60=420(种).7.用 1,2,3,4 四个数字组成可有重复数字的三位数,这些数从小到大构成数列{a n }. (1)这个数列共有多少项?(2)若a=341,求n的值.n[解](1)由题意,知这个数列的项数就是由1,2,3,4四个数字组成的可有重复数字的三位数的个数.由于每个数位上的数都有4种取法,由分步乘法计数原理,得满足条件的三位数的个数为4×4×4=64,}共有64项.即数列{an(2)比341小的数分为两类:第一类,百位上的数是1或2,有2×4×4=32个三位数;第二类,百位上的数是3,十位上的数可以是1,2,3中的任一个,个位上的数可以是1,2,3,4中的任一个,有3×4=12个三位数.所以比341小的三位数的个数为32+12=44,因此341是这个数列的第45项,即n=45.。
专题42 计数原理【考点预测】知识点1、分类加法计数原理完成一件事,有n 类办法,在第1类办法中有1m 种不同的办法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.事事A事事事事1事事1事事2事事m 1事事事事n事事1事事2事事m nm 1事m n 事事事事事A 事事m 1+m 2+m 3+···+m n 事事事事事事知识点2、分步乘法计数原理完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⋅⋅⋅种不同的方法.m 1事m n 事事事事事B 事事m 1×m 2×m 3×···×m n 事事事事事事m 2事m i 事注意:两个原理及其区别分类加法计数原理和“分类”有关,如果完成某件事情有n 类办法,这n 类办法之间是互斥的,那么求完成这件事情的方法总数时,就用分类加法计数原理.分步乘法计数原理和“分步”有关,是针对“分步完成”的问题.如果完成某件事情有n 个步骤,而且这几个步骤缺一不可,且互不影响(独立),当且仅当依次完成这n 个步骤后,这件事情才算完成,那么求完成这件事情的方法总数时,就用分步乘法计数原理.当然,在解决实际问题时,并不一定是单一应用分类计数原理或分步计数原理,有时可能同时用到两个计数原理.即分类时,每类的方法可能运用分步完成;而分步后,每步的方法数可能会采取分类的思想求方法数.对于同一问题,我们可以从不同的角度去处理,从而得到不同的解法(但方法数相同),这也是检验排列组合问题的很好方法.知识点3、两个计数原理的综合应用如果完成一件事的各种方法是相互独立的,那么计算完成这件事的方法数时,使用分类计数原理.如果完成一件事的各个步骤是相互联系的,即各个步骤都必须完成,这件事才告完成,那么计算完成这件事的方法数时,使用分步计数原理.【题型归纳目录】题型一:分类加法计数原理的应用 题型二:分步乘法计数原理的应用 题型三:两个计数原理的综合应用 【典例例题】题型一:分类加法计数原理的应用例1.(2022·上海崇明·二模)某学校每天安排4项课后服务供学生自愿选择参加.学校规定: (1)每位学生每天最多选择1项;(2)每位学生每项一周最多选择1次.学校提供的安排表如下:数值表示) 【答案】14【解析】由题知:周一、二、三、四均可选阅读,体育在周一、三、四, 编程在周一、二、四.①若周一选编程,则体育在周三或周四,故为2种, 阅读在剩下的两天中选为2种,共有224⨯=种方案. ②若周二选编程,则体育在周一,周三或周四,故为3种, 阅读在剩下的两天中选为2种,共有326⨯=种方案. ③若周四选编程,则体育在周一或周三,故为2种, 阅读在剩下的两天中选为2种,共有224⨯=种方案. 综上,共有46414++=种方案. 故答案为:14例2.(2022·全国·高三专题练习)已知集合{}1,2,3M =-,{}4,5,6,7N =--,若从这两个集合中各取一个元素作为点的横坐标或纵坐标,则可得平面直角坐标系中第一、二象限内不同点的个数是( ) A .18 B .16C .14D .10【答案】C【解析】分两类情况讨论:第一类,从M 中取的元素作为横坐标,从N 中取的元素作为纵坐标,则第一、二象限内的点共有326⨯=(个);第二类,从M 中取的元素作为纵坐标,从N 中取的元素作为横坐标,则第一、二象限内的点共有248⨯=(个),由分类加法计数原理,所以所求个数为6814+=. 故选:C例3.(2022·全国·高三专题练习)在某种信息传输过程中,用4个数字的一个排列(允许数字重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为( ) A .10 B .11 C .12 D .7【答案】B【解析】与信息0110至多有两个对应位置上的数字相同的信息包括三类:①与信息0110只有两个对应位置上的数字相同,有24C 6=(个); ②与信息0110只有一个对应位置上的数字相同,有14C 4=(个);③与信息0110对应位置上的数字均不相同,有1个.综上,与信息0110至多有两个对应位置上的数字相同的信息有64111++=(个). 故选:B例4.(2022·全国·高三专题练习)现有5幅不同的油画,2幅不同的国画,7幅不同的水彩画,从这些画中选一幅布置房间,则不同的选法共有( ) A .7种 B .9种C .14种D .70种【答案】C 【解析】分为三类:从国画中选,有2种不同的选法;从油画中选,有5种不同的选法;从水彩画中选,有7种不同的选法,根据分类加法计数原理,共有5+2+7= 14(种)不同的选法; 故选:C例5.(2022·全国·高三专题练习)从数字1,2,3,4中取出3个数字(允许重复),组成三位数,各位数字之和等于6,则这样的三位数的个数为( ) A .7 B .9C .10D .13【答案】C【解析】其中各位数字之和等于6的三位数可分为以下情形: ①由1,1,4三个数字组成的三位数:114,141,411共3个;②由1,2,3三个数字组成的三位数:123,132,213,231,312,321共6个;③由2,2,2三个数字可以组成1个三位数,即222. ∴共有36110++=个,故选:C .例6.(2022·湖南·株洲市南方中学高三阶段练习)用标有1克,5克,10克的砝码各一个,在一架无刻度的天平上称量重物,如果天平两端均可放置砝码,那么可以称出的不同克数(正整数的重物)有多少种?( ) A .10 B .11C .12D .13【答案】A【解析】①当天平的一端放1个砝码,另一端不放砝码时,可以成量重物的克数有1克,5克,10克;②当天平的一端放2个砝码,另一端不放砝码时,可以成量重物的克数有156+=克,11011+=克,51015+=克;③当天平的一端放3个砝码,另一端不放砝码时,可以成量重物的克数有151016++=克 ④当天平的一端放1个砝码,另一端也放1个砝码时,可以成量重物的克数有514-=克,1019-=克,1055-=克;⑤当天平的一端放1个砝码,另一端也放2个砝码时,可以成量重物的克数有105114+-=克,10156+-=克,()10514-+=克;去掉重复的克数后,可称重物的克数有10种, 故选:A例7.(2022·上海嘉定·高三阶段练习)正整数484有个不同的正约数___________. 【答案】9【解析】22484221111211=⨯⨯⨯=⨯设d 为484的正约数,则211i j d =⨯,(i =0,1,2,j =0,1,2) 例如:0i =,0j =时,00211=11=1d =⨯⨯是484的约数,1i =,2j =时,12211=2121=242d =⨯⨯是484的约数,2i =,2j =时,22211=4121=484d =⨯⨯是484的约数,因此,484的正约数个数,即d 的不同取值个数,第一步确定i 的值,有3种可能,第二步确定j 的值,有3种可能,因此d 的取值共有339⨯=种. 故答案为:9.题型二:分步乘法计数原理的应用例8.(2022·云南·高三阶段练习)图中的矩形的个数为( )D .120【答案】C【解析】由题意,矩形的两条邻边确定,矩形就确定,第一步先确定“横边”, 从5个点任选2个点可以组成一条“横边”,共有25C 种情况;第二步再确定“竖边”,共有24C 种情况,所以图中矩形共有2254C C 10660⨯=⨯=.故选:C.例9.(2022·四川·树德怀远中学高三开学考试(理))从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中偶数的个数为( ) A .24 B .18 C .12 D .6【答案】C【解析】根据题意,要使组成无重复数字的三位数为偶数,则从0,2中选一个数字为个位数,有2种可能,从1,3,5中选两个数字为十位数和百位数,有23A 326=⨯=种可能,故这个无重复数字的三位数为偶数的个数为2612⨯=. 故选:C .例10.(2022·福建·高三阶段练习)为了丰富学生的课余生活,某学校开设了篮球、书法、美术、吉他、舞蹈、击剑共六门活动课程,甲、乙、丙3名同学从中各自任选一门活动课程参加,则这3名学生所选活动课程不全相同的选法有( ) A .120种 B .150种 C .210种 D .216种【答案】C【解析】依题意,每名同学都有6种选择方法,所以这3名学生所选活动课程不全相同的选法有366210-=种. 故选:C例11.(2022·全国·高三专题练习)核糖核酸RNA 是存在于生物细胞以及部分病毒、类病毒中的遗传信息载体.参与形成RNA 的碱基有4种,分别用A ,C ,G ,U 表示.在一个RNA 分子中,各种碱基能够以任意次序出现,假设某一RNA 分子由100个碱基组成,则不同的RNA 分子的种数为( ) A .4100 B .1004 C .1002 D .104【答案】B【解析】每个碱基有4种可能,根据分步乘法计数原理,可得不同的RNA 分子的种数为1004.故A ,C ,D 错误.故选:B.例12.(2022·全国·高三专题练习)某大学食堂备有6种荤菜、5种素菜、3种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为( ) A .30 B .14 C .33 D .90【答案】D【解析】因为备有6种素菜,5种荤菜,3种汤,所以素菜有6种选法,荤菜有5种选法,汤菜有3种选法,所以要配成一荤一素一汤的套餐,则可以配制出不同的套餐有65390⨯⨯=种 故选:D题型三:两个计数原理的综合应用例13.(2022·江苏·南京市第一中学高三阶段练习)为了进一步提高广大市民的生态文明建设意识,某市规定每年4月25日为“创建文明城生态志愿行”为主题的生态活动日,现有5名同学参加志愿活动,需要携带勾子、铁锹、夹子三种劳动工具,要求每人都要携带一个工具,并且要求:带一个勾子,铁锹至少带2把,夹子至少带一个,则不同的安排方案共有( ) A .50种 B .60种 C .70种 D .80种【答案】A【解析】携带工具方案有两类:第一类,1个勾子,1个夹子,3把铁锹,所以携带工具的方案数有3252C A 20=种; 第二类,1个勾子,2个夹子,2把铁锹,所以携带工具的方案数有2253C C 30=种;所以不同的安排方案共有50种, 故选:A例14.(2022·重庆·高三阶段练习)用1,2,3…,9这九个数字组成的无重复数字的四位偶数中,各位数字之和为奇数的共有( ) A .600个 B .540个 C .480个 D .420个【答案】A【解析】依题意要使各位数字之和为奇数则可能是3个奇数1个偶数,或3个偶数1个奇数,若为3个奇数1个偶数,则偶数一定排在个位,从4个偶数中选一个排在个位有14C 4=种, 再在5个奇数中选出3个排在其余三个数位,有35A 60=种排法,故有1345C A 240=个数字;若为3个偶数1个奇数,则奇数不排在个位,从5个奇数中选一个排在前三位有1153C A 15=种, 再在4个偶数中选出3个排在其余三个数位,有34A 24=种排法,故有113534C A A 360=个数字;综上可得一共有240360600+=个数字; 故选:A例15.(2022·全国·高三专题练习)用0,1,2,3,4可以组成没有重复数字的四位偶数的个数为( ) A .36 B .48 C .60 D .72【答案】C【解析】当个位数为0时,有3424A =个,当个位数为2或4时,有1233236A A =个,所以无重复数字的四位偶数有24+36=60个, 故选:C.例16.(2022·全国·模拟预测)将6盆不同的花卉摆放成一排,其中A 、B 两盆花卉均摆放在C 花卉的同一侧,则不同的摆放种数为( ) A .360 B .480 C .600 D .720【答案】B【解析】分类讨论的方法解决如图中的6个位置,① 当C 在位置1时,不同的摆法有55A 120=种;② 当C 在位置2时,不同的摆法有1434C A 72=种; ③ 当C 在位置3时,不同的摆法有23232333A A A A 48+=种;由对称性知C 在4、5、6位置时摆放的种数和C 在3、2、1时相同, 故摆放种数有()21207248480⨯++=. 故选:B.例17.(2022·全国·高三专题练习)用数字0,1,2,3,4,5组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有___________.个(用数字作答). 【答案】144【解析】当个位、十位和百位上的数字为3个偶数的有:3133A C 18=种;当个位、十位和百位上的数字为1个偶数2个奇数的有:11231333312322C C 6C A C A C 12+=种,根据分类计数原理得到共有18126144+=个. 故答案为:144.例18.(2022·全国·高三专题练习)有四张卡片,正面和背面依次分别印有数字“1,0,2,4”和“3,5,0,7”,一小朋友把这四张卡片排成四位整数,则他能排出的四位整数的个数为_________. 【答案】264【解析】当四位整数中无0出现时,则必有5和2,其中1和3二选一,4和7二选一,四个数再进行全排列,故共有114224C C A 96=种选择;当四位整数中出现一个0时,可能是从5和0种选取的,也可能是从2和0种选择的,有12C 种,0可能的位置在个位,十位或百位,从3个位置选择一个,有13C 种,另外1和3二选一,4和7二选一,有12C 12C 种,加上另一个非0数,三个数进行全排列,有33A 种,故共有1111323223C C C C A 144=种选择;当四位整数中出现两个0时,两个0的位置有23C 种选择,另外1和3二选一,4和7二选一,有12C 12C 种,这两个数再进行全排列,有22A 种,共有23C 12C 12C 22A =24种,综上:96+144+24=264种选择 故答案为:264例19.(2022·全国·高三专题练习)有0,1,2,3,4,5六个数字. (1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的四位数? (3)能组成多少个无重复数字且比1230大的四位数? 【解析】(1)由题意组成无重复数字的四位偶数分为三类: 第一类:0在个位时,有35A 个;第二类:2在个位时,首位从1,3,4,5中选定1个,有14A 种,十位和百位从余下的数字中选,有24A 种,共有1244A A ⋅个;第三类:4在个位时,与第二类同理,也有1244A A ⋅个,由分类加法计数原理知,共有3121254444A A A A A 156+⋅+⋅=个无重复数字的四位偶数.(2)组成无重复数字且为5的倍数的四位数分为两类: 个位上的数字是0时,满足条件的四位数有35A 个;个位数上的数字是5时,满足条件的四位数有1244A A ⋅个, 故满足条件的四位数有312544A A A 108+⋅=(个).(3)组成无重复数字且比1230大的四位数分为四类: 第一类:形如2□□□,3□□□,4□□□,5□□□,共1345A A ⋅个; 第二类:形如13□□,14□□,15□□,共有1234A A ⋅个; 第三类:形如124□,125□,共有1123A A ⋅个; 第四类:形如123□,共有12A 个.由分类加法计数原理知,共有13121114534232A A A A A A A 284⋅+⋅+⋅+=(个).【方法技巧与总结】要明确完成一件事所包含的内容是如何进行的,若需分类按加法数原理,若需分步按乘法计数原理.分类时要做到“不重不漏”,分步时要做到“步骤完整”.有些计数问题既需要分类,又需要分步,此时要综合运用两个原理.【过关测试】一、单选题 1.(2022·全国·高三专题练习)7个不同型号的行李箱上分别对应贴有不同的标签以作标记,其中恰有3个行李箱标签贴错的种数为( ) A .49 B .70 C .265 D .1854【答案】B【解析】第一步,从7个行李箱中挑选3个,有37C 种方法; 第二步,3个行李箱标签贴错的方法有2种,所以恰有3个行李箱标签贴错的种数为372C 70=.故选:B2.(2022·全国·高三专题练习)在一次运动会上有四项比赛的冠军在甲、乙、丙三人中产生,那么不同的夺冠情况共有( )种 A .34A B .34C .43D .43⨯【答案】C【解析】由题意四项比赛的冠军依次在甲、乙、丙三人中选取,每项冠军都有3种选取方法,由乘法原理共有433333⨯⨯⨯=种.故A ,B ,D 错误. 故选:C .3.(2022·全国·高三专题练习)将6封信投入4个邮筒,且6封信全部投完,不同的投法有( ) A .64种 B .46种C .4种D .24科【答案】A【解析】将6封信投入4个邮筒,且6封信全部投完,根据乘法原理共有64444444⨯⨯⨯⨯⨯=种 故选:A4.(2022·全国·高三专题练习)某学校推出了《植物栽培》《手工编织》《实用木工》《实用电工》4门校本劳动选修课程,要求每个学生从中任选2门进行学习,则甲、乙两名同学的选课中恰有一门课程相同的选法为( ) A .16 B .24C .12D .36【答案】B【解析】甲先从4门课程选择1门,有4种选法,乙再从剩下的3门中选择1门,有3种选法,甲乙再从剩下的2门中共同选择1门,有2种选法,所以根据分步乘法计数原理可得甲、乙两名同学的选课中恰有一门课程相同的选法为43224⨯⨯=种. 故选:B.5.(2022·全国·高三专题练习)某医院从7名男医生(含一名主任医师),6名女医生(含一名主任医师)中选派4名男医生和3名女医生支援抗疫工作,若要求选派的医生中有主任医师,则不同的选派方案数为( ) A .350 B .500 C .550 D .700【答案】C【解析】所选医生中只有一名男主任医师的选法有3365C C 200,所选医生中只有一名女主任医师的选法有4265C C 150, 所选医生中有一名女主任医师和一名男主任医师的选法有3265C C 200,故所选医师中有主任医师的选派方法共有200150200550种, 故选:C6.(2022·全国·高三专题练习)用数字0,1,2,3,4组成没有重复数字且比1000大的四位奇数共有( ) A .36个 B .48个 C .66个 D .72个【答案】A【解析】先排末位数,有1和3在末位两种选法,再排千位有3种选法,十位和百位从剩余的3个元素中选两个进行排列有23A 6=种结果, 所以由分步乘法计数原理知共有四位奇数23636⨯⨯=个, 故选:A7.(2022·全国·高三专题练习)“回文联”是对联中的一种,既可顺读,也可倒读.比如,一副描绘厦门鼓浪屿景色的回文联:雾锁山头山锁雾,天连水尾水连天.由此定义“回文数”,n 为自然数,且n 的各位数字反向排列所得自然数n '与n 相等,这样的n 称为“回文数”,如:1221,2413142.则所有5位数中是“回文数”且各位数字不全相同的共有( ) A .648个 B .720个C .810个D .891个【答案】D【解析】根据“回文数”的特点,只需确定前3位即可,最高位即万位有9种排法,千位和百位各有10种排法,根据分步乘法计数原理,共有91010900⨯⨯=种排法,其中各位数字相同的共有9种,则所有5位数中是“回文数”且各位数字不全相同的共有9009891-=种. 故选:D.8.(2022·全国·高三专题练习)已知正整数有序数对(),,,a b c d 满足: ①12a b c d +++=;②225a b -=.则满足条件的正整数有序数对(),,,a b c d 共有( )组. A .24 B .12 C .9 D .6【答案】B【解析】由题意知,a b c d ,,,为正整数,故由225a b -=可得()()5a b a b +-=,因为||1a b -≥ ,故||5a b +≤,则满足225a b -=的数为3和2,则有序数对(,)a b 可能为(3,2),(2,3) , 再由12a b c d +++=可得7c d += ,则(,)c d 的可能有(1,6),(6,1),(2,5),(5,2),(3,4),(4,3)共6种情况, 故满足条件的正整数有序数对(),,,a b c d 共有2612⨯=组, 故选:B9.(2022·全国·高三专题练习)古希腊哲学家毕达哥拉斯曾说过:“美的线型和其他一切美的形体都必须有对称形式.”在中华传统文化里,建筑、器物、书法、诗歌、对联、绘画几乎无不讲究对称之美.如图所示的是清代诗人黄柏权的《茶壶回文诗》,其以连环诗的形式展现,20个字绕着茶壶成一圆环,无论顺着读还是逆着读,皆成佳作.数学与生活也有许多奇妙的联系,如2020年02月02日(20200202)被称为世界完全对称日(公历纪年日期中数字左右完全对称的日期).数学上把20200202这样的对称数叫回文数,若两位数的回文数共有9个(11,22,…,99),则所有四位数的回文数中能被3整除的个数是( )A .27B .28C .29D .30【答案】D【解析】要能被3整除,则四个数的和是3的偶数倍数.满足条件的回文数分为以下几类: 和为6的回文数:1221,2112,3003, 3个.和为12的回文数:3333,2442,4224,1551,5115,6006, 6个.和为18的回文数:1881,8118,2772,7227,3663,6336,4554,5445,9009,9个.和为24的回文数:3993,9339,4884,8448,5775,7557,6666,7个. 和为30的回文数:7887,8778,6996,9669,4个. 和为36的回文数:9999,1个. 故共有3+6+9+7+4+1=30个. 故选:D 二、多选题10.(2022·全国·高三专题练习)用数字0、1、2、3、4、5组成没有重复数字的四位数,则下列说法正确的是( ) A .可组成360个不重复的四位数 B .可组成156个不重复的四位偶数 C .可组成96个能被3整除的不重复四位数D .若将组成的不重复的四位数按从小到大的顺序排成一个数列,则第85个数字为2310 【答案】BC【解析】A 选项,有1355300C A =个,错,B 选项,分为两类:0在末位,则有3560A =种,0不在末位,则有11224496C C A =种, ∴共有6096156+=种,对,C 选项,先把四个相加能被3整除的四个数从小到大列举出来,即先选:(0123),,,,(0135),,,、(0234),,,、(0345),,,、(1245),,,, 它们排列出来的数一定可以被3整除,∴共有:134334496C A A ⋅+=种,对,D 选项,首位为1的有3560A =个,前两位为20的有2412A =个,前两位为21的有2412A =个,此时共有60121284++=个,因而第85个数字是前两位为23的最小数,即为2301,错, 故选:BC.11.(2022·全国·高三专题练习)如图,标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点 A 向结点 B 传递消息,信息可以分开沿不同的路线同时传递,小圆圈表示网络的结点,结点之间的连线表示他们有网线相连,则单位时间内传递的信息量可以为( )A.18B.19C.24D.26【答案】AB【解析】第一条线路单位时间内传递的最大信息量为3;第二条线路单位时间内传递的最大信息量为4;第三条线路单位时间内传递的最大信息量为6;第四条线路单位时间内传递的最大信息量为6.+++=,因此该段网线单位时间内可以通过的最大信息量为346619故选:AB12.(2022·全国·高三专题练习)某校实行选课走班制度,张毅同学选择的是地理、生物、政治这三科,且生物在B层,该校周一上午选课走班的课程安排如下表所示,张毅选择三个科目的课各上一节,另外一节上自习,则下列说法正确的是()C.自习不可能安排在第2节D.自习可安排在4节课中的任一节【答案】BD【解析】由于生物在B层,只有第2,3节有,故分两类:若生物选第2节,则地理可选第1节或第3节,有2种选法,其他两节政治、自习任意选,⨯=种(此种情况自习可安排在第1、3、4节中的某节);故有224若生物选第3节,则地理只能选第1节,政治只能选第4节,自习只能选第2节,故有1种.+=种.根据分类加法计数原理可得选课方式有415综上,自习可安排在4节课中的任一节.故选:BD.三、填空题13.(2022·江苏·睢宁县菁华高级中学有限公司高三阶段练习)为丰富学生的校园生活,拓宽学生的视野,某学校为学生安排了丰富多彩的选修课,每学期每名同学可任选2门进行学习. 甲同学计划从A ,B ,C ,D ,E ,F ,G 这7门选修课中任选2门,其中至少从课程B ,D ,E 中选一门,则甲同学的选择方法有______种.【答案】15【解析】根据题意,分2种情况讨论:①、当甲从B ,D ,E 中选1门时,另一门需要在A 、C 、F 、G 中选出,有1134C C 12=种选法,②、当甲从B ,D ,E 中选2门时,有23C 3=种选法,则甲的选择方法有12315+=种, 故答案为:15.14.(2022·全国·高三专题练习)国庆放假期间,4号到7号安排甲乙丙三人值班,其中,乙和丙各值班1天,甲连续值班2天,则所有的安排方法共有________种. 【答案】6【解析】甲的安排方法有3种,即4,5两天值班或5,6两天值班或6,7两天值班,再安排乙与丙两人有22A 2=种安排方法,所以所有的安排方法共有6种.故答案为:615.(2022·全国·高三专题练习)有红、蓝、黄、绿四种颜色的球各6个,每种颜色的6个球分别标有数字1、2、3、4、5、6,从中任取3个标号不同的球,这3个颜色互不相同且所标数字互不相邻的取法种数为______. 【答案】96【解析】从1、2、3、4、5、6中任取3个标号不同且3个标号数字互不相邻的取法有:135、136、146、246,共4种;3个颜色互不相同的取法有:3343C A 24=种;所以满足题意的取法共有:42496⨯=种.故答案为:96.16.(2022·全国·高三专题练习)如图,一条电路从A 处到B 处接通时,可以有_____________条不同的线路(每条线路仅含一条通路).【答案】9【解析】依题意按上、中、下三条线路可分为三类,上线路中有2种,中线路中只有1种,下线路中有236⨯=(种).++=(种).根据分类计数原理,共有2169故答案为:9.。
计数原理及其在组合数学中的应用在数学领域中,计数原理是一种重要的概念,它涉及到对不同情况下的计数方法和技巧的研究。
计数原理不仅是组合数学中的基本工具,也在解决实际问题中起着重要的作用。
本文将介绍计数原理的定义、常见的计数方法以及其在组合数学中的应用。
一、计数原理的定义计数原理是一种数学方法,用于确定集合中的元素个数。
它可以分为两个基本原理:加法原理和乘法原理。
加法原理:如果一个任务可以通过执行两个或多个互斥的子任务完成,且每个子任务的完成方法数量都已知,则该任务的完成方法总数等于各个子任务完成方法数量的总和。
乘法原理:如果一个任务可以通过执行两个或多个相互独立的子任务完成,且每个子任务的完成方法数量都已知,则该任务的完成方法总数等于各个子任务完成方法数量的乘积。
二、常见的计数方法1. 排列排列是一种有序的选择方式。
如果有n个不同元素,要从中选择r个元素进行排列,称为从n个元素中取r个元素的排列。
排列的计算公式为P(n,r) = n! / (n-r)!,其中n!表示n的阶乘。
2. 组合组合是一种无序的选择方式。
如果有n个不同元素,要从中选择r 个元素进行组合,称为从n个元素中取r个元素的组合。
组合的计算公式为C(n,r) = n! / (r!(n-r)!),其中n!表示n的阶乘。
3. 二项式系数二项式系数是组合数学中的重要概念,表示了n次幂的展开系数。
它们可以通过组合的计算方法得出,常用来展开多项式式子,计算多项式系数。
三、计数原理在组合数学中的应用计数原理在组合数学中有广泛的应用,例如:1. 排列组合问题排列和组合问题是计数原理在组合数学中的最基础和最常见的应用之一。
通过排列和组合的计算方法,我们可以解决从一组元素中选择若干个元素进行排列或组合的问题。
2. 鸽巢原理鸽巢原理是计数原理中的一种重要应用,它可以帮助解决将若干个物体放入较少容器中的问题。
鸽巢原理指出,如果将n+1个物体放入n 个容器中,那么至少有一个容器中会放置两个或更多的物体。