“鸡兔同笼”讲解方法(13种)
- 格式:doc
- 大小:70.50 KB
- 文档页数:5
鸡兔同笼题目逐步讲解咱们今天来聊聊“鸡兔同笼”这个有趣的数学问题。
这可是个经典的题目,经常会出现在咱们的数学学习中。
先来说说最常见的一种题目类型,比如说“笼子里有若干只鸡和兔,从上面数,有 35 个头,从下面数,有 94 只脚,问鸡和兔各有多少只?”那咱们来一步步解决这个问题。
首先,咱们可以来个大胆的假设。
假设笼子里全是鸡,那每只鸡有 2 只脚,35 只鸡就应该有 35×2 = 70只脚。
可题目中说一共有 94 只脚,这和咱们假设的 70 只脚相比,多出来了 94 70 = 24 只脚。
为什么会多出来脚呢?因为咱们把兔子也当成鸡来算了。
每只兔子有 4 只脚,而每只鸡只有 2 只脚,每把一只兔子当成鸡就少算了 4 2= 2 只脚。
现在多出来了 24 只脚,那就说明兔子的数量是 24÷2 = 12 只。
知道了兔子的数量,那鸡的数量就很容易算出来啦,用总数 35 减去兔子的 12 只,35 12 = 23 只,所以鸡有 23 只。
咱们再来看看另一种类型的鸡兔同笼问题。
比如“鸡兔同笼,鸡比兔多 15 只,共有脚 180 只,鸡兔各有多少只?”这时候,咱们还是先假设。
假设鸡和兔的数量一样多,那就要把多出来的 15 只鸡去掉,这样脚的总数就变成 180 15×2 = 150 只。
这时候鸡和兔的数量一样多,一只鸡和一只兔合起来有 6 只脚(2+ 4 = 6),所以兔子的数量就是 150÷6 = 25 只。
鸡的数量就是 25 + 15 = 40 只。
再比如这种稍微复杂点的题目“鸡兔同笼,兔的只数是鸡的 3 倍,且兔脚比鸡脚多 120 只,问鸡兔各有多少只?”咱们设鸡的数量为 x 只,那兔的数量就是 3x 只。
因为每只鸡有 2只脚,每只兔有 4 只脚,所以可以列出方程 4×3x 2x = 120。
解这个方程,12x 2x = 120,10x = 120,x = 12。
鸡兔同笼问题讲解
鸡兔同笼问题是一个经典的数学问题,主要是考察解决问题的逻辑思维能力。
问题描述:
假设有一个笼子里面关着鸡和兔子,一共有35个头,94只脚。
问鸡和兔子各有多少只?
解题思路:
1. 假设鸡的数量为x,兔子的数量为y。
2. 鸡和兔子的总数量等于35,即x + y = 35。
3. 鸡的头数乘以2再加上兔子的头数乘以4等于总头数35,即2x + 4y = 94。
4. 根据以上两个方程组成的线性方程组,可以解得x和y的值。
解题过程:
1. 将第一个方程乘以2,得到2x + 2y = 70。
2. 用第二个方程减去第一个方程,得到2x + 4y - 2x - 2y = 94 - 70,即2y = 24。
3. 解得y = 12,代入第一个方程得到x = 23。
解答:
根据以上计算,鸡的数量为23只,兔子的数量为12只。
小学五年级数学《鸡兔同笼》经典公开课教案小学五年级数学《鸡兔同笼》经典公开课教案(精选10篇)作为一名辛苦耕耘的教育工作者,有必要进行细致的教案准备工作,教案有助于学生理解并掌握系统的知识。
那么什么样的教案才是好的呢?下面是小编为大家整理的小学五年级数学《鸡兔同笼》经典公开课教案,希望能够帮助到大家。
小学五年级数学《鸡兔同笼》经典公开课教案篇1【学习目标】1、尝试用不同的方法解决“鸡兔同笼”问题,并体会代数方法的一般性。
2、解决“鸡兔同笼”问题可用猜测、列表、假设或方程解等方法。
3、体会到数学问题在日常生活中的应用。
【学习重难点】1、重点是尝试用不同的方法解决“鸡兔同笼”问题。
2、难点是在解决问题的过程中培养逻辑推理能力。
【学习过程】一、故事引入在我国古代流传着很多有趣的数学问题,“鸡兔同笼”就是其中之一。
这个问题早在1500多年前人们就已经开始探讨了。
阅读书本P112鸡兔同笼的故事,能用你自己的话表述一下题目的意思吗?二、探索新知1、阅读P113例1,根据书本提示,会用列表法求出鸡、兔各几只吗?(完成课本表格。
)2、假设笼子里都是鸡或者都是兔,脚数会发生什么变化呢?能列式解决吗?(会用假设法解决“鸡兔同笼”问题)3、自己动笔,尝试用方程的方法解决鸡兔只数的问题?(有困难的可参考书本P114)4、用假设或者解方程的方法解决P112“鸡兔同笼”问题(1)方程解:(2)算术解:解:设鸡有x只,那么兔就有(35-x)只。
解:假设都是鸡。
根据鸡兔共有94只脚来列方程式2×35=70(只)2x+(35-x)×4=9494-70=24(只)2x=4624÷(4-2)=12(只)x=2335-12=23(只)35-23=12(只)答:鸡有23只,兔有12只。
答:鸡有23只,兔有12只。
5、以上三种解法,哪一种更方便?☆友情小提示:要解决“鸡兔同笼”问题,可以采用假设法或方程解都可以。
鸡兔同笼问题讲解方法鸡兔同笼问题是数学中的经典问题之一,被广泛应用于课堂教学和日常生活中。
它涉及到动态和数量关系的推理,需要运用到代数方程的解法,对于培养逻辑思维和数学推理能力非常有帮助。
本文将介绍鸡兔同笼问题的基本概念、解题思路以及解题方法。
一、基本概念鸡兔同笼问题是一个典型的关于数量及关系的问题。
假设一只笼子里面关押了鸡和兔,它们的总数量及总脚数都已知,而我们需要计算出鸡和兔各自的数量。
这个问题需要构建一个代数方程,通过解方程来获得答案。
二、解题思路1.确定未知数:首先需要明确题目中缺失的信息,鸡的数量和兔的数量是未知数,可以分别以x和y代表。
2.建立方程:根据题目给定的条件,我们可以得到两个方程来描述鸡和兔的数量及脚数之间的关系。
首先,根据数量,鸡和兔的总数等于x+y;其次,根据脚数,鸡和兔的总脚数可以表示为2x+4y。
3.解方程:将建立的两个方程联立,可以得到一个二元一次方程组。
通常有三种常用的解法:代入法、消元法和等式法。
选择其中一种适合的方法来解方程,得到鸡和兔的具体数量。
三、解题方法1.代入法代入法是鸡兔同笼问题中最简单的解题方法之一。
假设鸡的数量为x,兔的数量为y,可以根据题目条件建立方程组:x + y = 总数2x + 4y = 总脚数得到鸡的数量为x = 总数 - y,然后将x的值代入第二个方程:2(总数 - y) + 4y = 总脚数通过求解这个一元一次方程,可以得到兔的数量y的值,进而求出鸡的数量x的值。
2.消元法消元法是解鸡兔同笼问题的常用方法之一。
首先需要将方程组进行变形,使得两个方程的未知数的系数相等。
例如,将第一个方程乘以2,得到2x + 2y = 2 * 总数。
然后,将两个方程相减,消去x的项,得到2x - 2x + 4y - 2y = 2 * 总数 - 总脚数,简化为2y = 2 * 总数 - 总脚数。
通过求解这个一元一次方程,可以得到兔的数量y的值,进而求出鸡的数量x的值。
鸡兔同笼问题与假设法鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的;它是一类有名的中国古算题..许多小学算术应用题;都可以转化为鸡兔同笼问题来加以计算..例1小梅数她家的鸡与兔;数头有16个;数脚有44只..问:小梅家的鸡与兔各有多少只分析:假设16只都是鸡;那么就应该有2×16=32只脚;但实际上有44只脚;比假设的情况多了44-32=12只脚;出现这种情况的原因是把兔当作鸡了..如果我们以同样数量的兔去换同样数量的鸡;那么每换一只;头的数目不变;脚数增加了2只..因此只要算出12里面有几个2;就可以求出兔的只数..解:有兔44-2×16÷4-2=6只;有鸡16-6=10只..答:有6只兔;10只鸡..当然;我们也可以假设16只都是兔子;那么就应该有4×16=64只脚;但实际上有44只脚;比假设的情况少了64-44=20只脚;这是因为把鸡当作兔了..我们以鸡去换兔;每换一只;头的数目不变;脚数减少了4-2=2只..因此只要算出20里面有几个2;就可以求出鸡的只数..有鸡4×16-44÷4-2=10只;有兔16—10=6只..由例1看出;解答鸡兔同笼问题通常采用假设法;可以先假设都是鸡;然后以兔换鸡;也可以先假设都是兔;然后以鸡换兔..因此这类问题也叫置换问题..例2100个和尚140个馍;大和尚1人分3个馍;小和尚1人分1个馍..问:大、小和尚各有多少人分析与解:本题由中国古算名题“百僧分馍问题”演变而得..如果将大和尚、小和尚分别看作鸡和兔;馍看作腿;那么就成了鸡兔同笼问题;可以用假设法来解..假设100人全是大和尚;那么共需馍300个;比实际多300-140=160个..现在以小和尚去换大和尚;每换一个总人数不变;而馍就要减少3—1=2个;因为160÷2=80;故小和尚有80人;大和尚有100-80=20人..答:大和尚有20人;小和尚有80人..同样;也可以假设100人都是小和尚;大家不妨自己试试..在下面的例题中;我们只给出一种假设方法..例3彩色文化用品每套19元;普通文化用品每套11元;这两种文化用品共买了16套;用钱280元..问:两种文化用品各买了多少套分析与解:我们设想有一只“怪鸡”有1个头11只脚;一种“怪兔”有1个头19只脚;它们共有16个头;280只脚..这样;就将买文化用品问题转换成鸡兔同笼问题了..假设买了16套彩色文化用品;则共需19×16=304元;比实际多304—280=24元;现在用普通文化用品去换彩色文化用品;每换一套少用19—11=8元;所以买普通文化用品24÷8=3套;买彩色文化用品16-3=13套..答:买普通文化用品3套;买彩色文化用品13套..例4鸡、兔共100只;鸡脚比兔脚多20只..问:鸡、兔各多少只分析:假设100只都是鸡;没有兔;那么就有鸡脚200只;而兔的脚数为零..这样鸡脚比兔脚多200只;而实际上只多20只;这说明假设的鸡脚比兔脚多的数比实际上多200—20=180只..现在以兔换鸡;每换一只;鸡脚减少2只;兔脚增加4只;即鸡脚比兔脚多的脚数中就会减少4+2=6只;而180÷6=30;因此有兔子30只;鸡100——30=70只..解:有兔2×100—20÷2+4=30只;有鸡100—30=70只..答:有鸡70只;兔30只..例5现有大、小油瓶共50个;每个大瓶可装油4千克;每个小瓶可装油2千克;大瓶比小瓶共多装20千克..问:大、小瓶各有多少个分析:本题与例4非常类似;仿照例4的解法即可..解:小瓶有4×50-20÷4+2=30个;大瓶有50-30=20个..答:有大瓶20个;小瓶30个..例6一批钢材;用小卡车装载要45辆;用大卡车装载只要36辆..已知每辆大卡车比每辆小卡车多装4吨;那么这批钢材有多少吨分析:要算出这批钢材有多少吨;需要知道每辆大卡车或小卡车能装多少吨..利用假设法;假设只用36辆小卡车来装载这批钢材;因为每辆大卡车比每辆小卡车多装4吨;所以要剩下4×36=144吨..根据条件;要装完这144吨钢材还需要45-36=9辆小卡车..这样每辆小卡车能装144÷9=16吨..由此可求出这批钢材有多少吨..解:4×36÷45-36×45=720吨..答:这批钢材有720吨..例7乐乐百货商店委托搬运站运送500只花瓶;双方商定每只运费0.24元;但如果发生损坏;那么每打破一只不仅不给运费;而且还要赔偿1.26元;结果搬运站共得运费115.5元..问:搬运过程中共打破了几只花瓶分析:假设500只花瓶在搬运过程中一只也没有打破;那么应得运费0.24×500=120元..实际上只得到115.5元;少得120-115.5=4.5元..搬运站每打破一只花瓶要损失0.24+1.26=1.5元..因此共打破花瓶4.5÷1.5=3只..解:0.24×500-115.5÷0.24+1.26=3只..答:共打破3只花瓶..例8小乐与小喜一起跳绳;小喜先跳了2分钟;然后两人各跳了3分钟;一共跳了780下..已知小喜比小乐每分钟多跳12下;那么小喜比小乐共多跳了多少下分析与解:利用假设法;假设小喜的跳绳速度减少到与小乐一样;那么两人跳的总数减少了12×2+3=60下..可求出小乐每分钟跳780——60÷2+3+3=90下;小乐一共跳了90×3=270下;因此小喜比小乐共多跳780——270×2=240下..答:小喜比小乐共多跳了240下..。
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数—每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数—总脚数)÷(每只兔脚数—每只鸡脚数)=鸡数;总头数—鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一 (100—2×36)÷(4—2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36—100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数—脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数—鸡数=兔数.(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数—鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数—鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
小升初数学鸡兔同笼问题解析(含例题讲解+课后练习) “鸡兔同笼问题”的4种理解方法▶题目:有若干只鸡和兔在同个笼子里,从上面数,有三十五个头;从下面数,有九十四只脚。
求笼中各有几只鸡和兔?解法1 站队法让所有的鸡和兔子都列队站好,鸡和兔子都听哨子指挥。
那么,吹一声哨子让所有动物抬起一只脚,笼中站立的脚:94-35=59(只)。
那么再吹一声哨子,然后再抬起一只脚,这时候鸡两只脚都抬起来就一屁股坐地上了,只剩下用两只脚站立的兔子,站立脚:59-35=24(只)兔:24÷2=12(只);鸡:35-12=23(只)解法2 松绑法由于兔子的脚比鸡的脚多出了两个,因此把兔子的两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚。
那么,兔子就成了2只脚。
则捆绑后鸡脚和兔脚的总数:35×2=70(只)比题中所说的94只要少:94-70=24(只)。
现在,我们松开一只兔子脚上的绳子,总的脚数就会增加2只,不断地一个一个地松开绳子,总的脚数则不断地增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只)从而鸡数:35-12=23(只)解法3 假设替换法实际上替代法的做题步骤跟上述松绑法相似,只不过是换种方式进行理解。
假设笼子里全是鸡,则应有脚70只。
而实际上多出的部分就是兔子替换了鸡所形成。
每一只兔子替代鸡,则增加每只兔脚减去每只鸡脚的数量。
兔子数=(实际脚数-每只鸡脚数*鸡兔总数)/(每只兔脚数-每只鸡脚数)与前相似,假设笼子里全是兔,则应有脚120只。
而实际上不足的部分就是鸡替换了兔子所形成。
每一只鸡替代兔子,则减少每只兔脚减去每只鸡脚的数量,即2只。
鸡数=(每只兔脚数*鸡兔总数-实际脚数)/(每只兔脚数-每只鸡脚数)将上述数值代入方法(1)可知,兔子数为12只,再求出鸡数为23只。
将上述数值代入方法(2)可知,鸡数为23只,再求出兔子数为12只。
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数.求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如.“有鸡、兔共36只.它们共有脚100只.鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数.当鸡的总脚数比兔的总脚数多时.可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数.当兔的总脚数比鸡的总脚数多时.可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法.可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如.“灯泡厂生产灯泡的工人.按得分的多少给工资。
小学四年级数学下册《数学广角--鸡兔同笼》教案(精选13篇)小学四年级数学下册《数学广角--鸡兔同笼》篇1一、教材分析:“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。
解决这类问题时,教材展示了学生逐步解决问题的过程。
“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。
因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。
二、学情分析:(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。
(2)列方程解答此类问题数量关系直观易懂,要加以提倡。
(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理解,拓宽学生思维。
三、教学目标:1.知识与技能使学生了解“鸡兔同笼”问题的结构特点,掌握用列表法和假设法解决问题,初步形成解决此类问题的一般性策略。
2.过程与方法通过自主探索,合作交流,让学生经历用不同的方法解决“鸡兔同笼”问题的过程,使学生体会解题策略的多样性,渗透化繁为简的思想。
3.情感态度与价值观使学生感受古代数学问题的趣味性,体会到“鸡兔同笼”问题在生活中的广泛应用,提高学习数学的兴趣。
四、教学重点:尝试用不同的方法解决“鸡兔同笼”问题,体会用假设法解决问题的优越性。
五、教学难点:理解用假设法解决“鸡兔同笼”问题的算理。
六、教学过程:(一)创设情景,提出问题。
1.同学们今天老师将和大家一起来学习一道我国古代非常有名的数学趣题,“今有雉兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”(PPT投影展示原题)这四句话是什么意思呢?指生回答(笼子里有若干只鸡和兔,从上面数,有35个头;从下面数,有94只脚。
鸡和兔各有几只?2.有谁知道这类题我们把它叫做什么问题吗?(鸡兔同笼)板书。
鸡兔同笼问题是我国古代三大趣题之一,记载于《孙子算经》一书中,距今已有1500多年。
鸡兔同笼题型全解“鸡兔同笼”是一类经典的数学问题,常常让许多同学感到头疼。
但别担心,今天咱们就来把这类题型彻底搞清楚!首先,咱们来了解一下什么是鸡兔同笼问题。
简单来说,就是在一个笼子里关着鸡和兔子,告诉你头的总数和脚的总数,让你求出鸡和兔分别有多少只。
解决鸡兔同笼问题,最常用的方法有假设法和方程法。
咱们先来说说假设法。
假设全是鸡,那么脚的总数就应该是头的总数乘以 2。
但实际脚的总数比这个假设的总数要多,多出来的部分就是因为把兔子当成鸡来算了。
每只兔子有 4 只脚,每只鸡有 2 只脚,所以每把一只兔子当成鸡就少算了 2 只脚。
用多出来的脚的数量除以 2,就得到兔子的数量。
举个例子,笼子里有 35 个头,94 只脚。
咱们假设全是鸡,那脚的总数就应该是 35×2 = 70 只,可实际有 94 只脚,多了 94 70 = 24 只脚。
这多出来的 24 只脚就是因为把兔子当成鸡算少了的,每只兔子少算 2 只脚,所以兔子的数量就是 24÷2 = 12 只。
鸡的数量就是 35 12= 23 只。
再来说说方程法。
咱们可以设鸡有 x 只,兔有 y 只。
根据头的总数,就有 x + y =总头数;再根据脚的总数,就有 2x + 4y =总脚数。
这样就得到一个方程组,解这个方程组就能求出鸡和兔的数量。
比如说还是刚才那个例子,设鸡有 x 只,兔有 y 只,就有 x + y =35,2x + 4y = 94。
由第一个方程可以得到 x = 35 y,把它代入第二个方程,就得到 2×(35 y) + 4y = 94,解得 y = 12,再代入 x = 35 y,得到 x = 23。
除了这两种基本方法,还有一些变形的鸡兔同笼问题。
比如,告诉你鸡兔脚数的差,还有头的总数,让求鸡兔的数量。
这时候还是可以用假设法或者方程法来解决。
假设法的思路跟前面类似,只是计算的时候要注意脚数差这个条件。
方程法就根据新的条件列出相应的方程来求解。
鸡兔同笼的13种解法欧阳学文例、现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,聪明的小朋友,你能算出鸡和兔子各有多根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些!(方法二:最快乐的方法“画图法”)分析:画图法也是低年级小朋友很好接受的一个方法,呵呵,画图还可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
这样就有14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
(方法三:最酷的方法“金鸡独立法”)分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
(方法四:最逗的方法“吹哨法”)分析:假设及和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(方法五:最常用的方法“假设法”)分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
(方法六:最常用的方法“假设法”)分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只鸡9兔子变成鸡,即鸡为9只,兔子为14-9=5只。
鸡兔同笼问题讲解及习题例 1 小梅数她家的鸡与兔,数头有 16 个,数脚有 44 只。
问:小梅家的鸡与兔各有多少只解析:假设 16 只都是鸡,那么就应该有 2×16=32(只)脚,但实质上有 44 只脚,比假设的状况多了44—32=12(只)脚,出现这种状况的原由是把兔看作鸡了。
假如我们以相同数目的兔去换相同数目的鸡,那么每换一只,头的数目不变,脚数增加了 2 只。
所以只要算出12 里面有几个 2,就可以求出兔的只数。
‘解:有兔 (44—2×16)÷(4—2)=6(只),有鸡 16—6=10(只)。
答:有 6 只兔, 10 只鸡。
自然,我们也可以假设16 只都是兔子,那么就应该有4×16=64(只 )脚,但实质上有44 只脚,比假设的状况少了64—44=20(只)脚,这是由于把鸡看作兔了。
我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4—2=2(只)。
所以只要算出20 里面有几个 2,就可以求出鸡的只数。
有鸡 (4×16—44)÷(4—2)=10(只),有兔 16—10=6(只)。
由例 1 看出,解答鸡兔同笼问题平时采纳假设法,可以先假设都是鸡,而后以兔换鸡;也可以先假设都是兔,而后以鸡换兔。
所以这种问题也叫置换问题。
例 2 100 个和尚 140 个馍,大和尚 1 人分 3 个馍,小和尚 1 人分 1 个馍。
问:大、小和尚各有多少人解析与解:本题由中国古算名题“百僧分馍问题”演变而得。
假如将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设 100 人全部是大和尚,那么共需馍300 个,比实质多 300—140=160(个)。
此刻以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1= 2(个 ),由于 160÷2=80,故小和另有 80 人,大和另有 100—80=20(人)。
相同,也可以假设 100 人都是小和尚,同学们没关系自己试一试。
鸡兔同笼问题与假设法 鸡兔同笼问题是按照题目的内容涉及到鸡与兔而命名的,它是一类有名的中国古算题。许多小学算术应用题,都可以转化为鸡兔同笼问题来加以计算。
例1 小梅数她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?
分析:假设16只都是鸡,那么就应该有2×16=32(只)脚,但实际上有44只脚,比假设的情况多了44-32=12(只)脚,出现这种情况的原因是把兔当作鸡了。如果我们以同样数量的兔去换同样数量的鸡,那么每换一只,头的数目不变,脚数增加了2只。因此只要算出12里面有几个2,就可以求出兔的只数。
解:有兔(44-2×16)÷(4-2)=6(只), 有鸡16-6=10(只)。 答:有6只兔,10只鸡。 当然,我们也可以假设16只都是兔子,那么就应该有4×16=64(只)脚,但实际上有44只脚,比假设的情况少了64-44=20(只)脚,这是因为把鸡当作兔了。我们以鸡去换兔,每换一只,头的数目不变,脚数减少了4-2=2(只)。因此只要算出20里面有几个2,就可以求出鸡的只数。
有鸡(4×16-44)÷(4-2)=10(只), 有兔16—10=6(只)。 由例1看出,解答鸡兔同笼问题通常采用假设法,可以先假设都是鸡,然后以兔换鸡;也可以先假设都是兔,然后以鸡换兔。因此这类问题也叫置换问题。
例2 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?
分析与解:本题由中国古算名题“百僧分馍问题”演变而得。如果将大和尚、小和尚分别看作鸡和兔,馍看作腿,那么就成了鸡兔同笼问题,可以用假设法来解。
假设100人全是大和尚,那么共需馍300个,比实际多300-140=160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3—1=2(个),因为160÷2=80,故小和尚有80人,大和尚有
100-80=20(人)。 答:大和尚有20人,小和尚有80人。 同样,也可以假设100人都是小和尚,大家不妨自己试试。 在下面的例题中,我们只给出一种假设方法。 例3 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少套?
鸡兔同笼问题五种基本公式和例题讲解鸡兔问题公式(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡(de)脚数×总头数)÷(每只兔(de)脚数-每只鸡(de)脚数)=兔数;总头数-兔数=鸡数.或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数.例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡.解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔.(答略)(2)已知总头数和鸡兔脚数(de)差数,当鸡(de)总脚数比兔(de)总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只免(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(3)已知总数与鸡兔脚数(de)差数,当兔(de)总脚数比鸡(de)总脚数多时,可用公式.(每只鸡(de)脚数×总头数+鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=兔数;总头数-兔数=鸡数.或(每只兔(de)脚数×总头数-鸡兔脚数之差)÷(每只鸡(de)脚数+每只兔(de)脚数)=鸡数;总头数-鸡数=兔数.(例略)(4)得失问题(鸡兔问题(de)推广题)(de)解法,可以用下面(de)公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数.例如,“灯泡厂生产灯泡(de)工人,按得分(de)多少给工资.每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分.某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二 1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元…….它(de)解法显然可套用上述公式.)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少(de)问题),可用下面(de)公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数.例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只.鸡兔各是多少只”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼目录 1总述 2假设法 3方程法一元一次方程二元一次方程4抬腿法 5列表法 6详解 7详细解法基本问题特殊算法习题8鸡兔同笼公式1总述鸡兔同笼是中国古代(de)数学名题之一.大约在1500年前,孙子算经中就记载了这个有趣(de)问题.书中是这样叙述(de):“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何”这四句话(de)意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头,从下面数,有94只脚.问笼中各有几只鸡和兔算这个有个最简单(de)算法.(总脚数-总头数×鸡(de)脚数)÷(兔(de)脚数-鸡(de)脚数)=兔(de)只数(94-35×2)÷2=12(兔子数) 总头数(35)-兔子数(12)=鸡数(23)解释:让兔子和鸡同时抬起两只脚,这样笼子里(de)脚就减少了头数×2只,由于鸡只有2只脚,所以笼子里只剩下兔子(de)两只脚,再除以2就是兔子数.虽然现实中没人鸡兔同笼.2假设法假设全是鸡:2×35=70(只)鸡脚比总脚数少:94-70=24 (只)兔:24÷(4-2)=12 (只)鸡:35-12=23(只)假设法(通俗)假设鸡和兔子都抬起一只脚,笼中站立(de)脚:94-35=59(只)然后再抬起一只脚,这时候鸡两只脚都抬起来就摔倒了,只剩下用两只脚站立(de)兔子,站立脚:59-35=24(只)兔:24÷2=12(只)鸡:35-12=23(只)3方程法一元一次方程解:设兔有x只,则鸡有(35-x)只.4x+2(35-x)=944x+70-2x=942x=94-702x=24x=24÷2x=1235-12=23(只)或解:设鸡有x只,则兔有(35-x)只.2x+4(35-x)=942x+140-4x=942x=46x=2335-23=12(只)答:兔子有12只,鸡有23只.注:通常设方程时,选择腿(de)只数多(de)动物,会在套用到其他类似鸡兔同笼(de)问题上,好算一些.二元一次方程解:设鸡有x只,兔有y只.x+y=352x+4y=94(x+y=35)×2=2x+2y=70(2x+2y=70)-(2x+4y=94)=(2y=24)y=12把y=12代入(x+y=35)x+12=35x=35-12(只)x=23(只).答:兔子有12只,鸡有23只4抬腿法法一假如让鸡抬起一只脚,兔子抬起2只脚,还有94除以2=47只脚.笼子里(de)兔就比鸡(de)头数多1,这时,脚与头(de)总数之差47-35=12,就是兔子(de)只数.法二假如鸡与兔子都抬起两只脚,还剩下94-35×2=24只脚 , 这时鸡是屁股坐在地上,地上只有兔子(de)脚,而且每只兔子有两只脚在地上,所以有24÷2=12只兔子,就有35-12=23只鸡5列表法腿数鸡(只数)兔(只数)6详解中国古代孙子算经共三卷,成书大约在公元5世纪.这本书浅显易懂,有许多有趣(de)算术题,比如“鸡兔同笼”问题:今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何题目中给出雉兔共有35只,如果把兔子(de)两只前脚用绳子捆起来,看作是一只脚,两只后脚也用绳子捆起来,看作是一只脚,那么,兔子就成了2只脚,即把兔子都先当作两只脚(de) 鸡.鸡兔总(de)脚数是35×2=70(只),比题中所说(de)94只要少94-70=24(只).现在,我们松开一只兔子脚上(de)绳子,总(de)脚数就会增加2只,即70+2=72(只),再松开一只兔子脚上(de)绳子,总(de)脚数又增加2,2,2,2……,一直继续下去,直至增加24,因此兔子数:24÷2=12(只),从而鸡有35-12=23(只).我们来总结一下这道题(de)解题思路:如果先假设它们全是鸡,于是根据鸡兔(de)总数就可以算出在假设下共有几只脚,把这样得到(de)脚数与题中给出(de)脚数相比较,看看差多少,每差2只脚就说明有1只兔,将所差(de)脚数除以2,就可以算出共有多少只兔.概括起来,解鸡兔同笼题(de)基本关系式是:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡脚数).类似地,也可以假设全是兔子.我们也可以采用列方程(de)办法:设兔子(de)数量为x,鸡(de)数量为y 那么:x+y=35那么4x+2y=94 这个算方程解出后得出:兔子有12只,鸡有23只.7详细解法基本问题"鸡兔同笼"是一类有名(de)中国古算题.最早出现在孙子算经中.许多小学算术应用题都可以转化成这类问题,或者用解它(de)典型解法--"假设法"来求解.因此很有必要学会它(de)解法和思路.例1 有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只解:我们设想,每只鸡都是"金鸡独立",一只脚站着;而每只兔子都用两条后腿,像人一样用两只脚站着.现在,地面上出现脚(de)总数(de)一半,·也就是244÷2=122(只).在122这个数里,鸡(de)头数算了一次,兔子(de)头数相当于算了两次.因此从122减去总头数88,剩下(de)就是兔子头数122-88=34(只),有34只兔子.当然鸡就有54只.答:有兔子34只,鸡54只.上面(de)计算,可以归结为下面算式:总脚数÷2-总头数=兔子数. 总头数-兔子数=鸡数特殊算法上面(de)解法是孙子算经中记载(de).做一次除法和一次减法,马上能求出兔子数,多简单能够这样算,主要利用了兔和鸡(de)脚数分别是4和2,4又是2(de)2倍.可是,当其他问题转化成这类问题时,"脚数"就不一定是4和2,上面(de)计算方法就行不通.因此,我们对这类问题给出一种一般解法.还说例1.如果设想88只都是兔子,那么就有4×88只脚,比244只脚多了88×4-244=108(只).每只鸡比兔子少(4-2)只脚,所以共有鸡(88×4-244)÷(4-2)= 54(只).说明我们设想(de)88只"兔子"中,有54只不是兔子.而是鸡.因此可以列出公式鸡数=(兔脚数×总头数-总脚数)÷(兔脚数-鸡脚数).当然,我们也可以设想88只都是"鸡",那么共有脚2×88=176(只),比244只脚少了244-176=68(只).每只鸡比每只兔子少(4-2)只脚,68÷2=34(只).说明设想中(de)"鸡",有34只是兔子,也可以列出公式兔数=(总脚数-鸡脚数×总头数)÷(兔脚数-鸡脚数).上面两个公式不必都用,用其中一个算出兔数或鸡数,再用总头数去减,就知道另一个数.假设全是鸡,或者全是兔,通常用这样(de)思路求解,有人称为"假设法". 现在,拿一个具体问题来试试上面(de)公式.例2 红铅笔每支元,蓝铅笔每支元,两种铅笔共买了16支,花了元.问红,蓝铅笔各买几支解:以"分"作为钱(de)单位.我们设想,一种"鸡"有11只脚,一种"兔子"有19只脚,它们共有16个头,280只脚.现在已经把买铅笔问题,转化成"鸡兔同笼"问题了.利用上面算兔数公式,就有蓝笔数=(19×16-280)÷(19-11)=24÷8=3(支).红笔数=16-3=13(支).答:买了13支红铅笔和3支蓝铅笔.对于这类问题(de)计算,常常可以利用已知脚数(de)特殊性.例2中(de)"脚数"19与11之和是30.我们也可以设想16只中,8只是"兔子",8只是"鸡",根据这一设想,脚数是8×(11+19)=240(支).比280少40.40÷(19-11)=5(支).就知道设想中(de)8只"鸡"应少5只,也就是"鸡"(蓝铅笔)数是3.30×8比19×16或11×16要容易计算些.利用已知数(de)特殊性,靠心算来完成计算.实际上,可以任意设想一个方便(de)兔数或鸡数.例如,设想16只中,"兔数"为10,"鸡数"为6,就有脚数19×10+11×6=256.比280少24.24÷(19-11)=3,就知道设想6只"鸡",要少3只.要使设想(de)数,能给计算带来方便,常常取决于你(de)心算本领.下面再举四个稍有难度(de)例子.例3 一份稿件,甲单独打字需6小时完成.乙单独打字需10小时完成,现在甲单独打若干小时后,因有事由乙接着打完,共用了7小时.甲打字用了多少小时解:我们把这份稿件平均分成30份(30是6和10(de)最小公倍数),甲每小时打30÷6=5(份),乙每小时打30÷10=3(份).现在把甲打字(de)时间看成"兔"头数,乙打字(de)时间看成"鸡"头数,总头数是7."兔"(de)脚数是5,"鸡"(de)脚数是3,总脚数是30,就把问题转化成"鸡兔同笼"问题了.根据前面(de)公式"兔"数=(30-3×7)÷(5-3)=,"鸡"数==,也就是甲打字用了小时,乙打字用了小时.答:甲打字用了4小时30分.例4 今年是1998年,父母年龄(整数)和是78岁,兄弟(de)年龄和是17岁.四年后(2002年)父(de)年龄是弟(de)年龄(de)4倍,母(de)年龄是兄(de)年龄(de)3倍.那么当父(de)年龄是兄(de)年龄(de)3倍时,是公元哪一年解:4年后,两人年龄和都要加8.此时兄弟年龄之和是17+8=25,父母年龄之和是78+8=86.我们可以把兄(de)年龄看作"鸡"头数,弟(de)年龄看作"兔"头数.25是"总头数".86是"总脚数".根据公式,兄(de)年龄是(25×4-86)÷(4-3)=14(岁).1998年,兄年龄是14-4=10(岁).父年龄是(25-14)×4-4=40(岁).因此,当父(de)年龄是兄(de)年龄(de)3倍时,兄(de)年龄是(40-10)÷(3-1)=15(岁).这是2003年.答:公元2003年时,父年龄是兄年龄(de)3倍.例5蜘蛛有8条腿,蜻蜓有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现在这三种小虫共18只,有118条腿和20对翅膀.每种小虫各几只解:因为蜻蜓和蝉都有6条腿,所以从腿(de)数目来考虑,可以把小虫分成"8条腿"与"6条腿"两种.利用公式就可以算出8条腿(de)蜘蛛数=(118-6×18)÷(8-6)=5(只).因此就知道6条腿(de)小虫共18-5=13(只).也就是蜻蜓和蝉共有13只,它们共有20对翅膀.再利用一次公式蝉数=(13×2-20)÷(2-1)=6(只).因此蜻蜓数是13-6=7(只).答:有5只蜘蛛,7只蜻蜓,6只蝉.例6 某次数学考试考五道题,全班52人参加,共做对181道题,已知每人至少做对1道题,做对1道(de)有7人,5道全对(de)有6人,做对2道和3道(de)人数一样多,那么做对4道(de)人数有多少人解:对2道,3道,4道题(de)人共有52-7-6=39(人).他们共做对181-1×7-5×6=144(道).由于对2道和3道题(de)人数一样多,我们就可以把他们看作是对道题(de)人((2+3)÷2=.这样兔脚数=4,鸡脚数=,总脚数=144,总头数=39.对4道题(de)有×39)÷=31(人).答:做对4道题(de)有31人.以例1为例有若干只鸡和兔子,它们共有88个头,244只脚,鸡和兔各有多少只以简单(de)X方程计算(de)话,我们一般用设大数为X,那么也就是设兔为X,那么鸡(de)只数就是总数减去鸡(de)只数,即(88-X)只.解:设兔为X只.则鸡为(88-X)只.4X+2×(88-X)=244上列(de)方程解释为:兔子(de)脚数加上鸡(de)脚数,就是共有(de)脚数.4X就是兔子(de)脚数,2×(88-X)就是鸡(de)脚数.4X+2×88-2X=2442X+176=2442X+176-176=244-1762X=682X÷2=68÷2X=34即兔子为34只,总数是88只,则鸡:88-34=54只.答:兔子有34只,鸡有54只.习题一1.龟鹤共有100个头,350只脚.龟,鹤各多少只2.学校有象棋,跳棋共26副,恰好可供120个学生同时进行活动.象棋2人下一副棋,跳棋6人下一副.象棋和跳棋各有几副3.一些2分和5分(de)硬币,共值元,其中2分硬币个数是5分硬币个数(de)4倍,问5分硬币有多少个4.某人领得工资240元,有2元,5元,10元三种人民币,共50张,其中2元与5元(de)张数一样多.那么2元,5元,10元各有多少张5.一件工程,甲单独做12天完成,乙单独做18天完成,现在甲做了若干天后,再由乙接着单独做完余下(de)部分,这样前后共用了16天.甲先做了多少天6.摩托车赛全程长281千米,全程被划分成若干个阶段,每一阶段中,有(de)是由一段上坡路(3千米),一段平路(4千米),一段下坡路(2千米)和一段平路(4千米)组成(de);有(de)是由一段上坡路(3千米),一段下坡路(2千米)和一段平路(4千米)组成(de).已知摩托车跑完全程后,共跑了25段上坡路.全程中包含这两种阶段各几段7.用1元钱买4分,8分,1角(de)邮票共15张,问最多可以买1角(de)邮票多少张二、"两数之差"(de)问题鸡兔同笼中(de)总头数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例7 买一些4分和8分(de)邮票,共花6元8角.已知8分(de)邮票比4分(de)邮票多40张,那么两种邮票各买了多少张解一:如果拿出40张8分(de)邮票,余下(de)邮票中8分与4分(de)张数就一样多.(680-8×40)÷(8+4)=30(张),这就知道,余下(de)邮票中,8分和4分(de)各有30张.因此8分邮票有40+30=70(张).答:买了8分(de)邮票70张,4分(de)邮票30张.也可以用任意假设一个数(de)办法.解二:譬如,假设有20张4分,根据条件"8分比4分多40张",那么应有60张8分.以"分"作为计算单位,此时邮票总值是4×20+8×60=560.比680少,因此还要增加邮票.为了保持"差"是40,每增加1张4分,就要增加1张8分,每种要增加(de)张数是(680-4×20-8×60)÷(4+8)=10(张).因此4分有20+10=30(张),8分有60+10=70(张).例8 一项工程,如果全是晴天,15天可以完成.倘若下雨,雨天比晴天多3天,工程要多少天才能完成解:类似于例3,我们设工程(de)全部工作量是150份,晴天每天完成10份,雨天每天完成8份.用上一例题解一(de)方法,晴天有(150-8×3)÷(10+8)= 7(天).雨天是7+3=10天,总共7+10=17(天).答:这项工程17天完成.请注意,如果把"雨天比晴天多3天"去掉,而换成已知工程是17天完成,由此又回到上一节(de)问题.差是3,与和是17,知道其一,就能推算出另一个.这说明了例7,例8与上一节基本问题之间(de)关系.总脚数是"两数之和",如果把条件换成"两数之差",又应该怎样去解呢例9 鸡与兔共100只,鸡(de)脚数比兔(de)脚数少28.问鸡与兔各几只解一:假如再补上28只鸡脚,也就是再有鸡28÷2=14(只),鸡与兔脚数就相等,兔(de)脚是鸡(de)脚4÷2=2(倍),于是鸡(de)只数是兔(de)只数(de)2倍.兔(de)只数是(100+28÷2)÷(2+1)=38(只).鸡是 100-38=62(只).答:鸡62只,兔38只.当然也可以去掉兔28÷4=7(只).兔(de)只数是(100-28÷4)÷(2+1)+7=38(只).也可以用任意假设一个数(de)办法.解二:假设有50只鸡,就有兔100-50=50(只).此时脚数之差是4×50-2×50=100,比28多了72.就说明假设(de)兔数多了(鸡数少了).为了保持总数是100,一只兔换成一只鸡,少了4只兔脚,多了2只鸡脚,相差为6只(千万注意,不是2).因此要减少(de)兔数是 (100-28)÷(4+2)=12(只).兔只数是50-12=38(只).另外,还存在下面这样(de)问题:总头数换成"两数之差",总脚数也换成"两数之差".例10 古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一诗选集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首解一:如果去掉13首五言绝句,两种诗首数就相等,此时字数相差13×5×4+20=280(字).每首字数相差 7×4-5×4=8(字).因此,七言绝句有 280÷(28-20)=35(首).五言绝句有35+13=48(首).答:五言绝句48首,七言绝句35首.解二:假设五言绝句是23首,那么根据相差13首,七言绝句是10首.字数分别是20×23=460(字),28×10=280(字),五言绝句(de)字数,反而多了460-280=180(字).与题目中"少20字"相差180+20=200(字).说明假设诗(de)首数少了.为了保持相差13首,增加一首五言绝句,也要增一首七言绝句,而字数相差增加8.因此五言绝句(de)首数要比假设增加200÷8=25(首).五言绝句有23+25=48(首).七言绝句有 10+25=35(首).在写出"鸡兔同笼"公式(de)时候,我们假设都是兔,或者都是鸡,对于例7,例9和例10三个问题,当然也可以这样假设.现在来具体做一下,把列出(de)计算式子与"鸡兔同笼"公式对照一下,就会发现非常有趣(de)事.例7,假设都是8分邮票,4分邮票张数是(680-8×40)÷(8+4)=30(张).例9,假设都是兔,鸡(de)只数是(100×4-28)÷(4+2)=62(只).10,假设都是五言绝句,七言绝句(de)首数是(20×13+20)÷(28-20)=35(首).首先,请读者先弄明白上面三个算式(de)由来,然后与"鸡兔同笼"公式比较,这三个算式只是有一处"-"成了"+".其奥妙何在呢当你进入初中,有了负数(de)概念,并会列二元一次方程组,就会明白,从数学上说,这一讲前两节列举(de)所有例子都是同一件事.例11 有一辆货车运输2000只玻璃瓶,运费按到达时完好(de)瓶子数目计算,每只2角,如有破损,破损瓶子不给运费,还要每只赔偿1元.结果得到运费元,问这次搬运中玻璃瓶破损了几只解:如果没有破损,运费应是400元.但破损一只要减少1+=(元).因此破损只数是÷(1+=17(只).答:这次搬运中破损了17只玻璃瓶.请你想一想,这是"鸡兔同笼"同一类型(de)问题吗例12 有两次自然测验,第一次24道题,答对1题得5分,答错(包含不答)1题倒扣1分;第二次15道题,答对1题8分,答错或不答1题倒扣2分,小明两次测验共答对30道题,但第一次测验得分比第二次测验得分多10分,问小明两次测验各得多少分解一:如果小明第一次测验24题全对,得5×24=120(分).那么第二次只做对30-24=6(题)得分是 8×6-2×(15-6)=30(分).两次相差 120-30=90(分).比题目中条件相差10分,多了80分.说明假设(de)第一次答对题数多了,要减少.第一次答对减少一题,少得5+1=6(分),而第二次答对增加一题不但不倒扣2分,还可得8分,因此增加8+2=10分.两者两差数就可减少6+10=16(分).(90-10)÷(6+10)=5(题).因此第一次答对题数要比假设(全对)减少5题,也就是第一次答对19题,第二次答对30-19=11(题).第一次得分5×19-1×(24- 19)=90.第二次得分8×11-2×(15-11)=80.答:第一次得90分,第二次得80分.解二:答对30题,也就是两次共答错24+15-30=9(题).第一次答错一题,要从满分中扣去5+1=6(分),第二次答错一题,要从满分中扣去8+2=10(分).答错题互换一下,两次得分要相差6+10=16(分). 如果答错9题都是第一次,要从满分中扣去6×9.但两次满分都是120分.比题目中条件"第一次得分多10分",要少了6×9+10.因此,第二次答错题数是(6×9+10)÷(6+10)=4(题)·第一次答错9-4=5(题).第一次得分5×(24-5)-1×5=90(分).第二次得分8×(15-4)-2×4=80(分).习题二1.买语文书30本,数学书24本共花元.每本语文书比每本数学书贵元.每本语文书和数学书(de)价格各是多少2.甲茶叶每千克132元,乙茶叶每千克96元,共买这两种茶叶12千克.甲茶叶所花(de)钱比乙茶叶所花钱少354元.问每种茶叶各买多少千克3.一辆卡车运矿石,晴天每天可运16次,雨天每天只能运11次.一连运了若干天,有晴天,也有雨天.其中雨天比晴天多3天,但运(de)次数却比晴天运(de)次数少27次.问一连运了多少天4.某次数学测验共20道题,做对一题得5分,做错一题倒扣1分,不做得0分.小华得了76分.问小华做对了几道题5.甲,乙二人射击,若命中,甲得4分,乙得5分;若不中,甲失2分,乙失3分.每人各射10发,共命中14发.结算分数时,甲比乙多10分.问甲,乙各中几发6.甲,乙两地相距12千米.小张从甲地到乙地,在停留半小时后,又从乙地返回甲地,小王从乙地到甲地,在甲地停留40分钟后,又从甲地返回乙地.已知两人同时分别从甲,乙两地出发,经过4小时后,他们在返回(de)途中相遇.如果小张速度比小王速度每小时多走千米,求两人(de)速度.三、从"三"到"二""鸡"和"兔"是两种东西,实际上还有三种或者更多种东西(de)类似问题.在第一节例5和例6就都有三种东西.从这两个例子(de)解法,也可以看出,要把"三种"转化成"二种"来考虑.这一节要通过一些例题,告诉大家两类转化(de)方法.例13 学校组织新年游艺晚会,用于奖品(de)铅笔,圆珠笔和钢笔共232支,共花了300元.其中铅笔数量是圆珠笔(de)4倍.已知铅笔每支元,圆珠笔每支元,钢笔每支元.问三种笔各有多少支解:从条件"铅笔数量是圆珠笔(de)4倍",这两种笔可并成一种笔,四支铅笔和一支圆珠笔成一组,这一组(de)笔,每支价格算作(×4+÷5=(元).现在转化成价格为和两种笔.用"鸡兔同笼"公式可算出,钢笔支数是×232)÷(支).铅笔和圆珠笔共232-12=220(支).其中圆珠笔220÷(4+1)=44(支).铅笔220-44=176(支).答:其中钢笔12支,圆珠笔44支,铅笔176支.例14 商店出售大,中,小气球,大球每个3元,中球每个元,小球每个1元.张老师用120元共买了55个球,其中买中球(de)钱与买小球(de)钱恰好一样多.问每种球各买几个解:因为总钱数是整数,大,小球(de)价钱也都是整数,所以买中球(de)钱数是整数,而且还是3(de)整数倍.我们设想买中球,小球钱中各出3元.就可买2个中球,3个小球.因此,可以把这两种球看作一种,每个价钱是×2+1×3)÷(2+3)=(元).从公式可算出,大球个数是×55)÷=30(个).买中,小球钱数各是(120-30×3)÷2=15(元).可买10个中球,15个小球.答:买大球30个,中球10个,小球15个.例13是从两种东西(de)个数之间倍数关系,例14是从两种东西(de)总钱数之间相等关系(倍数关系也可用类似方法),把两种东西合井成一种考虑,实质上都是求两种东西(de)平均价,就把"三"转化成"二"了.例15是为例16作准备.例15 某人去时上坡速度为每小时走3千米,回来时下坡速度为每小时走6千米,求他(de)平均速度是多少解:去和回来走(de)距离一样多.这是我们考虑问题(de)前提.平均速度=所行距离÷所用时间去时走1千米,要用20分钟;回来时走1千米,要用10分钟.来回共走2千米,用了30分钟,即半小时,平均速度是每小时走4千米.千万注意,平均速度不是两个速度(de)平均值:每小时走(6+3)÷2=4.5千米.例16 从甲地至乙地全长45千米,有上坡路,平路,下坡路.李强上坡速度是每小时3千米,平路上速度是每小时5千米,下坡速度是每小时6千米.从甲地到乙地,李强行走了10小时;从乙地到甲地,李强行走了11小时.问从甲地到乙地,各种路段分别是多少千米解:把来回路程45×2=90(千米)算作全程.去时上坡,回来是下坡;去时下坡回来时上坡.把上坡和下坡合并成"一种"路程,根据例15,平均速度是每小时4千米.现在形成一个非常简单(de)"鸡兔同笼"问题.头数10+11=21,总脚数90,鸡,兔脚数分别是4和5.因此平路所用时间是 (90-4×21)÷(5-4)=6(小时).单程平路行走时间是6÷2=3(小时).从甲地至乙地,上坡和下坡用了10-3=7(小时)行走路程是:45-5×3=30(千米).又是一个"鸡兔同笼"问题.从甲地至乙地,上坡行走(de)时间是:(6×7-30)÷(6-3)=4(小时).行走路程是3×4=12(千米).下坡行走(de)时间是7-4=3(小时).行走路程是6×3=18(千米). 答:从甲地至乙地,上坡12千米,平路15千米,下坡18千米.做两次"鸡兔同笼"(de)解法,也可以叫"两重鸡兔同笼问题".例16是非常典型(de)例题.例17 某种考试已举行了24次,共出了426题.每次出(de)题数,有25题,或者16题,或者20题.那么,其中考25题(de)有多少次解:如果每次都考16题,16×24=384,比426少42道题.每次考25道题,就要多25-16=9(道).每次考20道题,就要多20-16=4(道).就有9×考25题(de)次数+4×考20题(de)次数=42.请注意,4和42都是偶数,9×考25题次数也必须是偶数,因此,考25题(de)次数是偶数,由9×6=54比42大,考25题(de)次数,只能是0,2,4这三个数.由于42不能被4整除,0和4都不合适.只能是考25题有2次(考20题有6次).。
鸡兔同笼题目综合讲解鸡兔同笼是中国古代著名的数学趣题,也是小学数学中常见的一类问题。
这类问题虽然看似简单,但却蕴含着丰富的数学思维和解题方法。
今天,咱们就来好好讲讲鸡兔同笼的题目。
咱们先来看一个最基本的鸡兔同笼问题:笼子里有若干只鸡和兔,从上面数,有 8 个头,从下面数,有 26 只脚。
问鸡和兔各有几只?要解决这个问题,咱们可以用假设法。
假设笼子里全是鸡,那么每只鸡有 2 只脚,8 只鸡就应该有 8×2 = 16 只脚。
但实际上有 26 只脚,多出了 26 16 = 10 只脚。
这是因为把兔当成鸡来算了,每只兔有 4 只脚,当成鸡就少算了 4 2 = 2 只脚。
所以多出的 10 只脚就是把兔当成鸡少算的,那么兔的数量就是 10÷2 = 5 只。
鸡的数量就是 8 5 = 3 只。
咱们再来看一个稍微复杂点的题目:一个笼子里鸡兔共有35 个头,94 只脚,问鸡兔各有多少只?同样,咱们先用假设法。
假设全是鸡,35 只鸡应该有 35×2 = 70 只脚,实际有 94 只脚,多了 94 70 = 24 只脚。
每只兔比鸡多 2 只脚,所以兔的数量就是 24÷2 = 12 只,鸡就是 35 12 = 23 只。
除了假设法,咱们还可以用方程来解决鸡兔同笼问题。
比如上面这个题目,设鸡有 x 只,兔有 y 只。
因为鸡兔共有 35 个头,所以 x + y= 35 ;又因为鸡有 2 只脚,兔有 4 只脚,总共有 94 只脚,所以 2x +4y = 94 。
然后解这个方程组,就能得出 x = 23 , y = 12 ,也就是鸡有 23 只,兔有 12 只。
再来看一个变化的题目:笼子里鸡兔的数量相同,共有 54 只脚。
问鸡兔各有几只?因为鸡兔数量相同,设鸡和兔都有 x 只。
那么 2x + 4x = 54 , 6x= 54 , x = 9 。
所以鸡和兔各有 9 只。
有时候题目会变得更复杂,比如:笼子里有鸡兔若干只,已知兔比鸡多 5 只,共有 70 只脚。
“鸡兔同笼”讲解方法(13种)
题目:现有一笼子,里面有鸡和兔子若干只,数一数,共有头14个,腿38条,球鸡和兔子各有多少只?(请用尽量多的方法解答)
『方法一:人见人爱的列表法』
如果二年级小朋友做这道题,可以用列表法!直观、易理解,还不容易出错~好啦,我们来看一下!
根据上面的表格,我们可以看出,鸡为9只,兔子为5只。
我们在列表的时候不要按顺序列,否则做题的速度会很慢,比如说列完鸡为0只,兔子为14只,发现腿的数量56条,和实际38条相差较大,那么下一个你可以跳过鸡的数量为2只这种情况,直接列鸡的数量为3只,这样做速度会快一些哦!
『方法二:最快乐的画图法』
画图可以让数学变得形象化,而且经常画图还有助于创造力的培养!假设14只全部是鸡,先把鸡给画好。
14×2=28条,差38-28=10条,而每一只鸡补2条腿就变成兔子,需要把5只鸡每只补2条腿,所以有5只兔子,14-5=9只鸡。
『方法三:最酷的金鸡独立法』
分析:让每只鸡都一只脚站立着,每只兔都用两只后脚站立着,那么地上的总脚数只是原来的一半,即19只脚。
鸡的脚数与头数相同,而兔的脚数是兔的头数的2倍,因此从19里减去头数14,剩下来的就是兔的头数19-14=5只,鸡有14-5=9只。
『方法四:最逗的吹哨法』
分析:假设鸡和兔接受过特种部队训练,吹一声哨,它们抬起一只脚,还有38-14=24只腿在站着,再吹一声哨,它们又抬起一只脚,这时鸡都一屁股坐地上了,兔子还有两只脚立着。
这时还有24-14=10只腿在站着,而这10只腿全部是兔子的,所以兔子有10÷2=5只,鸡有14-5=9只。
(惊现跑男中包贝尔的抬脚法有木有!)
『方法五:最常用的假设法』
分析:假设全部是鸡,则有14×2=28条腿,比实际少38-28=10只,一只鸡变成一只兔子腿增加2条,10÷2=5只,所以需要5只鸡变成兔子,即兔子为5只,鸡为14-5=9只。
『方法六:最常用的假设法』
分析:假设全部是兔子,则有14×4=56条腿,比实际多56-38=18只,一只兔子变成一只鸡腿减少2条,18÷2=9只,所以需要9只兔子变成鸡,即鸡为9只,兔子为14 - 9=5只。
『方法七:最牛的特异功能法』
分析:鸡有2条腿,比兔子少2条腿,这不公平,但是鸡有2只翅膀,兔子却没有。
假设鸡有特级功能,把两只翅膀变成2条腿,那么鸡也有4条腿,此时腿的总数是14×4=56条,但实际上只有38条,为什么呢?因为我们把鸡的翅膀当作腿来算,所以鸡的翅膀有56-38=18只,鸡有18÷2=9只,兔就是14-9=5只。
『方法八:最牛的特异功能法2 』
分析:假设每只鸡兔都具有“特异功能”,鸡飞起来,兔立起来,这时立在地上的脚全是兔的,它的脚数就是38-14×2=10条,因此兔的只数有10÷2=5只,进而知道鸡有14-5=9只。
鸡兔具有“特异功能”,这个方法想得太棒了!
『方法九:最牛的特异功能法3 』
假设孙悟空变成兔子,说“变”,每只兔子又长出一个头来,然后对妖精说“将它劈开”,变成“一头两脚”的两只“半兔”,半兔与鸡都是两只脚,因而共有28÷2=19只鸡兔,19-14=5只,这就是兔子的数目,当然鸡就有14-5=9只。
呵呵,小朋友把兔“劈开”成“半兔”,想得奇吧!
『方法十:最古老的砍足法』
分析:假如把每只砍掉1只脚、每只兔砍掉2只脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。
这样,鸡和兔的脚的总数就由38只变成了19只;如果笼子里有一只兔子,则脚的总数就比头的总数多1。
因此,脚的总数19与总头数14的差,就是兔子的只数,即19-14=5(只)。
所以,鸡的只数就是14-5=9(只)了。
呵呵,这个方法是古人想出来的,但有点残忍!
『方法十一:史上最坑的耍兔法』
分析:假如刘老师喊口令:“兔子,耍酷!”此时兔子们都把两只前脚高高抬起,两只后脚着地,呈酷酷的姿态,此时鸡兔都是两只脚着地。
在地上脚的总数是14×2=28只,而原来有38只脚,多出38-28=10只。
为什么会多呢?因为兔子们把它们的2只前脚抬了起来,所以兔的只数是10÷2=5只,鸡则是14-5=9只。
『方法十二:最万能的方程法』
分析:设鸡的数量为x只,则兔子有(14-x)只,有2x+4(14-x)
=38,解出x=9,所以有鸡9只,兔子14-9=5只。
『方法十三:最万能的方程法』
分析:设兔子的数量为x只,则鸡有(14-x)只,有4x+2(14-x)=38.解得x=5,所以兔子有5只,鸡有14-5=9只。
鸡兔同笼的13种方法就给大家讲完了,最后我们来总结一下!
•十三种方法•
1.列表法
2.画图法
3.金鸡独立法
4.吹哨法
5.假设法
6.假设法
7.特异功能法
8.特异功能法
9.特异功能法
10.砍足法
11.耍兔法
12.方程法
13.方程法
记忆方法:假设“列表”同学画完图以后,有了3大特异功能,摆了一个金鸡独立的pose,吹了一声哨,耍了一下兔,看足了,于是“方程”去了!。