表面工程与热处理技术概述.ppt
- 格式:ppt
- 大小:1.30 MB
- 文档页数:71
表面工程技术表面工程技术是现代科学技术的重要组成部分,是对材料表面进行改性的一项高科技技术。
它通过改变材料表面的结构和性能,以提高材料的耐磨、耐腐蚀、抗疲劳和耐高温等综合性能。
表面工程技术在工业生产、材料科学、机械制造和航空航天等领域有着广泛的应用。
表面工程技术的发展始于上世纪60年代末,当时主要应用于航空航天领域的防腐蚀和抗疲劳技术。
随着科学技术的不断进步,表面工程技术逐渐扩展到了汽车制造、冶金工业、化工、电子、医疗器械等多个领域。
在这些领域中,表面工程技术不仅可以改善材料的性能,还可以改善其外观质量,提高产品的附加值。
目前,表面工程技术主要包括物理表面处理技术、化学表面处理技术和热处理技术等多个方面。
其中,物理表面处理技术主要包括喷砂、喷丸、抛光和电沉积等方法,通过改变材料表面的形貌和粗糙度,以提高材料的耐磨、耐腐蚀和抗疲劳性能。
化学表面处理技术主要包括镀金、镀银、镀铜、电镀和化学转化膜等方法,通过在材料表面形成一层保护膜,来提高材料的耐腐蚀性能。
热处理技术主要包括淬火、回火、火焰喷射和等离子渗氮等方法,通过调控材料的组织结构和相变行为,来提高材料的硬度、强度和耐磨性能。
表面工程技术的应用范围非常广泛。
在汽车制造领域,表面工程技术可以应用于汽车发动机的涂层、轮毂的喷涂和车身的喷漆等方面,以提高汽车的耐腐蚀性能和外观质量。
在航空航天领域,表面工程技术可以应用于飞机发动机的抗氧化涂层、飞机外壳的防腐蚀涂层和航天器航天衣的防辐射涂层等方面,以提高飞机的使用寿命和安全性能。
在电子领域,表面工程技术可以应用于半导体芯片的制造、电路板的焊接和电池的电极制备等方面,以提高电子产品的性能和可靠性。
表面工程技术的未来发展将更加注重绿色、环保和可持续发展。
随着全球环境问题的日益突出,人们对环境友好型表面工程技术的需求也越来越迫切。
绿色表面工程技术将采用无污染、无废物和高效节能的工艺,通过绿色材料和绿色化学品的应用,来实现资源的高效利用和环境的可持续发展。
机械工程中的热处理与表面处理技术热处理和表面处理是机械工程中常用的两种技术,它们在提高材料性能、延长零件使用寿命、改善零件表面质量等方面发挥着重要的作用。
本文将从热处理和表面处理的定义、原理、应用以及未来发展等方面进行探讨。
热处理是指通过加热和冷却的方式改变材料的组织结构和性能。
常见的热处理方法包括退火、正火、淬火、回火等。
退火可以消除材料内部应力,改善塑性和韧性;正火可以提高材料的硬度和强度;淬火可以使材料迅速冷却,产生高硬度和高强度的组织;回火可以降低淬火后的脆性,提高材料的韧性。
通过选择不同的热处理方法和工艺参数,可以获得适合不同工程要求的材料性能。
表面处理是指对材料表面进行改性的工艺,常见的表面处理方法包括电镀、喷涂、氮化等。
电镀是将金属离子沉积在被处理材料的表面,形成一层金属保护层,提高材料的耐腐蚀性和外观质量;喷涂是将涂料喷涂在材料表面,形成一层保护膜,提高材料的耐磨性和耐蚀性;氮化是将材料表面暴露在氮气环境中,通过化学反应形成一层氮化层,提高材料的硬度和耐磨性。
表面处理可以改善材料的表面质量,增加材料的使用寿命。
热处理和表面处理技术在机械工程中有着广泛的应用。
在制造过程中,通过合理的热处理工艺可以改善材料的加工性能,降低加工难度;通过表面处理可以提高零件的耐磨性、耐蚀性和外观质量。
在使用过程中,通过热处理可以提高零件的强度和韧性,延长零件的使用寿命;通过表面处理可以改善零件的摩擦性能,减少能量损失。
热处理和表面处理技术在航空航天、汽车制造、机械制造等领域都有着重要的应用。
未来,随着科技的不断进步,热处理和表面处理技术也将不断发展。
一方面,热处理技术将更加精细化、智能化,通过模拟和仿真技术,优化热处理工艺参数,实现材料性能的精确控制。
另一方面,表面处理技术将更加环保、高效,开发出更多新型的表面处理方法和材料,提高表面处理的效果和工艺的可持续性。
同时,热处理和表面处理技术也将与其他领域的技术相结合,如材料科学、计算机科学等,共同推动机械工程的发展。
表面工程:经表面预处理后,通过表面涂覆、表面改性或多种表面工程技术复合处理,改变材料表面的形态、化学成分和组织状态,在保证材料整体强度水平不降低的基础上,以获得所需表面性能的系统工程2表面:金属或合金与周维环境(气相、液相和真空)间的过渡区称为金属的表面。
因环境不同,过渡区的组成和深度不同。
3表面自由能:产生原因:液体(熔体金属)的表面原子受到向内的吸引力的作用。
欲使其内部原子转变为表面原子,即增大表面积,需要环境对体系作功,从而形成表面能。
定义增大(液体)表面积所需要的功(能量)就是(液体)表面自由能。
界面:固相之间分界面4纯净表面(洁净表面):大块晶体的三维周期结构与真空间的过渡区域称为纯净表面5清洁表面:不存在有表面化合物,仅有气体和洗涤物的残留吸附层的金属表面称为清洁表面,也称为工业纯净表面。
外延生长界面:在单晶体表面沿原来的结晶轴向生长成的新的单晶层的工艺过程,就称为外延生长。
(气相外延、液相外延)。
机械结合界面:涂层和基体间的结合靠两种材料相互镶嵌在一起的机械连接形成。
热喷涂属于机械结合界面。
6. 润湿:液体在固体表面上铺展的现象7. 边界润滑摩擦: 对偶件的表面被一薄层油膜隔开,可使摩擦力减小2-10倍,并使表面磨损减少。
但是在载荷一大的情况下,油膜就会被偶件上的微凸体穿破,摩擦系数通常在0.1左右。
8.喷焊层的稀释率:稀释率η=B/(A+B) η为喷焊层的稀释率,A为喷焊的金属质量,B 为基体熔化的质量。
9.自熔合金:在普通合金成分基础上添加B,Si等元素,降低熔点,使熔点比基体低,提高流动性,有自脱氧造渣性能的合金。
10.激光熔凝:就是用激光把基材表面加热到熔化温度以上,然后靠基材本身的导热使熔化层表面快速冷却并结晶的热处理工艺。
组织变化为:熔凝层、相变硬化层、热影响区和基材。
与激光淬火相比,激光熔凝层比激光淬火的硬化层要深,硬度要高、耐磨性要好。
粗糙度加工表面所具有的微小凹凸和微小峰谷所组成的微观几何形状就构成其特征7莱宾杰尔效应:活性介质与金属接触后,使金属的表面自由能下降,导致金属材料强度和塑性发生变化的效应称为莱宾杰尔效应。