《圆锥的侧面积和全面积》练习题
- 格式:doc
- 大小:4.06 MB
- 文档页数:4
题型一:求圆锥的侧面积与全面积【例1】 如图是一个圆锥形型的纸杯的侧面展开图,已知圆锥底面半径为5cm ,母线长为15cm ,那么纸杯的侧面积为__________cm 2.(结果保留π)【例2】 圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为_____________2cm(2014年泰州)【例3】 如图,已知圆锥的母线长为6,圆锥的高与母线所夹的角为θ,且13sin θ=,则该圆锥的侧面积是( )A .242πB .24πC .16πD .12π【例4】 如图,张老师在上课前用硬纸做了一个无底的圆锥形教具,那么这个教具的用纸面积是 ______cm 2.(不考虑接缝等因素,计算结果用π表示).(2013年盘锦)【例5】 一个圆锥形零件的母线长为4,底面半径为1.则这个圆锥形零件的全面积是____.【例6】 将一块含30°角的三角尺绕较长直角边旋转一周得一圆锥,这个圆锥的高是33,则圆锥的侧面积是________.课堂练习与圆锥有关的计算学案【例7】 在Rt ABC ∆中,9034C AC BC ∠=︒==,,,将ABC ∆绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是________.【例8】 如图,圆锥的底面半径为3cm ,高为4cm ,那么这个圆锥的侧面积是_________cm 2.(2014年双柏县二模)【例9】 某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO=8米,母线AB 与底面半径OB 的夹角为α,4tan 3α=,则圆锥的侧面积是__________平方米。
(结果保留π) (2014年永州模拟)【例10】 已知某几何体的三视图(单位:cm ),则这个圆锥的侧面积等于______________(2014年杭州)【例11】 如图是一个几何体的三视图,则这个几何体的侧面积是______________(2014年宁夏)【例12】(1)在半径为10的圆的铁片中,要裁剪出一个直角扇形,求能裁剪出的最大的直角扇形的面积?(2)若用这个最大的直角扇形恰好围成一个圆锥,求这个圆锥的底面圆的半径?(3)能否从最大的余料③中剪出一个圆做该圆锥的底面?请说明理由.题型二:求圆锥的母线、底面半径、高以及展开以后扇形的圆心角等【例13】已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是________(2014年安顺)【例14】圆锥体的底面半径为2,侧面积为8π,则其侧面展开图的圆心角为_________(2014年鄂州)【例15】如图,如果从半径为5cm的圆形纸片上剪去15圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高是______________cm.【例16】如图,圆锥的侧面积为15π,底面积半径为3,则该圆锥的高AO为________(2014年黔南州)【例17】 如图,把一个半径为12cm 的圆形硬纸片等分成三个扇形,用其中一个扇形制作成一个圆锥形纸筒的侧面(衔接处无缝隙且不重叠),则圆锥底面半径是_________cm .【例18】 若圆锥的侧面展开是一个弧长为l6π的扇形,则这个圆锥的底面半经是_______.【例19】 在纸上剪下一个圆形和一个扇形纸片,使之恰好能够围成一个圆锥模型,若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于120°(如图),则r 与R 之间的关系是_________(2014年玉林一模)【例20】 如图,圆锥的侧面展开图是半径为3,圆心角为90°的扇形,则该圆锥的底面周长为_______(2014年绍兴)【例21】 一个圆锥的底面半径是6cm ,其侧面展开图为半圆,则圆锥的母线长为_______.【例22】 如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径13OA cm ,扇形的弧长为10πcm ,那么这个圆锥形帽子的高是__________cm .(不考虑接缝)(2014年盘锦)【例23】 用一圆心角为120°,半径为6cm 的扇形做成一个圆锥的侧面,这个圆锥的底面的半径是_________(2013年眉山)题型三:与圆锥有关的最短路径问题【例24】 圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.求在圆锥的侧面上从B 点到P 点的最短路线的长.【例25】 如图,圆锥的轴截面ABC ∆是一个以圆锥的底面直径为底边,圆锥的母线为腰的等腰三角形,若圆锥的底面直径4BC cm =,母线6AB cm =,则由点B 出发,经过圆锥的侧面到达母线AC 的最短路程是?(2014年新泰市一模)【例26】 如图,圆锥底面半径为r ,母线长为3r ,底面圆周上有一蚂蚁位于A 点,它从A 点出发沿圆锥面爬行一周后又回到原出发点,请你给它指出一条爬行最短的路径,并求出最短路径.【练1】 某盏路灯照射的空间可以看成如图所示的圆锥,它的高AO =8米,底面半径OB =6米,则圆锥的侧面积是__________平方米(结果保留π).ABO【练2】 若用半径为12,圆心角为120°的扇形围成一个圆锥的侧面(接缝忽略不计),则这个圆锥底面圆的半径的长_______.【练3】 一个几何体的三视图如图所示,这个几何体的侧面积为( )(2014年临沂)【练4】 如图,一个圆锥的高为33cm ,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比; (2)求BAC 的度数;(3)圆锥的侧面积(结果保留π).课后作业【练5】如图,圆锥底面圆的半径为2cm,母线长为4cm,点B为母线的中点.若一只蚂蚁从A点开始经过圆锥的侧面爬行到B点,则蚂蚁爬行的最短路径长为?。
初三数学圆锥的侧面积和全面积试题1. 一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( )A .B .C .D .【答案】A【解析】设圆锥的底面半径为r ,母线长为R ,扇形的弧长为l ,根据圆周长公式及弧长公式可得r 与R 的关系,再分别表示出圆锥的侧面积与全面积,即可求得结果.设圆锥的底面半径为r ,母线长为R ,扇形的弧长为l ,则∴,解得 ∴S 侧=×2r·R=·2r·3r=6r 2×=3r 2S 全面积=S 侧+S 底=3r 2+r 2=4r 2∴S 表:S 底=3r 2:4r 2=3:4故选A.【考点】弧长公式,圆锥的侧面积与全面积点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.2. 若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( )A .3:2B .3:1C .2:1D .5:3【答案】C【解析】设圆锥母线为ι,底面半径为r ,根据等边三角形的性质可得ι=2r ,再分别表示出圆锥的侧面积与底面积,即可求得结果.设圆锥母线为ι,底面半径为r ,由题意得ι=2r .∴S 侧=·2r·ι=r×2 r=2r 2∴S 侧:S 底=2r 2:r 2=2:1.【考点】圆锥的侧面积与全面积点评:等边三角形的判定和性质的应用是初中数学极为重要的知识,与各个知识点结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.3. 如图,将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是( )【答案】B【解析】根据直角三角形旋转的性质即可判断.由图可得将三角形绕直线ι旋转一周,可以得到图所示的立体图形的是第二个,故选B.【考点】旋转的性质点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.4.将一个半径为8cm,面积为32πcm2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为()A.4B.C.D.【答案】B【解析】设圆锥底面圆的半径为r,母线长为l,先根据圆锥的侧面积公式列方程求得底面圆的半径为r,再根据勾股定理即可求得结果.设圆锥底面圆的半径为r,母线长为l,由题意得r·l=32,解得则这个圆锥形容器的高故选B.【考点】圆锥的侧面积,勾股定理点评:方程思想在初中数学的学习中非常重要,是中考的热点,在各种题型中均有出现,要特别注意.5.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.【答案】10cm2【解析】圆锥的侧面积公式:圆锥的侧面积=×底面周长×母线.由题意的S侧=2r·l·=×2×5=10(cm2).【考点】圆锥的侧面积点评:本题是圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.6.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.【答案】1:2:3【解析】设轴截面(等边三角形)边长为a,则圆锥的底面半径为a,母线为a,再根据圆的面积公式和圆锥的侧面积公式即可得到结果.设轴截面(等边三角形)边长为a,则圆锥的底面半径为a,母线为a∴S底=·()2=a2,S侧=·2··a=a2.S全=S底+S侧=.∴S底:S侧:S全==1:2:3.【考点】等边三角形的性质,圆的面积公式,圆锥的侧面积公式点评:等边三角形的判定和性质的应用是初中数学极为重要的知识,与各个知识点结合极为容易,因而是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.7.圆锥的高为3cm,底面半径为4cm,求它的侧面积和侧面展开图的圆心角.【答案】侧面积为20cm2,圆心角为288°【解析】先根据勾股定理求得圆锥的母线长,再根据圆锥的侧面积公式和弧长公式即可求得结果. 由勾股定理可得母线长为5cm,S侧=lr=20rcm2,圆心角=×360°=×360°=288°.【考点】勾股定理,圆锥的侧面积公式,弧长公式点评:计算能力是初中数学学习中一个极为重要的能力,是中考的热点,在各种题型中均有出现,一般难度不大,需特别注意.8.以斜边长为a的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积.【答案】【解析】由题意知旋转后的几何体为以等腰直角三角形的斜边的一半为高,直角边为母线,等腰直角三角形的斜边的上的高为底面半径的上下两个圆锥,再根据圆锥的侧面积公式即可求得结果.由题意得圆锥的母线所以【考点】旋转的性质,圆锥的侧面积点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.9.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=5cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.【答案】【解析】先画出图形,根据特殊角的锐角三角函数值求得底面圆半径,再根据圆锥的侧面积公式即可求得结果.绕直线AC旋转一周所得图形如图:在Rt△ABC中,OB=AB·cos45°=∴所得图形的面积为2S=2××2×OB×AB=2×5×5=.侧【考点】特殊角的锐角三角函数值,圆锥的侧面积公式点评:旋转的性质是初中数学平面图形中非常重要的知识点,是中考的热点,在各种题型中均有出现,一般难度不大,需熟练掌握.10.如图,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?【答案】158.4m2【解析】设圆锥的底面半径为r,先根据圆锥的底面周长为36m求得底面半径,再根据圆锥的侧面积公式即可求得结果.设圆锥的底面半径为r,那么2r=36,解得r=∴圆锥的侧面积为2r·l·=36×8×=144(m2).∴实际需要油毡的面积为144+144×10%=158.4(m2).【考点】圆的周长公式,圆锥的侧面积公式点评:本题是圆的周长公式及圆锥的侧面积公式的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.。
专题2.13 圆锥的侧面积(基础篇)(专项练习)一、单选题1.已知圆锥的底面半径为4cm,母线长为6cm,则圆锥的侧面积为()A.236πcm B.224πcm C.216πcm D.212πcm 2.圆锥的截面是一个等边三角形,则它的侧面展开图圆心角度数是()A.60°B.90°C.120°D.180°3.把一个弧长AC为10π cm的扇形AOC围成一个圆锥,测得母线OA=13 cm,则圆锥的高h为()A.12cm B.10cm C.6cm D.5cm4.如图,一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是()A.1B.34C.12D.135.一个底面直径为2,高为3的圆锥的体积是()A.πB.2πC.3πD.4π6.如图,有圆锥形粮堆,其正视图是边长为6的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处,捕捉老鼠,则小猫所经过的最短路程是()A .3B .C .D .47.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是( )A .10πB .15πC .20πD .30π8.如图,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A .2cmB .3cmC .4cmD .1cm9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r ,扇形的圆心角等于120°,则围成的圆锥模型的高为( )A .rB .C rD .3r10.如图,点C 为扇形OAB 的半径OB 上一点,将OAC ∆沿AC 折叠,点O 恰好落在AB 上的点D 处,且:1:3BD AD ''=(BD '表示BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A.1:3B.1: C.1:4D.2:9二、填空题11.已知圆锥的母线长是9cm,它的侧面展开图的圆心角是120°,则圆锥的高为_____cm.12.若一个圆锥体的底面积是其表面积的14,则其侧面展开图圆心角的度数为______________.13.用一个半径为10cm半圆纸片围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为______.14.如图,在Rt△ABC中,∠C=90°,BC=5,AC=12,以边AC所在直线为轴将Rt △ABC旋转一周得到一个圆锥,则这个圆锥的侧面积是__________.15.已知底面圆半径为1cm的圆锥的侧面积为3πcm2,则圆锥的母线长为_________cm.16的圆形铁皮上剪出一个圆心角为90°的扇形,将其围成一个圆锥,圆锥底面圆的半径是__________m.17.如图,圆锥的底面圆直径AB为2,母线长SA为4,若小虫P从点A开始绕着圆锥表面爬行一圈到SA的中点C,则小虫爬行的最短距离为________.18.如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是l=______.三、解答题19.一个圆锥的母线长为10,底面半径为5,求这个圆锥的侧面积和全面积.20的圆形纸片,要从中剪去一个最大的圆心角是90°的扇形ABC.(1) 求被剪掉的阴影部分的面积;(2) 用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆的半径是多少?21.如图,某玻璃器皿制造公司要制造一种容积为1L(31L=1dm)的圆锥形漏斗.(1)漏斗口的面积S(单位:2dm)与漏斗的深d(单位:dm)有怎样的函数关系?(2)如果漏斗口的面积为2100cm,那么漏斗的深为多少?22.(1)解方程:2x x-+=;2730(2)小明同学用纸板制作了一个圆锥形漏斗模型,如图所示,它的底面半径OC cm,求这个圆锥形漏斗的侧面展开图的圆心角的度数.=3cmOB,高=423.如图,圆锥的轴截面是边长为6cm的正三角形ABC,P是母线AC的中点.求在圆锥的侧面上从B点到P点的最短路线的长.24.如图,在一个半径为90︒的扇形.(1)求这个扇形的面积(保留π);(2)用所剪的纸片围成一个圆锥的侧面,求这个圆锥的底面圆的半径.参考答案1.B【分析】利用圆锥侧面积计算公式计算即可:S rl π=侧; 解:4624S rl πππ==⨯⨯=侧2cm , 故选B .【点拨】本题考查了圆锥侧面积的计算公式,比较简单,直接代入公式计算即可. 2.D【分析】易得圆锥的底面直径与母线长相等,那么根据圆锥的底面周长等于侧面展开图的弧长即可得到这个圆锥的侧面展开图的圆心角度数.解:设圆锥的底面半径为r,母线长为R,圆心角的度数为n度∵它的轴截面是正三角形,∴R=2r,∴2πr=2 180n rπ⨯,解得n=180,故展开图的圆心角为180°故选:D.【点拨】本题主要考查圆锥的侧面展开图的圆心角,圆锥的轴截面,熟练掌握圆锥的侧面展开图的弧长等于圆锥的底面周长,扇形的弧长公式,是解题的关键.3.A【分析】利用弧长求出底面圆的半径,然后运用勾股定理求出圆锥的高.解:设底面圆的半径为r,则:2πr=10π,得:r=5.12cm.故选A.【点拨】本题考查的是圆锥的计算,先根据弧长可以求出底面圆的半径,再用勾股定理求出圆锥的高.4.C【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.解:根据题意得:该圆锥的底面周长为1212ππ⨯⨯=,∴该圆锥的底面半径是1 22ππ=.故选:C【点拨】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.5.A【分析】圆锥的体积等于底面积乘以高的三分之一.解:2123 32ππ⎛⎫⨯⨯=⎪⎝⎭故选A.6.B【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B 是半圆的一个端点,而点P 是平分半圆的半径的中点,根据勾股定理就可求出两点B 和P 在展开图中的距离,就是这只小猫经过的最短距离.解:圆锥的底面周长是6π,则66180n ππ⨯=, 180n ∴=︒,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中3AP =,6AB =,90BAP ∠=度.∴在圆锥侧面展开图中BP故小猫经过的最短距离是B .【点拨】本题考查的是平面展开-最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.7.B解:由三视图可知此几何体为圆锥,∴圆锥的底面半径为3,母线长为5,∵圆锥的底面周长等于圆锥的侧面展开扇形的弧长,∴圆锥的底面周长=圆锥的侧面展开扇形的弧长=2πr =2π×3=6π, ∴圆锥的侧面积=12lr =12×6π×5=15π, 故选B 8.A试题分析:本题的关键是利用弧长公式计算弧长,再利用底面周长=展开图的弧长可得.解:L=9082180R ππ⨯=, 解R=2cm . 故选 A. 考点: 弧长的计算. 9.B解:∵圆的半径为r ,扇形的弧长等于底面圆的周长得出2πr .设圆锥的母线长为R ,则120180Rπ=2πr , 解得:R =3r .根据勾股定理得圆锥的高为.故选:B .【点拨】考点:圆锥的计算. 10.D【分析】连接OD ,求出∠AOB ,利用弧长公式和圆的周长公式求解即可. 解:连接OD 交AC 于M .由折叠的知识可得:12OM OA =,90OMA ∠=︒,30OAM ∴∠=︒,60AOM ∴∠=︒,且:1:3BD AD ''=,80AOB ∴∠=︒设圆锥的底面半径为r ,母线长为l , 802180lr ππ=, :2:9r l ∴=.故选D .【点拨】本题考查的是扇形,熟练掌握圆锥的弧长公式和圆的周长公式是解题的关键.11.【分析】设圆锥底面半径为r cm ,那么圆锥底面圆周长为2r πcm ,所以侧面展开图的弧长为2r πcm ,然后利用扇形的面积公式即可得到关于r 的方程,解方程即可求得圆锥底面圆的半径,然后利用勾股定理求得圆锥的高即可.解:设圆锥底面半径为r cm ,那么圆锥底面圆周长为2r πcm , 所以侧面展开图的弧长为2r πcm ,211209292360S r ππ⨯=⨯⨯=圆锥侧面积, 解得:3r =,∴)cm =,故答案为:【点拨】本题主要考查圆锥侧面展开图的知识和圆锥侧面面积的计算,解题的关键是正确理解圆锥的侧面展开图与原来的扇形之间的关系,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.120°##120度 【分析】根据圆锥的底面积是其表面积的14,则得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.解:设底面圆的半径为r ,侧面展开扇形的半径为R ,扇形的圆心角为n °.由题意得2S r π=底面面积,2l r π=底面周长, ∵个圆锥体的底面积是其表面积的14, ∴233S S r π==扇形底面面积,2l l r π==扇形弧长底面周长. 由12S l R =⨯扇形扇形弧长得21322r r R ππ=⨯⨯, 故3R r =. 由180n r l π=扇形弧长得: 32180n r ππ⨯=, 解得120n =.故答案为:120°.【点拨】此题通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.13.【分析】根据半圆的弧长等于圆锥的底圆周长可以求出圆锥底圆的半径,又由半圆的半径等于圆锥的母线,然后利用勾股定理求出圆锥的高.解:如图所示:圆锥的侧面展开图的弧长为210210ππ⨯÷=(cm ),∴圆锥的底面半径为1025ππ÷=(cm ),∴=cm ).故答案是:.【点拨】本题考查了圆锥的展开图,正确理解圆锥与圆锥展开图后的图形为扇形之间的不变量是解决本题的关键.14.65π【分析】先得到所得圆锥的母线和底面半径,再利用扇形面积计算.解:由已知得,母线长AB =13,半径r 为5,∴圆锥的侧面积=113252π⨯⨯⨯=65π,故答案为:65π.【点拨】本题考查了圆锥的计算,要学会灵活的运用公式求解.15.3【分析】根据圆的周长公式求出圆锥的底面周长,根据圆锥的侧面积的计算公式计算即可.设圆锥的母线长为R cm ,解:圆锥的底面周长=2π×1=2π,设母线长为R , 则12×2π×R =3π,解得,R =3(cm ),故答案为3.【点拨】本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长. 16.14【分析】首先求得扇形的弧长,然后利用圆的周长公式即可求解.解:连接BC 、AO ,∵⊙O ,m , ∵AB =AC ,OB =OC ,∴BC ⊥AO ,AO =BO ,在Rt △ABO 中,AB 1m ,∴圆锥底面圆的弧长90111802l ππ⨯==, 设圆锥底面圆的半径是r , 则122r ππ=, ∴14r =m , 故答案为:14.【点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.17.【分析】将圆锥的侧面展开,是一个扇形,AC 就是小虫爬行的最短路程,利用弧长与圆心角的公式,求展开图的圆心角l 180n R π=,R=4,l=2πr=2π,可求出n 的大小,由于n=90º,利用勾股定理可求AC 的长即可.解:把圆锥的侧面展开,弧长是2πr=2π,母线AS=4, 侧面展开的圆心角4l 2180180n R n πππ===,n=90º即∠ASC=90º, C 为AD 的中点SD=2,线段AC 是小虫爬行的最短距离,在Rt △SAC 中,由勾股定理的故答案为:【点拨】本题考查圆锥侧面的最短路径问题,掌握弧长公式,会利用弧长与圆锥底面圆的关系确定侧面展开图的圆心角,会用勾股定理求出最短路径是解题关键.18.解:扇形的弧长和圆锥的底面周长相等,即:1202180l ππ=l =考点: 圆锥的底面周长与侧面展开图的弧长关系.19.侧面积为50π,全面积为75π【分析】根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式直接可计算出这个圆锥的侧面积,然后计算侧面积与底面积的和得到圆锥的全面积.解:这个圆锥的侧面积 12510502ππ=⨯⨯⨯= 这个圆锥的全面积=50π+π×52=75π.【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,这个扇形的弧长等于圆20.(1)1m 4π(2)1m 4【分析】(1)连结BC ,根据∠A =90°,可得BC =,再由勾股定理可得AB =AC =1,然后根据O ABC S S S 阴影扇形,即可求解;(2)设圆锥底面半径为r ,则BC 的长为2πr ,从而得到9012180r ⨯=ππ,即可求解. (1)解:如图,连结BC ,∵∠A =90°,∴BC 为⊙O 的直径.即BC =,在Rt △ABC 中,AB =AC ,且AB 2+AC 2=BC 2,∴AB =AC =1,∴O ABC S S S 阴影扇形=222901111m 360244⨯⨯-=-=⎝⎭πππππ; (2)解:设圆锥底面半径为r ,则BC 的长为2πr , ∴9012180r ⨯=ππ, ∴1m 4r . 【点拨】本题主要考查了求扇形面积,圆锥的底面半径,勾股定理,熟练掌握扇形面积公式,勾股定理是解题的关键.21.(1)3(0)S d d=≠;(2)30cm 【分析】(1)根据圆锥体积=13×底面积×高,进行解答即可得; (2)根据(1)得出S 与d 的函数关系进行解答即可得.解:(1)根据圆锥体积=13×底面积×高,得113Sd =, 则3(0)S d d=≠, 故漏斗口的面积S 与漏斗的深度d 之间的函数关系为:3(0)S d d =≠; (2)∵S =100cm 2=1dm 2,∴31d=, 解得d =3dm=30cm ,故漏斗口的面积为100cm 2,那么漏斗的深为30cm .【点拨】本题考查了圆锥的体积,反比例函数的应用,解题的关键是掌握这些知识点.22.(1)121,32x x ==;(2)这个圆锥形漏斗的侧面展开图的圆心角的度数为216° 【分析】(1)利用公式法解一元二次方程即可;(2)利用勾股定理求出母线BC 的长,即为侧面展开图的半径,然后求出底面圆的周长,即求出侧面展开图的弧长,然后利用弧长公式即可求出结论.解:(1)22730x x -+=a=2,b=-7,c=3()2247423250b ac -=--⨯⨯=>∴x=()775224--±±=⨯ 解得:121,32x x ==;(2)该圆锥侧面展开图的半径5cm =侧面展开图的弧长即为底面圆的周长为236ππ⨯=cm∴侧面展开图的圆心角的度数为61805216ππ⨯︒÷÷=︒答:这个圆锥形漏斗的侧面展开图的圆心角的度数为216°.【点拨】此题考查的是解一元二次方程和圆锥侧面展开图,掌握利用公式法解一元二次方程和弧长公式是解题关键.23.【分析】求出圆锥底面圆的周长,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,根据弧长公式求出展开后扇形的圆心角,求出展开后∠BAC =90°,连接BP ,根据勾股定理求出BP 即可.解:圆锥底面是以BC 为直径的圆,圆的周长是6π,将圆锥展开,就得到一个以A 为圆心,以AB 为半径的扇形,弧长是l =6π,设展开后的圆心角是n °,则66180n ππ⨯=, 解得:n =180°,则∠BAC =12×180°=90°,AP =12AC =3,AB =6,则在圆锥的侧面上从B 点到P 点的最短路线的长就是展开后线段BP 的长,如图,由勾股定理得:BP答:在圆锥的侧面上从B 点到P 点的最短路线的长是.【点拨】本题考查了圆锥的计算,平面展开﹣最短路线问题,勾股定理,弧长公式等知识点的应用,主要考查学生的理解能力和空间想象能力,题目是一道具有代表性的题目,有一定的难度.24.(1)4π;(2)1【分析】(1)连接AB ,可以得到PAB △为等腰直角三角形,由勾股定理求得PA ,再根据扇形面积即可求解;(2)设这个圆锥的底面圆的半径为r ,根据题意可得AB 的长即为底面圆的周长,列方程求解即可.解:(1)如图,连接AB ,∵90APB ∠=︒,∴AB 为O 的直径,∵APB 为扇形,∵PA PB =,∴PAB △为等腰直角三角形,∴AB =∴4PA AB ===, ∴这个扇形的面积29044360ππ⋅⋅==;(2)设这个圆锥的底面圆的半径为r ,由题意得AB 的长即为底面圆的周长∵扇形PAB 中,AB 的长9042180ππ⋅⋅==, ∴22r ππ⋅=,解得1r =,即围成的这个圆锥的底面圆的半径为1.【点拨】此题考查了扇形面积的计算,弧长的计算,涉及了勾股定理,熟练掌握相关计算公式和性质是解题的关键.。
圆锥的侧面积达标测试题及答案3.6 圆锥的侧面积同步练习一、选择题: 1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径,把矿石完全浸没在水中,测出杯中水面上升了高度,则小明的这块矿石体积是()A.B.C.D. 2. 若圆锥的侧面展开图是半径为的半圆,则此圆锥的底面半径是()A.B.C.D. 3. 若圆锥的母线长为,底面半径为,则此圆锥的高为()A.B.C.D. 4. 已知圆锥的侧面展形图的面积是,若母线长是,则圆锥的底面半径为()A.B.C.D. 4. 如图1,将半径为2的圆形纸片,沿半径,将其截成面积为两部分,将所得的扇形围成圆锥的侧面,则圆锥的底面半径为()A.B.1 C.1或3 D.或图1 图2 图3 5. 如图2,在△ 中,,,若以为底面圆半径、为高的圆锥的侧面积为,以为底面圆半径、为高的圆锥的侧面积为,则()A.B.C.D.,有大小关系不确定 6. 如图3,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为,则的大小关系为() (A) (B) (C) (D)无法判断二、填空题: 1. 圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、表面积的比是. 2. 如图4,圆锥的母线,底面半径,则其侧面展开图扇形的圆心角.图4 图5 3. 如图5,圆锥的底面半径,高,则它的全面积为. 4. 一个圆锥形烟囱帽的底面直径是,母线长是,这个烟囱帽的侧面展开图的面积是. 5. 用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如右图所示,圆锥的母线与相切于点,不倒翁的顶点到桌面的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到三、解答题: 1. 圆锥形的烟囱帽的底面直径为,母线长为,求这个烟囱帽的侧面展开图的面积是多少?2. 如图所示,直角梯形中,,,,以所在直线为轴旋转一周,得到一个几何体,求它的表面积.3. 一个圆锥形零件的母线长为,底面的半径为,求这个圆锥形零件的侧面积和全面积.4. 已知:一个圆锥的侧面展开图是圆心角为的扇形,扇形面积为cm .求这个圆锥的表面积.5. 把一个半径为8cm的圆片,剪去一个圆心角为的扇形后,用剩下的部分做成一圆锥的侧面,求这个圆锥的高.6. 已知:一个圆锥的侧面展开图是半径为20cm,圆心角为的扇形,求这圆锥的底面圆的半径和高.7. 已知:在△ 中,, cm, cm.以直线为轴把这个直角三角形旋转一周.求所得的旋转体的表面积.8. 已知母线长为的圆锥的侧面展开是一个圆心角为的扇形,求这个圆锥的底面半径.9. 如图,某厂有一圆锥形的烟囱帽,其底面半径和高的比为,求它的侧面展开图的圆心角的度数. 10. 如图所示,△ 中,,,,过点作直线,以直线为轴,将△ 旋转一周,求所得旋转体的表面积.参考答案一、选择题: 1. 小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径,把矿石完全浸没在水中,测出杯中水面上升了高度,则小明的这块矿石体积是()A.B.C.D.答案:A 2. 若圆锥的侧面展开图是半径为的半圆,则此圆锥的底面半径是()A.B.C.D.答案:A 3. 若圆锥的母线长为,底面半径为,则此圆锥的高为()A.B.C.D.答案:D 4. 已知圆锥的侧面展形图的面积是,若母线长是,则圆锥的底面半径为()A.B.C.D.答案:B 4. 如图,将半径为2的圆形纸片,沿半径,将其截成面积为两部分,将所得的扇形围成圆锥的侧面,则圆锥的底面半径为()A.B.1 C.1或3 D.或答案:D5. 如图,在△ 中,,,若以为底面圆半径、为高的圆锥的侧面积为,以为底面圆半径、为高的圆锥的侧面积为,则()A.B.C.D.,有大小关系不确定答案:B 6. 如图,分别以等腰直角三角板的直角边、斜边为旋转轴旋转,所形成的旋转体的全面积依次记为,则的大小关系为()(A) (B) (C) (D)无法判断答案:A二、填空题: 1. 圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、表面积的比是.答案: 2. 如图,圆锥的母线,底面半径,则其侧面展开图扇形的圆心角答案: 3. 如图,圆锥的底面半径,高,则它的全面积为.答案:4. 一个圆锥形烟囱帽的底面直径是,母线长是,这个烟囱帽的侧面展开图的面积是.答案: 5. 用一直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽可以制成一个不倒翁玩具,不倒翁的轴剖面图如右图所示,圆锥的母线与相切于点,不倒翁的顶点到桌面的最大距离是18cm.若将圆锥形纸帽的表面全涂上颜色,则需要涂色部分的面积约为cm2(精确到答案:174三、解答题: 1. 圆锥形的烟囱帽的底面直径为,母线长为,求这个烟囱帽的侧面展开图的面积是多少?答案:. 2. 如图所示,直角梯形中,,,,以所在直线为轴旋转一周,得到一个几何体,求它的表面积.答案:四边形为矩形,.在Rt△ 中,.,,,. 3. 一个圆锥形零件的母线长为,底面的半径为,求这个圆锥形零件的侧面积和全面积.答案:侧面积为,全面积为 4. 已知:一个圆锥的侧面展开图是圆心角为的扇形,扇形面积为 cm .求这个圆锥的表面积.答案:11cm 5. 把一个半径为8cm的圆片,剪去一个圆心角为的扇形后,用剩下的部分做成一圆锥的侧面,求这个圆锥的高.答案:6. 已知:一个圆锥的侧面展开图是半径为20cm,圆心角为的扇形,求这圆锥的底面圆的半径和高.答案:底面圆的半径 cm,高 7. 已知:在△ 中,, cm, cm.以直线为轴把这个直角三角形旋转一周.求所得的旋转体的表面积.答案: cm . 8. 已知母线长为的圆锥的侧面展开是一个圆心角为的扇形,求这个圆锥的底面半径.答案:由已知可得扇形弧长为,由,得,即这个圆锥的底面半径为. 9. 如图,某厂有一圆锥形的烟囱帽,其底面半径和高的比为,求它的侧面展开图的圆心角的度数.答案:设底面半径为,则高为,故母线长为,设圆心角为,则,,即圆心角为. 10. 如图所示,△ 中,,,,过点作直线,以直线为轴,将△ 旋转一周,求所得旋转体的表面积.答案:作,垂足为,作,垂足为,设所求的旋转体表面积为,以,,为母线的两个圆锥及圆柱的侧面积分别为,,,则.在Rt△ 中,,,.,,,.,,。
圆锥的侧面积和全面积知识点一:圆锥的侧面积和全面积1、若把一个半径为12cm ,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______ ,半径是______,圆锥的高是______ ,侧面积是______ .2、圆锥的底面积为25π,母线长为13 cm ,这个圆锥的底面圆的半径为__________cm ,高为_________cm ,侧面积为__________cm 2.3、已知Rt △ABC 的两直角边AC =5 cm ,BC =12 cm ,则以BC 为轴旋转所得的圆锥的侧面积为_________cm 2,这个圆锥的侧面展开图的弧长为_______cm ,面积为_______cm 2.4、Rt △ABC 中,∠C =90°,AB =5cm ,BC =3cm ,以直线BC 为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______ ,圆锥的侧面展开图的圆心角是______ .5、如图,已知圆锥的底面半径为3,母线长为4,则它的侧面积是 ( ).A. π24B. π12C.π6D. 126、若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为 ( ).A .2πcm 2B .3πcm 2C .6πcm 2D .12πcm2 7、.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长为3 m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为( )A.6 m 2B.6π m 2C.12 m 2D.12π m 28、在Rt ABC △中,90C = ∠,12AC =,5BC =,将ABC △绕边AC 所在直线旋转一周得到圆锥,则该圆锥的侧面积是( )A.25πB.65πC.90πD.130π9、若圆锥的底面积为16πcm 2,母线长为12cm ,则它的侧面展开图的圆心角为 ( ).A .240°B .120°C .180°D .90°10、圆锥的母线长5cm,底面半径长3cm,那么它的侧面展开图的圆心角是( )A.180°B.200°C.225°D.216°11、若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为 ( ).A .120°B .1 80°C .240°D . 300°12、如图1,现有一个圆心角为90°,半径为8cm 的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),则该圆锥底面圆的半径为( )A.4cmB.3cmC.2cmD.1cm·图113、一个圆锥侧面展开图的扇形的弧长为12π,则这个圆锥底面圆的半径为( )A.6B.12C.24D.2314、如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21 B .22 C .2 D .22 15、把一个半径为4cm 的半圆围成一个圆锥的侧面,则这个圆锥的高为( ) A.3cm; B.32cm; C.34cm; D.4cm16、底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为 ( ).A .5cmB .3cmC .8cmD .4cm17、若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为( )A.aB. a 33 C.3a D.23a 知识点二:综合运用1、已知圆柱的底面半径长和母线长是方程4x 2-11x +2=0的两个根,则该圆柱的侧面展开图的面积是_____.2、已知圆锥的侧面积为π82cm ,侧面展开图的圆心角为45°,求该圆锥的母线长3、如图小华为参加毕业晚会演出,准备制一顶圆锥形纸帽,纸帽的底面半径为9cm ,母线长为30cm ,制作这个纸帽至少需要纸板的面积至少为多少cm 2.(结果保留π)4、如图已知扇形AOB 的半径为6cm ,圆心角的度数为120°,若将此扇形围成一个圆锥,求围成的圆锥的侧面积5、如图,一把遮阳伞撑开时母线长为2米,底面半径为1米,则做这把遮阳伞需用布料的面积是多少120︒B O A6cm。
专题2.13 圆锥的侧面积(巩固篇)(专项练习)一、单选题1.如图,圆锥的底面圆半径r 为5cm ,高h 为12cm ,则圆锥的侧面积为( )A .65πcm 2B .60πcm 2C .100πcm 2D .130πcm 22.从半径为8cm 的圆形纸片剪去圆周14的一个扇形,将剩下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( )A .10cmB .C .8cmD .6cm3.如图,O 是ABC 的外接圆,22.5,8ABO ACO BC ∠=∠=︒=,若扇形OBC (图中阴影部分)正好是一个圆锥的侧面展开图,则该圆锥的高为( )AB .CD 4.已知圆锥底面半径为1,母线长为4,地面圆周上有一点A ,一只蚂蚁从点A 出发沿圆锥侧面运动一周后到达母线P A 中点B ,则蚂蚁爬行的最短路程为( )A .πB C .D .2π5.如图所示,矩形纸片ABCD 中,6cm AD =,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的底面和侧面,则圆锥的表面积为( )A .24πcmB .25πcmC .26πcmD .28πcm6.已知圆锥的母线长为2,底面圆的半径为1,如果一只蚂蚁从圆锥的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为( )AB C .D .27.如图,圆柱的底面周长为12cm ,AB 是底面圆的直径,在圆柱表面的高BC 上有一点D ,且10cm BC =,2cm DC =.一只蚂蚁从点A 出发,沿着圆柱体的表面爬行到点D 的最短路程是( )cm .A .14B .12C .10D .88.如图,从一张腰长为90cm ,顶角为120°的等腰三角形铁皮OAB 中剪出一个最大的扇形OCD ,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面圆的半径为( )cm .A .15B .30C .45D .30π9.斐波那契螺旋线也称“黄金螺旋线”,是根据斐波那契数列1,1,2,3,5,…画出来的螺旋曲线.如图,在每个边长为1的小正方形组成的网格中,阴影部分是依次在以1,1,2,3,5的一个四分之一圆做圆锥的侧面,则该圆锥的底面半径为()A.54B.2C.52D.410.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.C.D.二、填空题11.如果圆锥底面圆的半径为3cm,它的侧面积为12 cm2,则这个圆锥的母线长为_____cm.12.如图,圆锥的母线长l为10cm,侧面积为50πcm2,则圆锥的底面圆半径r=___cm.13.如图,菱形ABCD,∠A=135°,以点C为圆心的弧EF分别与AB、AD相切于点G、H,与BC、CD分别相交于点E、F,用扇形CEF做成圆锥的侧面,则这个圆锥的高是_____.(结果保留根号)14.一个母线长为6cm ,底面半径为3cm 的圆锥展开后得到的侧面展开图扇形的圆心角是___度.15.用一个圆心角为120°,半径为4的扇形作一个圆锥的侧面,则这个圆锥底面圆的周长为_____.16.如图,已知圆锥的母线AB 长为40 cm ,底面半径OB 长为10 cm ,若将绳子一端固定在点B ,绕圆锥侧面一周,另一端与点B 重合,则这根绳子的最短长度是______________.17.如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B 出发,沿表面爬到AC 的中点D 处,则最短路线长为__________.18.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果剪下来的扇形围成一个圆锥,则该圆锥的底面圆的周长为______m .三、解答题19.一块四边形ABCD 余料如图所示,已知AD BC ∥,2AD =米,AB =点A为圆心,AD为半径的圆与BC相切于点E,交AB于点F,用扇形AFD围成一个圆锥的侧面,求这个圆锥底面圆的半径.20.如图,已知一个圆锥的侧面展开图是一个半径为9cm,圆心角为120°的扇形.求:(1)圆锥的底面半径;(2)圆锥的全面积.21.如图,在单位长度为1的正方形网格中建立直角坐标系,一条圆弧恰好经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1) 利用网格找出该圆弧所在圆的圆心D点的位置,则D点的坐标为_______;(2) 连接AD、CD,若扇形DAC是一个圆锥的侧面展开图,则该圆锥底面半径为_______;(3) 连接AB,将线段AB绕点D旋转一周,求线段AB扫过的面积.22.如图,已知扇形AOB的圆心角为120°,半径OA为9cm.(1) 求扇形AOB的弧长和扇形面积;(2) 若把扇形纸片AOB卷成一个圆锥形无底纸帽,求这个纸帽的高OH.23.如图,已知圆锥的底面半径r为10cm,母线长为40cm.求它的侧面展开扇形的圆心角的度数和它的全面积.24.已知圆锥的底面半径为r=20cm,高h=,现在有一只蚂蚁从底边上一点A 出发.在侧面上爬行一周又回到A点,求蚂蚁爬行的最短距离.参考答案1.A【分析】根据圆锥的侧面积公式:S =πrl ,直接代入数据求出即可. 解:由圆锥底面半径r =5cm ,高h =12cm ,根据勾股定理得到母线长l (cm ), πrl =π×5×13=65π(cm 2), 故选:A .【点拨】此题主要考查了圆锥侧面积公式,熟练地应用圆锥侧面积公式求出是解决问题的关键.2.B【分析】先求得扇形的弧长,即圆锥的底面周长,则底面半径即可求得,然后利用勾股定理即可求得圆锥的高.解:圆心角是:1704360(1)2,︒⨯-=︒则弧长是:270812(cm),180ππ⨯= 设圆锥的底面半径是r ,则212r ππ=, 解得:r =6, 则圆锥的高是:=故选:B.【点拨】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.D【分析】根据圆的性质,勾股定理求出圆的半径OB ,再根据扇形的弧长公式即可求解;解:根据圆的性质,2BOC A ∠=∠180180A ABO OBC ACO OCB OBC BOC OCB ∠+∠+∠+∠+∠=︒∠+∠+∠=︒∵, A ABO ACO BOC ∠+∠+∠=∠∴∵2BOC A ∠=∠,22.5ABO ACO ∠=∠=︒90BOC ∴∠=︒∵8OB OC BC ==,∴OB OC =∴124BC π=⋅⋅=∴圆锥底面圆的半径为:2r π==∴圆锥的高h =故选:D【点拨】本题主要考查圆的性质、勾股定理、弧长公式的应用,掌握相关知识并灵活应用是解题的关键.4.C【分析】要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,连接AB ,根据展开所得扇形的弧长等于圆锥底面圆的周长求得扇形的圆心角,进而解三角形即可求解.解:根据题意,将该圆锥展开如下图所示的扇形,则线段AB 就是蚂蚁爬行的最短距离.∵点B 是母线P A 的中点,4PA =, ∴2PB =,∵圆锥的底面圆的周长=扇形的弧长, 又∵圆锥底面半径为1,∴扇形的弧长=圆锥底面周长,即22l r ππ==,扇形的半径=圆锥的母线=P A =4, 由弧长公式可得:42180180n R n l πππ⨯=== ∴扇形的圆心角90n =︒,在Rt △APB 中,由勾股定理可得:AB =所以蚂蚁爬行的最短路程为故选:C.【点拨】.本题考查平面展开--最短路径问题、圆的周长计算公式、弧长计算公式,勾股定理等知识,解题的关键是“化曲为直”,将立体图形转化为平面图形.5.B【分析】设圆锥的底面的半径为rcm,则DE=2rcm,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长得到()9062180rπ⨯-=2πr,解方程求出r,然后求得直径即可.解:设圆锥的底面的半径为rcm,则AE=BF=6-2r根据题意得()9062180rπ⨯-=2 πr,解得r=1,侧面积=1·2?442rππ=,底面积=2rππ=所以圆锥的表面积=25πcm,故选:B.【点拨】本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.6.A【分析】把圆锥的侧面展开,易得展开图是一个半圆,在平面内求出线段BD的长,则此时便是最短路线长,这只要在直角三角形中应用勾股定理解决即可.解:∵圆锥的底面周长为2π∴圆锥的侧面展开后的扇形的圆心角为21801802nππ⨯︒==︒,如图∴∠BAD=90゜∵D为AC的中点∴112122AD AC==⨯=在Rt△BAD中,由勾股定理得BD故选:A【点拨】本题考查了圆锥的侧面展开图,勾股定理,扇形弧长公式,本题体现了空间问题平面化,这是一种重要的数学思想方法.7.C【分析】首先画出圆柱的侧面展开图,根据底面周长12cm,求出AB的值,由BC=10cm,DC=2cm,求出DB的值,再在Rt△ABD 中,根据勾股定理求出AD 的长,即可得答案.解:圆柱侧面展开图如下图所示,∵圆柱的底面周长为12cm,∴AB =6cm,∵BC=10cm,DC=2cm,∴DB=8,在Rt△ABD 中,10AD=( cm ),即蚂蚁从A点出发沿着圆柱体的表面爬行到点D 的最短距离是10cm,故选:C .【点拨】此题主要考查了圆柱的平面展开图,以及勾股定理的应用,解题的关键是画出圆柱的侧面展开图.8.A【分析】作出等腰三角形底边上的高线OE,首先根据直角三角形30°所对的直角边等于斜边的一半求出等腰三角形底边上的高线OE的长度,即得到扇形OCD所在的圆的半径R,然后根据弧长公式求出CD的长度,CD的长度即为圆锥底面圆的周长,最后根据周长求出半径即可.解:如图,过点O作OE⊥AB,垂足为E,∵△OAB为顶角为120°的等腰三角形,∴A ∠=30°,1452OE OA ==cm , ∴12024530360CD ππ=⨯⨯=cm , 设圆锥的底面圆半径为r cm ,根据题意得,230r ππ=,解得15r =,所以该圆锥的底面圆的半径为15cm ,故选A .【点拨】本题考查了直角三角形30°所对的直角边等于斜边的一半、扇形的弧长公式、圆的周长公式,准确将扇形的弧长转化为底面圆的周长是解决本题的关键. 9.A【分析】根据斐波那契数的规律,求出下一个圆弧的底面半径和弧长,结合圆锥的侧面积性质进行求解即可.解:有根据斐波那契数的规律可知,从第三项起,每一个数都是前面两个数之和,即半径为5的扇形对应的弧长152542l ππ=⨯⨯= 设圆锥底面半径为r ,则522r ππ= 54r ∴= 故选:A .【点拨】本题考查圆锥侧面积的计算,结合斐波那契数的规律,及扇形的弧长公式进行转化是解题关键.10.C【分析】先计算出扇形的弧长,即圆锥的底面周长,从而得到圆锥的底面半径,然后利用勾股定理求出圆锥的高.解:正六边形的外角和为360︒,∴正六边形的每个外角的度数为360660,∴正六边形的每个内角的度数为18060120︒-︒=︒,设该圆锥的底面半径为r , 则120226360r ππ=⨯⨯, 解得2r =,∴=故选:C .【点拨】本题考查了正多边形与圆及圆锥的相关计算,以及勾股定理的应用,熟练掌握扇形与扇形所围圆锥侧面之间的等量关系是解题的关键.11.4【分析】设圆锥的母线长为l cm ,根据圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式得到123122l ππ⨯⨯⨯=,然后解方程即可. 解:由扇形面积公式2360n S r π=⨯和弧长公式2360n l r π=⨯可得12扇形S lr , 设圆锥的母线长为l cm ,根据题意知侧面展开扇形的弧长为23π⨯,从而得到123122l ππ⨯⨯⨯=, 解得l =4,即圆锥的母线长为4cm ,故答案为:4.【点拨】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.12.5【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.解:∵圆锥的母线长是10cm ,侧面积是50πcm 2,∴圆锥的侧面展开扇形的弧长为:l 210010s r π===10π(cm ), ∵圆锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r 1022l πππ===5(cm ), 故答案为:5.【点拨】本题考查了圆锥的计算,解题的关键是正确地进行圆锥与扇形的转化.13 【分析】先连接CG ,设CG R =,由三角函数定义求得扇形的半径即圆锥的母线长,根据弧长公式180n R l π=,再由2180n R r ππ=,求出底面半径r ,最后根据勾股定理即可求得圆锥的高. 解:如图: 连接CG ,135C ∠=︒,45B ∴∠=︒,AB 与EF 相切,CG AB ∴⊥,在直角CBG ∆中,sin 451CG BC =⋅︒==,即圆锥的母线长是1, 设圆锥底面的半径为r ,则:13512180r ππ⨯=, 38r ∴=.则圆锥的高h ==.【点拨】本题考查的是圆锥的计算, 先利用直角三角形求出扇形的半径, 运用弧长公式计算出弧长, 然后根据底面圆的周长等于扇形的弧长求出底面圆的半径 .14.180【分析】先计算出展开的扇形的弧长,再计算出以母线为半径的圆的周长,再根据圆心角公式即可得到答案.解:∵母线长为6l =cm ,底面半径为3r =cm ,∴展开的扇形的弧长为26r ππ=,以母线为半径的圆的周长为212l ππ=,∴侧面展开图扇形的圆心角=636018012ππ︒⨯=︒, 故答案为:180︒.【点拨】本题考查圆锥的性质,解题的关键是熟练掌握圆锥的相关知识. 15.83π【分析】由圆锥底面的周长=扇形的弧长,利用弧长公式解题.解:圆锥底面的周长=扇形的弧长120481801803n r l πππ⨯=== 故答案为:83π. 【点拨】本题考查扇形的弧长等知识,是基础考点,掌握相关知识是解题关键. 16.【分析】根据底面圆的周长等于扇形的弧长求解扇形的圆心角90,BAB '∠=︒ 再利用勾股定理求解即可.解:圆锥的侧面展开图如图所示:设圆锥侧面展开图的圆心角为n °, 圆锥底面圆周长为210=20,40=20,180n BB 则n =90, ∵40,AB AB 224040402,BB即这根绳子的最短长度是,故答案为:【点拨】本题考查的是圆锥的侧面展开图,弧长的计算,掌握“圆锥的底面圆的周长等于展开图的弧长求解圆心角”是解本题的关键.17.【分析】将圆锥的侧面展开,设顶点为B',连接BB',AE .线段AC 与BB'的交点为F ,线段BF 是最短路程.解:如图将圆锥侧面展开,得到扇形ABB′,则线段BF 为所求的最短路程.设∠BAB′=n°.∵6180n π⋅=4π, ∴n =120即∠BAB′=120°.∵E 为弧BB′中点,∴∠AFB =90°,∠BAF =60°,∴BF =AB•sin ∠BAF =∴最短路线长为故答案为:【点拨】本题考查了平面展开−最短路径问题,解题时注意把立体图形转化为平面图形的思维.18.23π 【分析】连接OA ,OB ,OC ,证明AOB 是等边三角形,从而求得AB 的长,然后利用弧长公式计算出BOC 的长度,即是该圆锥底面圆的周长.解:如图,连接OA ,OB ,OC ,∵OB OC =,∴OB OC =, ∴1602BAO CAO BAC ∠=∠=∠=︒, ∴AOB 是等边三角形,∴1AB OA ==,∵120BAC ∠=︒,∴BOC 的长为:12021803AB ππ⋅⋅= , 即该圆锥的底面圆的周长为23π . 故答案为:23π. 【点拨】本题主要考查了弧长公式以及扇形弧长与底面圆周长相等的知识点,解题的关键要掌握扇形弧长与底面圆周长相等.19.34r = 【分析】连接AE ,利用勾股定理得AE =BE ,由此即可求出∠ABE 的度数,再先求出扇形的圆心角∠DAB 的度数,再由弧长公式求出弧长,此弧长就是所得圆锥的底面圆的周长,由圆的周长公式即可求得所得圆锥的底面半径.解:如图,连接AE ,∵AD 为半径的圆与BC 相切于点E ,∴AE ⊥BC ,AE =AD =2.在Rt △AEB 中,∵AB =AE =2,∴AE =BE =2,∴∠ABE =45°.∴ABE △是等腰直角三角形,45BAE ∠=︒,设圆锥底面半径为r , 由题意得135222360r ππ⨯⨯=, 解得34r =. 【点拨】本题考查了切线的性质、平行线的性质、圆锥的计算,解题的关键是掌握所涉及的知识要点,并能够灵活运用.20.(1)圆锥的底面半径为3cm ;(2)圆锥的全面积236cm S π=【分析】(1)扇形的弧长公式l =180n r π,利用展开后扇形的弧长即为展开前圆锥底面圆的周长求出半径;(2)S 圆锥= S 侧+S 底,S 侧面=12lR ,S 底=2r π,(R =扇形半径即圆锥母线长,r =底面圆半径)将已知条件代入即可.解:(1)设圆锥的底面半径为cm r . 扇形的弧长为12096180l ππ⨯==, ∴26r ππ=,解得3r =,∴圆锥的底面半径为3cm . (2)圆锥的侧面积:S 侧面=12lR =()216927cm 2ππ⨯⨯=. 园锥的底面积:S 底=239(cm)ππ⨯=.∴圆锥的全面积S 全=S 侧+S 底=()227936cm πππ+=.【点拨】本题考查圆锥相关的计算,要求掌握圆锥侧面积与底面积的计算公式,侧面展开图扇形相关的面积和弧长的求算,注意求圆锥面积时母线与底面圆半径的区分.21.(1)(2,0)(3)4π 【分析】(1)线段AB 与BC 的垂直平分线的交点为D ;(2)连接AC ,先判断∠ADC =90°,则可求AC 的弧长,该弧长即为圆锥底面圆的周长,由此可求底面圆的半径;(3)设AB 的中点为E ,线段AB 的运动轨迹是以D 为圆心DA 、DE 分别为半径的圆环面积.(1)解:过点(2,0)作x 轴垂线,过点(5,3)作与BC 垂直的线,两线的交点即为D 点坐标,∴D (2,0),故答案为:(2,0);(2)解:连接AC ,∵A (0,4),B (4,4),C (6,2),∴AD =CD =AC =∵AC 2=AD 2+CD 2,∴∠ADC =90°,∴AC 的长124π=⨯⨯, ∵扇形DAC 是一个圆锥的侧面展开图,2r π=,∴r =,; (3)解:设AB 的中点为E ,∴E (2,4),∴DE =4,∴S =π×(AD 2﹣DE 2)=4π,∴线段AB 扫过的面积是4π.,【点拨】本题考查圆锥的展开图,垂径定理,能够由三点确定圆的圆心位置,理解圆锥展开图与圆锥各部位的对应关系是解题的关键.22.(1)6cm π,227cm π(2)【分析】(1)根据弧长公式和扇形面积公式求解即可;(2)先求出底面圆的半径,然后利用勾股定理求解即可.(1)解:由题意得扇形AOB 的弧长12096cm 180ππ⨯⨯==,221209==27cm 360AOB S ππ⨯⨯扇形; (2)解:如图所示,AH 为底面圆的半径,OA 为母线长,由题意可得=9cm OA ,63cm 2AH ππ==,∴OH ==.【点拨】本题主要考查了求扇形面积,求弧长,求圆锥的高,勾股定理等等,解题的关键在于能够熟练掌握弧长公式和扇形面积公式.23.90°,500π【分析】根据由圆锥的底面圆的周长等于侧面展开扇形的弧长可求.解:由圆锥的底面圆的周长等于侧面展开扇形的弧长可知:π402π10180n ⨯⨯⨯=,90n =︒, ∴侧面展开扇形的圆心角的度数是90°.全面积=底面积+展开侧面积, 全面积为:2290π40π10500π360⨯⨯⨯+=. 【点拨】本题考查了圆锥全面积和展开图圆心角的度数,解题关键是明确圆锥的底面圆的周长等于侧面展开扇形的弧长,根据题意列方程求解.24.【分析】蚂蚁爬行的最短距离是圆锥的展开图的扇形中AA′的长度.根据勾股定理求得母线长后,利用弧长等于底面周长求得扇形的圆心角的度数为90度,再由等腰直角三角形的性质求解.解:设扇形的圆心角为n ,圆锥的在Rt △AOS 中,∵r=20cm ,h=,∴由勾股定理可得母线,而圆锥侧面展开后的扇形的弧长为2×20π=18080n π⨯. ∴n=90°即△SAA′是等腰直角三角形,∴由勾股定理得:.∴蚂蚁爬行的最短距离为.【点拨】本题利用了勾股定理,弧长公式,圆的周长公式,等腰直角三角形的性质求解.。
圆锥的侧面积和全面积1.已知圆锥的侧面展开图的面积是15πcm2,母线长是5cm,则圆锥的底面半径为(•)A.32cm B.3cm C.4cm D.6cm2.(阅读理解题)下面的解答对吗?若错误,请改正.题目:已知圆锥的侧面展开图的圆心角为180°,底面积为15cm2,则圆锥的侧面积为多少?解:∵底面15cm2,∴πr2=15,即r2=15π.∵扇形的圆心角为180°,∴圆锥侧面积为2180360rπ=7.5cm2.3.如果圆锥的母线长为6cm,底面直径为6cm,•那么这个圆锥的全面积为______cm2.4.(过程探究题)补充解题过程:牧民居住的蒙古包的形状一个圆柱与圆锥的组合体,尺寸如图1所示,请你算出要搭建这样一个蒙古包至少需要多少平方米的篷布?(π取3.14,•结果保留一位小数)解:圆锥的底面半径为r=_______,高为1.2m,则据勾股定理可求圆锥的母线a=•_______=______.圆锥的侧面积:S扇形=πar=______=______.圆柱的底面周长为________.圆柱的侧面积是一个长方形的面积,则S长方形=_______.搭建一个这样的蒙古包至少需要_______平方米的篷布.图1 图2 图35.一个扇形如图2所示,半径为10cm,圆心角为270°,•用它做成一个圆锥的侧面,那么圆锥的高为______cm.6.圆锥的母线长为5cm,高为3cm,在它的侧面展开图中,•扇形的圆心角是________.7.如图3所示,用一个半径为R,圆心角为90°的扇形做成一个圆锥的侧面,设圆锥底面半径为r,则R:r=________.8.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,•母线长50cm,则制成一顶这样的纸帽所需纸面积至少为()A.250πcm2B.500πcm2C.750πcm2D.100πcm29.从一个直径为1的圆形铁皮上剪出一个圆心角为120°的扇形ABC,用所剪的扇形铁皮围成一个圆锥,此圆锥的底面圆半径为()A.23B.13C.16D.4310.已知圆锥的侧面展开图的面积是15πcm2,母线长是5cm,则圆锥的底面半径为(•)A.32cm B.3cm C.4cm D.6cm11.(阅读理解题)下面的解答对吗?若错误,请改正.题目:已知圆锥的侧面展开图的圆心角为180°,底面积为15cm2,则圆锥的侧面积为多少?解:∵底面15cm2,∴πr2=15,即r2=15π.∵扇形的圆心角为180°,∴圆锥侧面积为2180360rπ=7.5cm2.12.如果圆锥的母线长为6cm,底面直径为6cm,•那么这个圆锥的全面积为______cm2.13.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长.(2)若把此扇形卷成一个圆锥,则这个圆锥的全面积是多少?14.在如图所示,一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.15.(教材变式题)如图所示是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用表示)p答案:回顾探索扇形,L,2πr,πrL,πr(L+r)课堂测控1.B2.错正解:设圆锥的底面半径为r,扇形的半径为a,则πr2=15,∴2πr=218015180,22,180360aa a r Sπππ⨯∴==∴==2.3.27π4.52m,,2.77,2.77×3.14×2.5,21.74,15.7,28.26,50.0课后测控1.522.288°3.4:1 4.B 5.C6.解:(1)212012030300,30.360180RR lπππ=∴=∴==20πcm.(2)2πr=L,r=10,∴S底=πr2=100π,∴S全=S侧+S底=400π.7.解:S表面积=S圆柱侧+S圆锥侧+S圆柱底=2πrh+πrL+πr2=8000π+2000π+1600π=11600π≈3.64×104(mm2).8.解:由题意可知:AB=6π,CD=4π,设∠AOB=n°,AO=R,则CO=R-8,由弧长公式得:(8)6,180180n R n Rπππ-==4π.解方程组618045 4180824nR nnR n R cm ⨯==⎧⎧⎨⎨⨯=-=⎩⎩得.故扇形OAB的圆心角是45°,OC=R-8=16(cm),所以S扇形OCD=12×4π×16=•32π(cm2),S扇形OAB=12×6π×24=72π(cm2),S纸杯侧面积=S扇形OAB-S扇形OCD=40π(cm2),S纸杯底面积=π·22=4π(cm2),S纸杯表面积=40π+4π=44π(cm2).。
2 2 第 2 课时 圆锥的侧面积和全面积1. 已知一个圆锥的底面直径是 6 cm,母线长是 8 cm,则它的全面积为( )A .24π cm 2B .33 cm 2C .24 cm 2D .33π cm 22. 如图,圆锥的底面半径为 r cm,母线长为 10 cm,其侧面展开图是圆心角为 216°的扇形,则 r 的值是()A .3 B.6 C.3π D.6π3. 已知一个圆锥的侧面积是底面积的 2 倍,母线长为 2,则该圆锥的底面半径是()A .1B .1C . 2D .34. 右面是一个圆锥的轴截面,则此圆锥的侧面展开图的圆心角的度数为.5. 已知圆锥的底面周长为 6π cm,高为 4 cm,则该圆锥的全面积是 cm 2;侧面展开扇形的圆心角是 .6. 工人师傅用一张半径为 24 cm,圆心角为 150°的扇形铁皮做成一个圆锥的侧面,则这个圆锥的高为 .7. 一个圆锥的高为 3,侧面展开图是半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.8.如图,有一个直径是1 m 的圆形铁皮,要从中剪出一个半径为1 m 且圆心角是120°的扇形ABC,求:2(1)被剪掉后剩余阴影部分的面积.(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少米?9.已知圆锥的底面半径为4 cm,高为5 cm,则它的表面积为( )A.12π cm2B.26π cm2C. 41π cm2D.(4 41+16)π cm210.已知点O 为一圆锥的顶点,点M 为该圆锥底面上一点,点P 在母线OM 上,一只蚂蚁从点P 出发,绕圆锥侧面爬行,回到点P 时所爬过的最短路线的痕迹如图所示.若沿母线OM 将圆锥侧面剪开并展开, 则所得侧面展开图是( )11.如图,圆锥的底面半径为5,母线长为20,一只蜘蛛从底面圆周上一点A 出发沿圆锥的侧面爬行一周后回到点A 的最短路程是.12.如图,这是一个由圆柱形材料加工而成的零件,它是以圆柱的上底面为底面,在其内部“掏取”一个与圆柱等高的圆锥而得到的,其底面直径AB=12 cm,高BC=8 cm,求这个零件的全面积.(结果保留根号)★13.如图①,在正方形的铁皮上剪下一个圆形和一个扇形,使之恰好围成如图②的一个圆锥,设图① 中圆的半径为r,扇形的半径为R,那么扇形的半径R 与☉O 的半径r 之间满足怎样的关系?并说明理由.★14.如图,一个纸杯的母线延长后相交于一点,形成的立体图形是圆锥,该圆锥的侧面展开图是扇形OAB,经测量,纸杯上开口圆的直径是6 cm,下底圆直径为4 cm,母线长EF=8 cm.求扇形OAB 的圆心角及这个纸杯的全面积.(面积计算结果用π表示)2 2 180 180参考答案夯基达标1.D2.B 圆锥的侧面展开图是扇形,它的弧长=216π×10=12π,弧长又等于底面圆的周长,于是 12π=2π×r ,可180 得 r=6.故选 B .3.B 设圆锥的底面半径为 r ,则圆锥的侧面积为1·2πr ·2=2πr ,底面面积为πr 2,根据题意得 2πr=2πr 2,解得 r=1,即圆锥的底面半径是 1.故选 B .4.90° ∵2π×3=�π×12,∴n=90.180 5.24π 216° 设圆锥的底面半径为 r cm,母线长为 R cm,侧面展开扇形的圆心角为 n °.∵圆锥的底面周长为 2πr=6π,∴r=3.∵圆锥的高为 4 cm,∴R= 32 + 42=5.∴圆锥的全面积=底面积+侧面积=π×32+1×6π×5=24π(cm 2).∵侧面展开扇形的弧长 l=底面周长=6π=�π�,∴n=180×6π=216.π×5 即侧面展开扇形的圆心角是 216°.6.2 119 cm 由题意可得圆锥的母线长为 24 cm,设圆锥底面圆的半径为 r cm,则 2πr=150π×24,2 解得 r=10.故这个圆锥的高为 242-102=2 119(cm).7. 解 如图,设圆锥的轴截面为△ABC ,过点 A 作 AO ⊥BC 于点 O ,设母线长 AB=l ,底面☉O 的半径为 r ,高AO=h.(1) ∵圆锥的侧面展开图是半圆,∴2πr=1×2πl=πl ,�=2.2 �(2) 在 Rt △ABO 中,∵l 2=r 2+h 2,l=2r ,h=3,∴(2r )2=32+r 2.由 r 为正数,解得 r= 3,l=2r=2 3.故 S 全=S 侧+S 底=πrl+πr 2=π× 3×2 3+π×( 3)2=9π.8. 解 (1)设 O 为圆心,连接 OA ,OB ,OC.∵OA=OC=OB ,AB=AC ,∴△ABO ≌△ACO (SSS).又∠BAC=120°,∴∠BAO=∠CAO=60°.∴△ABO 是等边三角形.∴AB=1m .1 2 41 2 12 2 2 2 2 120π× 1 2 ∴� = 2 = π (m 2). 扇形A � 360 122 ∴S =π − π = π(m 2). 阴影 12 6120π×1 π (2)在扇形 ABC 中,�ˆ�的长为 2 = 1803(m). 设底面圆的半径为 r m,则 2πr=π.∴r=1(m).3 6培优促能9.D 底面半径为 4 cm,则底面周长为 8π cm,底面面积为 16π cm 2.由勾股定理得母线长为 cm,圆锥的侧面积为1×8π× 41=4 41π(cm 2),所以它的表面积为 16π+4 41π=(4 41+16)π cm 2.故选 D .10.D11. 20 将圆锥的侧面展开成扇形,连接 AA',则蜘蛛爬行的最短路程就是线段 AA'的长度.由题意知,OA=OA'=20,�ˆ�'=2π×5=10π,设∠AOA'=n °,根据弧长公式可求 n=10π×180=90.20π 所以在 Rt △AOA'中,AA'= ��2 + ��'2=20 2.12. 解 这个零件的底面积为2 π× =36π(cm 2),这个零件的外侧面积为12π×8=96π(cm 2),圆锥母线长OC= 82 + 122 =10(cm),这个零件的内侧面积为1×12π×10=60π(cm 2),2 2 2 所以这个零件的全面积为 36π+96π+60π=192π(cm 2).13. 分析 因为题图①中的圆形和扇形刚好围成题图②中的圆锥,所以题图①中的扇形的弧长等于☉O 的周长.解 扇形的半径 R 等于☉O 的半径 r 的 4 倍.理由如下:因为�ˆ�=2πR×1 = 1πR ,☉O 的周长为 2πr ,42且题图①中的扇形和☉O 能围成题图②的圆锥,所以1πR=2πr ,即 R=4r.创新应用14. 分析 展开图扇形的圆心角可利用圆锥底面周长等于展开图扇形的弧长来计算;纸杯的侧面积利用母线延长后的大圆锥的侧面积与小圆锥的侧面积的差来表示.解 由题意,知�ˆ�=6π cm,�ˆ�=4π cm .设∠AOB=n °,AO=R cm,则 CO=(R-8)cm, 根据弧长公式,�π� �π(�-8) 得 180=6π, 180 =4π.解得 n=45,R=24.所以扇形圆心角的度数为 45°.由 R=24,得 R-8=16.所以 S OCD =1×4π×16=32π(cm 2),S 扇形 OAB =1×6π×24=72π(cm 2).所以 S 纸杯侧=S 扇形 OAB -S 扇形 OCD =72π-32π=40π(cm 2). 又因为 S纸杯底=π 2 =4π(cm 2),4 2 扇形所以S=40π+4π=44π(cm2).纸杯全。
圆锥的侧面积和全面积同步达纲练习(120分 100分钟)一、基础题(每题3分,共54分) 1.一圆锥的侧面展开图的圆心角为120°,该圆锥的侧面积与全面积之比值为( ) A .43 B .32 C .54D .212.若圆锥经过轴的剖面是正三角形,则它的侧面积与底面积之比为( ) A .3:2 B .3:1 C .2:1 D .5:33.如图3-8-4,将半径为2的圆形纸片沿半径OA 、OB 将其截成1:3两部分,用所得的扇形围成圆锥的侧面,则圆锥的底面半径为( )A .21B .1C .1或3D .21或234.如图3-8-5,将三角形绕直线ι旋转一周,可以得到图3-8-6所示的立体图形的是( )5.在△ABC 中,∠C=90°,AB=4cm ,BC=3cm .若△ABC 绕直线AC 旋转一周得到一个几何体,则此几何体的侧面积是( )A .6πcm 2B .12πcm 2C .18πcm 2D .24πcm 26.将一个半径为8cm ,面积为32πcm 2的扇形铁皮围成一个圆锥形容器(不计接缝),那么这个圆锥形容器的高为( )A .4B .43C .45D .2147.已知圆锥的母线长是10cm ,侧面展开图的面积是60πcm 2,则这个圆锥的底面半径是 cm .8.已知圆锥的底面半径是2cm ,母线长是5cm ,则它的侧面积是 .9.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是 .10.一个扇形,半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为 .11.一个扇形,半径为30cm ,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的全面积为 .12.一个圆锥形的烟囱帽的侧面积为2000πcm 2,母线长为50cm ,那么这个烟囱帽的底面直径为( )A .80cmB .100cmC .40cmD .5cm 13.圆锥的高为3cm ,底面半径为4cm ,求它的侧面积和侧面展开图的圆心角.14.以斜边长为a 的等腰直角三角形的斜边为轴,旋转一周,求所得图形的表面积. 15.已知两个圆锥的锥角相等,底面面积的比为9:25,其中底面较小的圆锥的底面半径为6cm ,求另一个圆锥的底面积的大小.16.轴截面是顶角为120°的等腰三角形的圆锥侧面积和底面积的比是多少?17.如图3-8-7,已知圆锥的母线SB=6,底面半径r=2,求圆锥的侧面展开图扇形的圆心角α.18.一个圆锥的底面半径为10cm,母线长20cm,求:(1)圆锥的全面积;(2)圆锥的高;(3)轴与一条母线所夹的角;(4)侧面展开图扇形的圆心角.二、学科内综合题(每题7分,共21分)19.一个扇形如图3-8-8,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,求圆锥底面半径和锥角.20.一个圆锥的轴截面是等边三角形,它的高是23cm.(1)求圆锥的侧面积和全面积;(2)画出圆锥的侧面展开图.21.若△ABC为等腰直角三角形,其中∠ABC=90°,AB=BC=52cm,求将等腰直角三角形绕直线AC旋转一周所得到图形的面积.三、应用题(每题6分,共18分)22.用一块圆心角为300°的扇形铁皮做一个圆锥形烟囱帽,圆锥的底面直径为1m,求这个扇形铁皮的半径.23.如图3-8-9,粮仓的顶部是圆锥形,这个圆锥的底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓实际需用油毡的面积是多少?24.如图3-8-10,有一直径是1m的圆形铁皮,要从中剪出一个最大的圆心角是90°的扇形ABC,求:(1)被剪掉的阴影部分的面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥的底面圆半径是多少?(结果可用根号表示)四、创新题(10分)25.小明要在半径为1m,圆心角为60°的扇形铁皮上剪取一块面积尽可能大的正方形铁皮.小明在扇形铁皮上设计了如图3-8-11的甲、乙两种方案剪取所得的正方形的面积,并计算哪个正方形的面积较大?(估算时3取1.73,结果保留两个有效数字)五、中考题(17分)26.(3分)一个形如圆锥的冰淇淋纸筒,其底面直径为6cm,母线长为5cm,围成这样的冰淇淋纸筒所需纸片的面积是()A.66πcm2B.30πcm2C.28πcm2D.15πcm227.(6分)圆锥可以看成是直角三角形以它的一条直角边所在的直线为轴,其余各边旋转一周而成的面所围成的几何体,那么圆台可以看成是所在的直线为轴,其余各边旋转一周而成的面所围成的几何体;如果将一个半圆以它的直径所在的直线为轴旋转一周,所得的几何体应该是.28.(8分)在半径为27m 的广场中央,点O 的上空安装了一个照明光源S ,S 射向地面的光束呈圆锥形,其轴截面SAB 的顶角为120°(如图3-8-12),求光源离地面的垂直高度SO .(精确到0.1m ;2=1.44,3=1.732,5=2.236,以上数据供参考)加试题:竞赛趣味题(每题5分,共10分)1.如图3-8-13,在小学,我们曾用实验归纳出圆锥的体积等于三分之一底面积乘以高.现在我们的实验是,取一个半径为R 的半球面,再取一个半径和高都是R 的圆锥容器.两次将圆锥容器装满细沙,并倒入半球内,发现半球恰好被装满.试根据这一实验猜想半径为R 的球的体积公式.2.已知a 、b 、c 为正整数,且a 2+b 2+c 2+48<4a +6b +12c ,求(c b a 111++)abc的值.Ⅵ.探究题要将一块直径为2m 的半圆形铁皮加工成一个圆柱的两个底面和一个圆锥的底面. 操作:方案一:在图3-8-14中,设计一个使圆锥底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).方案二:在图3-8-15中,设计一个使圆柱两个底面最大,半圆形铁皮得以最充分利用的方案(要求:画出示意图).探究:(1)求方案一中圆锥底面的半径; (2)求方案二中圆锥底面及圆柱底面半径;(3)设方案二中半圆圆心为O ,圆柱两个底面的圆心为O 1、O 2,圆锥底面的圆心为O 3,试判断以O 1、O 2、O 3、O 为顶点的四边形是什么样的特殊四边形,并加以证明.参考答案Ⅱ.三、1.5cm ;12cm ;65πcm 22.50π;60°;533.65π;10π;65π 点拨:以BC 为轴旋转所得圆锥的底面半径为5cm ,高为12cm ,母线长为13cm.利用公式计算.Ⅲ.一、1.扇形 2.l ;2πr 3.πl r 4.全面积Ⅳ.1.12π 2.B 点拨:侧面积=21底面直径²π²母线长.3.D 点拨:展开图的弧长是a π,故底面半径是2a,这时母线长,底面半径和高构成直角三角形.Ⅴ.一、1.A 解:设圆锥的底面半径为r ,母线长为R ,扇形的弧长为l ,则l =180120R π=32πR.∴2πr=R 32π.∴R=3r.∴S 侧=21³2πr ²R=21²2πr²3r=6πr 2³21=3πr 2.S 全面积=S 侧+S 底=3πr 2+πr 2=4πr 2.∴S 表:S 底=3πr 2:4πr 2=3:4. 2.C 解:设圆锥母线为ι,底面半径为r ,由题意,得ι=2r .∴S 侧=21²2πr ²ι=πr ³2 r=2πr2∴S 侧:S 底=2πr 2:πr 2=2:1.3.D 解:圆的周长为2π²OA=2π³2=4π.∴劣弧⌒AB 的长为41³4π=π,优弧⌒AB 的长为43³4π=3π.设含劣弧⌒AB 的扇形围成的圆锥的底面半径为r 1,含优弧⌒AB 的扇形围成的圆锥的底面半径为r 2,则⎩⎨⎧==.32,221ππππr r 解得⎪⎪⎩⎪⎪⎨⎧==.23,2121r r点拨:不能漏掉含优弧⌒AB 的扇形,而选错A.4.B 点拨:认真分析图形,发挥空间想象力.5.B 解:由题意知旋转后的几何体为以AC 为高,AB 为母线,BC 为底面半径的圆锥,所以S 侧=21²2π²BC²AB=21³2π³3³4=12π(cm 2)6.B 解:设圆锥底面圆的半径为r ,母线长为l ,则l =8cm ,πr²l =32π.7.6 解:设圆锥的底面半径为r ,则21²2πr²10=60π,解得r=6.8.10πcm 2 解:S 侧=2πr ²l ²21=π³2³5=10π(cm 2).9.1:2:3 解:设轴截面(等边三角形)边长为a ,则圆锥的底面半径为21a ,母线为a.∴S 底=π²(2a )2=4πa 2,S 侧=21²2π²2a ²a=2πa 2.S 全=S 底+S 侧=2224324aa a πππ=+. ∴S 底:S 侧:S 全=22243:42:4aa a πππ=1:2:3.点拨:恰当设元,分别求出各面积再求比值.10.10cm 解:l =180********⨯=ππR n =20π,∴2πr=20π,r=10cm. 11.400πcm 2 点拨:l =180120π³30=20π,20π=2πr ,r=10,S 底=πr 2=102π=100π,S 侧=21l R=21³20π³30=300π,∴S 全=S 底+S 侧=400cm 2.12.A 点拨:由公式S 侧=21²2πr²R=πrR ,所以50πr=2000π,2r=80.13.解:侧面积为20πcm 2,圆心角为288°,由勾股定理可得母线长为5cm ,S侧=πl r=20πrcm 2,圆心角α=l r ³360°=54³360°=288°.14.解:旋转体的表面积是22πa 2.15.解:由圆锥锥角相等,可知两圆的轴截面的两个等腰三角形相似,另一圆锥的底面半径10cm ,底面面积为100πcm 2.16.解:设轴截面等腰三角形的腰长是a ,则圆锥底面半径为23a,S 侧:S 底=πr l :πr 2=l :r=2:3.17.解:设圆锥底面周长为C ,则C=2πr=2π³2=4π.又此周长即为圆锥侧面展开图的扇形弧长,∴C=180SB⨯απ.∴a=64180180⨯⨯=⨯πππSB C =120°. 18.解:(1)S 全=πr 2+πr l =100π+200π=300π(cm 2). (2)如答图3-8-1所示,OS 为圆锥的高.在Rt △OSA 中,OS=31010202222=-=-AS OA (cm ).(3)在Rt △OSA 中,sin α=21=OA AS ,∴α=30°.(4)设侧面展开图扇形的圆心角底数为β,则2πr=180lβπ.∴β=180°. ∴侧面展开图扇形的圆心角为180°.点拨:关于圆锥的轴截面面积的计算问题,关键是结合图形分析清楚轴截面的各元素与圆锥各元素之间的关系,圆锥有无数个轴截面,它们是全等的等腰三角形.二、19.解:设底面半径为r ,锥角为α.∵⌒AB 的长为ππ2018030120=⨯,∴2πr=20π.∴r=10(cm ).∴sin .3333.030102≈=α查表得2α=19°28′,∴α=38°56′.点拨:圆锥的锥角是指圆锥的轴截面中两母线所夹的等腰三角形的顶角,通常是在底面半径、高和母线组成的直角三角形中,首先求出锥角的一半,再得锥角.20.解:(1)如答图3-8-2为圆锥的轴截面,SA 、SB 为母线,SO 为高,AB 为底面圆的直径、高和母线组成的直角三角形中,首先求出锥角的一半,再得锥角.20.解:(1)如答图3-8-2为圆锥的轴截面,SA 、SB 为母线,SO 为高,AB 为底面圆的直径,所以SO=23.在Rt △SOB 中,SB=233260sin =︒SO =4,OB=SB ²cos60°=4³21=2,∴S 侧=2π²OB²21²SB=2π³2³21³4=8π,S 全=S 侧+S 底=8π+π²OB 2=4π+8π=12π(cm 2).(2)设圆锥侧面展开图的圆心角为n°,则ππ83602=⋅SB n ,即ππ836016=n ,解得n=180,所以圆锥的侧面展开图如答图3-8-3.21.解:绕直线AC 旋转一周所得图形如答图3-8-4.在Rt △ABC 中,OB=AB ²cos45°=5222⨯=5.∴所得图形的面积为2S 侧=2³21³2π³OB ³AB=2π³5³52=502π(cm 2).点拨:发挥想象力.能想象出旋转后的图形面积为两个圆锥的侧面积之和.三、22.解:设扇形的半径为R ,圆锥底面半径为r ,那么r=0.5m ,2πr=180Rn π,2π³0.5=180300Rπ,解得R=0.6m. 答:略.点拨:扇形的弧长即为圆锥底面圆的周长.23.解:设圆锥的底面半径为r ,那么2πr=36,∴r=π18.∴圆锥的侧面积为2πr ²l ²21=36³8³21=144(m 2).∴实际需要油毡的面积为144+144³10%=158.4(m 2). 答:略.点拨:本题还可以用36³8³21直接求得圆锥的侧面积.24.解:(1)连接BC.∵∠BAC=90°,∴弦BC 为直径.∴AB=AC.∴AB=AC=BC ²sin45°=22.∴S 阴影=S ⊙O -S 扇形ABC =π(21)2-8360)22(902ππ=(m 2).(2)设圆锥底面圆的半径为r ,而弧⌒BC 的长即为圆锥底面的周长,2πr=1802290⋅π.解得r=82(m).答:略.点拨:阴影部分的面积是用圆减去一个圆心角为90°的扇形的面积.关键是求扇形的半径,而扇形的弧长实际上是圆锥底面圆的周长.四、25.解:方案甲:连接OH ,设EF=x ,则OF=EF ²cot60°=33x.在Rt △OGH 中,OH 2=GH 2+OG 2,即1=x 2+(xx +33)2.解得x 2=37)327(3-.方案乙:作OM ⊥G ′H ′于M ,交E ′F ′于N ,则M 、N 分别是G ′H ′和E ′F ′的中点,∠NOF ′=30°.连接OG ′.设E ′F ′=y ,则ON=23y.在Rt △OG ′M 中,OM 2+MG ′2=OG ′2,∴y 2=2-3.若3≈1.73,则x 2=0.287≈0.29,y 2=0.27,∴x 2﹥y 2,即按甲方案剪得的正方形面积较大. 五、26.D 解:如冰淇淋纸筒示意图(答图3-8-5),根据题意,得SA=SB=5cm ,AB=6cm.圆锥的底面周长为l =2π²2AB=2π²3=6π,∴S 侧=21l ²R=21²SB ²l =21³5³6π=15π(cm 2).点拨:冰淇淋纸筒侧面积是圆锥的侧面积,不能加上底面面积. 27.直角梯形以垂直于底边的腰;球或球体 28.解:在△SAB 中,SA=SB ,∠ASB=120°.∵SO ⊥AB ,∴O 为AB 的中点,且∠ASO=∠BSO=60°.在Rt △ASO 中,OA=27m ,∴SO=OA ²cot ∠ASO=27³cot60°=27³3933=≈15.6(m ).答:略.加试题:1.解:V 球=34πR 3,实验结果表明:2V 圆锥=V 半球,即V 半球=32πR 3,∴V 球=34πR 3.点拨:数学试验是获得一些结论的重要途径,同时在获取知识培养能力,增强毅力等方面有很大益处.2.解:不等式两边加上1,移项整理后有a 2-4a+b 2-6b+c 2-12c+49﹤1,∵a 、b 、c 为正整数,∴a 2-4a+b 2-6b+c 2-12c+49≤0,即(a-2)2+(b-3)2+(c-6)2≤0. ∴a-2=0,b-3=0,c-6=0.∴a=2,b=3,c=6.∴原式=(613121++)2³3³6=136=1. 点拨:(1)若x 2+y 2≤0,必有x=0,y=0;(2)通过本题应注重加“1”的妙用.Ⅵ.方案一:如答图3-8-6,⊙O 3是圆锥底面,⊙O 1和⊙O 2是圆柱底面.方案二:如答图3-8-7,⊙O 1和⊙O 2是圆柱底面,⊙O 3是圆锥底面.(1)圆锥半径为2³21³21=0.5m.(2)如答图3-8-7,连接OO 1、OO 2、O 2O 3、O 1O 3、O 1O 2,设⊙O 1与⊙O 2的半径为ym ,⊙O 3的半径为xm.∵⊙O 1和⊙O 2外切于点D ,∴OD ⊥O 1O 2,设⊙O 1切AB 于点C ,连接O 1C ,∴O 1C ⊥AB. ∴四边形O 1COD 为正方形.OD=y.∴OO 12=O 1D 2+OD 2.∴(1-y)2=y 2+y 2.∴y=-1±2.∵y ﹥0,∴y=2-1.∴圆柱底面半径为(2-1)m.∵O 1O 3=O 2O 3,O 1D=O 2D ,∴O 3D ⊥O 1O 2.∴O 1O 32=O 1D 2+O 3D 2.∴(x+y)2=y 2+(1-x-y)2.∴x=1-2y=3-22.∴圆锥底面半径为(3-22)m. (3)四边形OO 1O 3O 2是正方形.由(2)知O 1O 3=x+y=2-2,O 1O=1-y=2-2.同理OO 2=O 2O 3=2-2,即O 1O=O 1O 3=O 2O 3=OO 2.∴四边形OO 1O 3O 2是菱形. ∵OO 3=1-x=22-2,O 1O 2=2y=22-2,∴OO 3=O 1O 2. ∴四边形OO 1O 3O 2是正方形.。
圆锥的侧面积和全面积测试题(含答案)27.3.2圆锥的侧面积和全面积一.选择题(共8小题) 1.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是() A.10cm2 B.5π cm2 C.10π cm2 D.20π cm22.已知圆锥的高为4,母线长为5,则该圆锥的表面积为()A.21π B.15π C.12π D.24π3.已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是() A.30° B.60° C.90° D.180°4.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为() A.1.5 B.2 C.2.5 D.35.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为() A.10cm2 B.10πcm2 C.20cm2 D.20πcm26.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为() A.9cm B.12cm C.15cm D.18cm7.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝) A.5 B.12 C.13 D.148.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2 B.2 πcm2 C.6πcm2 D.3πcm2 二.填空题(共6小题) 9.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为_________ cm2.10.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为_________ .11.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是_________ cm2.(结果保留π)12.圆锥的底面半径是2cm,母线长6cm,则这个圆锥侧面展开图的扇形圆心角度数为_________ 度.13.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为_________ .14.一个底面直径为10cm,母线长为15cm的圆锥,它的侧面展开图圆心角是_________ 度.三.解答题(共8小题) 15.如图是某圆锥的三视图,请根据图中尺寸计算该圆锥的全面积.(结果保留3个有效数字)16.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.17.已知圆锥的侧面积为16πcm2.(1)求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;(2)写出自变量r的取值范围;(3)当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.18.如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹)(2)若将此扇形围成一个圆锥的侧面,求圆锥底面圆的半径.19.在△A BC中,∠C=90°,∠A=30°,BC=3.(1)将△ABC绕AB 所在的直线旋转一周,求所得几何体的侧面积;(2)折叠△ABC,使BC边与CA边重合,求折痕长和重叠部分的面积.20.如图,圆锥底面的半径为10cm,高为10 cm.(1)求圆锥的全面积;(2)若一只蚂蚁从底面上一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.21.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥底面圆的面积.(结果保留π)22.如图,一个圆锥的高为 cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).27.3.2圆锥的侧面积和全面积参考答案与试题解析一.选择题(共8小题) 1.已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是() A. 10cm2 B.5π cm2 C.10π cm2 D.20π cm2考点:圆锥的计算.专题:计算题.分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.解答:解:圆锥的侧面积= •2π•2•5=10π(cm2).故选C.点评:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.2.已知圆锥的高为4,母线长为5,则该圆锥的表面积为()A.21π B.15π C.12π D.24π考点:圆锥的计算.菁优网版权所有分析:首先根据勾股定理求得底面半径,则可以得到底面周长,然后利用扇形的面积公式即可求解.解答:解:底面半径是: =3,则底面周长是6π,则圆锥的侧面积是:×6π×5=15π,底面积为9π,则表面积为15π+9π=24π.故选D.点评:考查了圆锥的计算.正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.3.已知圆锥的母线长为6cm,底面圆的半径为3cm,则此圆锥侧面展开图的圆心角是() A.30° B.60° C.90° D.180°考点:圆锥的计算.分析:根据弧长=圆锥底面周长=6π,圆心角=弧长×180÷母线长÷π计算.解答:解:由题意知:弧长=圆锥底面周长=2×3π=6πcm,扇形的圆心角=弧长×180÷母线长÷π=6π×180÷6π=180°.故选:D.点评:本题考查的知识点为:弧长=圆锥底面周长及弧长与圆心角的关系.解题的关键是熟知圆锥与扇形的相关元素的对应关系.4.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为() A. 1.5 B.2 C.2.5 D. 3考点:圆锥的计算.专题:计算题.分析:半径为6的半圆的弧长是6π,圆锥的底面周长等于侧面展开图的扇形弧长,因而圆锥的底面周长是6π,然后利用弧长公式计算.解答:解:设圆锥的底面半径是r,半径为6的半圆的弧长是6π,则得到2πr=6π,解得:r=3,这个圆锥的底面半径是3.故选:D.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.5.如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积为() A. 10cm2 B.10πcm2 C.20cm2 D.20πcm2考点:圆锥的计算.专题:数形结合.分析:圆锥的侧面积=底面周长×母线长÷2.解答:解:圆锥的侧面积=2π×2×5÷2=10π.故选:B.点评:本题考查了圆锥的计算,解题的关键是知道圆锥的侧面积的计算方法.6.一个圆锥的底面半径是6cm,其侧面展开图为半圆,则圆锥的母线长为() A. 9cm B.12cm C.15cm D. 18cm考点:圆锥的计算.专题:计算题.分析:圆锥的母线长=圆锥的底面周长× .解答:解:圆锥的母线长=2×π×6× =12cm,故选:B.点评:本题考查圆锥的母线长的求法,注意利用圆锥的弧长等于底面周长这个知识点.7.如图,某同学用一扇形纸板为一个玩偶制作一个圆锥形帽子,已知扇形半径OA=13cm,扇形的弧长为10πcm,那么这个圆锥形帽子的高是()cm.(不考虑接缝) A. 5 B.12 C.13 D. 14考点:圆锥的计算.专题:几何图形问题.分析:首先求得圆锥的底面半径,然后利用勾股定理求得圆锥的高即可.解答:解:先求底面圆的半径,即2πr=10π,r=5cm,∵扇形的半径13cm,∴圆锥的高= =12cm.故选:B.点评:此题主要考查圆锥的侧面展开图和勾股定理的应用,牢记有关公式是解答本题的关键,难度不大.8.如图是一个几何体的三视图,则这个几何体的侧面积是()A.πcm2 B.2 πcm2 C.6πcm2 D.3πcm2考点:圆锥的计算;由三视图判断几何体.专题:常规题型.分析:俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2.解答:解:此几何体为圆锥;∵半径为1cm,高为3cm,∴圆锥母线长为 cm,∴侧面积=2πrR÷2= πcm2;故选:A.点评:本题考查了圆锥的计算,该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.二.填空题(共6小题) 9.圆锥的底面半径为6cm,母线长为10cm,则圆锥的侧面积为60πcm2.考点:圆锥的计算.专题:计算题.分析:圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.解答:解:圆锥的侧面积=π×6×10=60πcm2.点评:本题考查圆锥侧面积公式的运用,掌握公式是关键.10.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160 °.考点:圆锥的计算.专题:计算题.分析:根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.解答:解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr= ×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160.点评:本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.11.有一圆锥,它的高为8cm,底面半径为6cm,则这个圆锥的侧面积是60πcm2.(结果保留π)考点:圆锥的计算.分析:先根据圆锥的底面半径和高求出母线长,圆锥的侧面积是展开后扇形的面积,计算可得.解答:解:圆锥的母线= =10cm,圆锥的底面周长2πr=12πcm,圆锥的侧面积= lR= ×12π×10=60πcm2.故答案为:60π.点评:本题考查了圆锥的计算,圆锥的高和圆锥的底面半径圆锥的母线组成直角三角形,扇形的面积公式为 lR.12.圆锥的底面半径是2cm,母线长6cm,则这个圆锥侧面展开图的扇形圆心角度数为120 度.考点:圆锥的计算.专题:计算题.分析:根据展开图的扇形的弧长等于圆锥底面周长计算.解答:解:∵圆锥的底面半径是2cm,∴圆锥的底面周长为4π,设圆心角为n°,根据题意得:=4π,解得n=120.故答案为:120.点评:考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把的扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.13.用一个圆心角为240°半径为6的扇形做一个圆锥的侧面,则这个圆锥底面半径为 4 .考点:圆锥的计算.专题:计算题.分析:易得扇形的弧长,除以2π即为圆锥的底面半径.解答:解:∵扇形的弧长= =8π,∴圆锥的底面半径为8π÷2π=4.故答案为:4.点评:考查了扇形的弧长公式;圆的周长公式;用到的知识点为:圆锥的弧长等于底面周长.14.一个底面直径为1 0cm,母线长为15cm的圆锥,它的侧面展开图圆心角是120 度.考点:圆锥的计算.专题:计算题.分析:利用底面周长=展开图的弧长可得.解答:解:∵底面直径为10cm,∴底面周长为10π,根据题意得10π= ,解得n=120.故答案为:120.点评:考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.三.解答题(共8小题) 15.如图是某圆锥的三视图,请根据图中尺寸计算该圆锥的全面积.(结果保留3个有效数字)考点:圆锥的计算;由三视图判断几何体.分析:首先根据三视图确定圆锥的高和底面半径,然后求得母线长,然后代入圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相应数值代入即可求解.解答:解:由三视图知:圆锥的高为2 cm,底面半径为2cm,∴圆锥的母线长为4,∴圆锥表面积=π×22+π×2×4=12π≈37.7.点评:本题考查圆锥全面积公式的运用,掌握公式是关键.16.如图,圆锥的侧面展开图是一个半圆,求母线AB与高AO的夹角.参考公式:圆锥的侧面积S=πrl,其中r为底面半径,l为母线长.考点:圆锥的计算.分析:设出圆锥的半径与母线长,利用圆锥的底面周长等于侧面展开图的弧长得到圆锥的半径与母线长,进而表示出母线与高的夹角的正弦值,也就求出了夹角的度数.解答:解:设圆锥的母线长为l,底面半径为r,则:πl=2πr,∴l=2r,∴母线与高的夹角的正弦值= = ,∴母线AB与高AO的夹角30°.点评:此题主要考查了圆锥的侧面展开图的弧长等于圆锥的底面周长;注意利用一个角相应的三角函数值求得角的度数.17.已知圆锥的侧面积为16πcm2.(1)求圆锥的母线长L(cm)关于底面半径r(cm)之间的函数关系式;(2)写出自变量r的取值范围;(3)当圆锥的侧面展开图是圆心角为90°的扇形时,求圆锥的高.考点:圆锥的计算;反比例函数的应用.专题:计算题.分析:(1)根据圆锥的底面周长等于圆锥侧面展开扇形的弧长,用圆锥的底面半径和母线长表示出其侧面积就能得到;(2)根据底面半径小于其母线长且大于零确定底面半径的取值范围;(3)根据圆锥的侧面积和其圆心角的度数求出其母线长,然后利用勾股定理求圆锥的高.解答:解:(1)∵S=πrL=16πcm2,∴L= cm;(2)∵L= >r>0,∴0<r<4;(3)∵θ=90°= ×360°,∴L=4r,又L= ,∴r=2cm,∴L=8cm,∴h=2 cm.点评:本题考查了圆锥的侧面积与圆锥的底面积之间的相互转化,二者通过圆锥的母线、圆锥的底面周长与圆锥的侧面展开扇形的弧长建立关系.18.如图:扇形OAB的圆心角∠AOB=120°,半径OA=6cm,(1)请你用尺规作图的方法作出扇形的对称轴(不写作法,保留作图痕迹)(2)若将此扇形围成一个圆锥的侧面,求圆锥底面圆的半径.考点:圆锥的计算;作图―复杂作图.分析:(1)连接AB,作弦AB的垂直平分线即可作出扇形的对称轴,(2)利用圆锥的底面周长等于侧面展开图的扇形弧长是4π,列出方程计算.解答:解:(1)如图所示:(2)扇形的圆心角是120°,半径为6cm,则扇形的弧长是:= =4π 则圆锥的底面周长等于侧面展开图的扇形弧长是4π,设圆锥的底面半径是r,则2πr=4π,解得:r=2.圆锥的底面半径是2cm.点评:本题综合考查有关扇形和圆锥的相关计算.解题思路:解决此类问题时要紧紧抓住两者之间的两个对应关系:(1)圆锥的母线长等于侧面展开图的扇形半径;(2)圆锥的底面周长等于侧面展开图的扇形弧长.正确对这两个关系的记忆是解题的关键.19.在△ABC中,∠C=90°,∠A=30°,BC=3.(1)将△ABC绕AB 所在的直线旋转一周,求所得几何体的侧面积;(2)折叠△ABC,使BC边与CA边重合,求折痕长和重叠部分的面积.考点:圆锥的计算;点、线、面、体;翻折变换(折叠问题).分析:(1)易得所得几何体的侧面积为2个底面半径为CH,母线长为AC,BC的圆锥,那么侧面积=π×母线长×底面半径求出即可得出;(2)首先求出BE的长,进而求出CE,DE,即可得出面积.解答:解:(1)∵∠C=90°,∠A=30°,BC=3,∴tan30°= = ,AB=6,∴AC= ,∵CH×AB=BC×AC,∴3×3 =6×CH,∴CH=R= ,;(2)过点E作ED⊥AC于点D,设折叠后点B落在点G,折痕是CE,则CG=BC=3,∴BE=EG=G A=3 �3,∴AE=6�BE=9�3 ;∴DE= ,∴CE= ,S△BCE= •BE•CH= ,(或S△CGE= ).点评:此题主要考查了图形翻折变换以及圆锥的有关计算,根据已知得出旋转后的图形以及熟练利用翻折变换的性质得出是解题关键.20如图,圆锥底面的半径为10cm,高为10 cm.(1)求圆锥的全面积;(2)若一只蚂蚁从底面上一点A出发绕圆锥一周回到SA上一点M处,且SM=3AM,求它所走的最短距离.考点:圆锥的计算;平面展开-最短路径问题.专题:计算题.分析:(1)首先求得圆锥的母线长,然后求得展开扇形的弧长,进而求得其侧面积和底面积,从而求得其全面积;(2)将圆锥的侧面展开,求得其展开扇形的圆心角的度数是90°,利用勾股定理求得AM 的长即为最短距离.解答:解:(1)由题意,可得圆锥的母线SA= =40(cm)圆锥的侧面展开扇形的弧长l=2π•OA=20πcm ∴S侧= L•SA=400πcm2 S圆=πAO2=100πcm2,∴S全=S圆+S底=(400+100)π=500π(cm2);(2)沿母线SA将圆锥的侧面展开,如右图,则线段AM的长就是蚂蚁所走的最短距离由(1)知,SA=40cm,弧AA′=20πcm ∵ =20πcm,∴∠S=n= =90°,∵SA′=SA=40cm,SM= 3A′M ∴SM=30cm,∴在Rt△ASM中,由勾股定理得AM=50(cm)所以,蚂蚁所走的最短距离是50cm.点评:本题利用了勾股定理,弧长公式,圆的周长公式,等直角三角形的性质求解.2 1.如图,现有一圆心角为90°,半径为8cm的扇形纸片,用它恰好围成一个圆锥的侧面(接缝忽略不计),求该圆锥底面圆的面积.(结果保留π)考点:圆锥的计算.分析:本题的关键是利用弧长公式计算弧长,再利用底面周长= 展开图的弧长可得.解答:解:设圆锥的底面半径为R,则L= =2πR,解R=2cm,∴该圆锥底面圆的面积为4πcm2.点评:本题考查了圆锥的计算,解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值.22.如图,一个圆锥的高为 cm,侧面展开图是半圆.求:(1)圆锥的母线长与底面半径之比;(2)求∠BAC的度数;(3)圆锥的侧面积(结果保留π).考点:圆锥的计算;弧长的计算.分析:(1)直接根据圆锥的侧面展开图扇形的弧长等于圆锥底面周长可得比值;(2)利用圆锥的高,母线和底面半径构造的直角三角形中的勾股定理和等腰三角形的基本性质解题即可;(3)圆锥的侧面积是展开图扇形的面积,直接利用公式解题即可,圆锥的侧面积为.解答:解:(1)设此圆锥的高为h,底面半径为r,母线长AC=l,∵2πr=πl,∴l:r=2:1;(2)∵AO⊥OC, =2,∴圆锥高与母线的夹角为30°,则∠BAC=60°;(3)由图可知l2=h2+r2,h=3 cm,∴(2r)2=(3 )2+r2,即4r2=27+r2,解得r=3cm,∴l=2r=6cm,∴圆锥的侧面积为=18π(cm2).点评:本题主要考查圆锥的特点和圆锥侧面面积的计算.易错易混点:学生由于空间想象能力不够,找不到圆锥的底面半径,或者对圆锥的侧面面积公式运用不熟练,从而造成错误.。
《圆锥的侧面积和全面积》专题班级 姓名1.以直角三角形的一条______所在直线为旋转轴,其余各边旋转形成的曲面所围成的几何体叫做______.连结圆锥______和____________的线段叫做圆锥的母线,圆锥的顶点和底面圆心的距离是圆锥的______.2.沿一条母线将圆锥侧面剪开并展平,得到圆锥的侧面展开图是一个______.若设圆锥的母线长为l ,底面圆的半径为r ,那么这个扇形的半径为______,扇形的弧长为______,因此圆锥的侧面积为______,圆锥的全面积为______.3.Rt △ABC 中,∠C =90°,AB =5cm ,BC =3cm ,以直线BC 为轴旋转一周所得圆锥的底面圆的周长是______,这个圆锥的侧面积是______,圆锥的侧面展开图的圆心角是______.4.若把一个半径为12cm ,圆心角为120°的扇形做成圆锥的侧面,则这个圆锥的底面圆的周长是______,半径是______,圆锥的高是______,侧面积是______.二、选择题5.若圆锥的底面半径为2cm ,母线长为3cm ,则它的侧面积为( ).A .2πcm 2B .3πcm 2C .6πcm 2D .12πcm 26.若圆锥的底面积为16πcm 2,母线长为12cm ,则它的侧面展开图的圆心角为( ).A .240°B .120°C .180°D .90°7.底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高为( ).A .5cmB .3cmC .8cmD .4cm8.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图扇形的圆心角为( ).A .120°B .1 80°C .240°D . 300°9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型.若圆的半径为r ,扇形的半径为R ,扇形的圆心角等于90°,则R 与r 之间的关系是( ).A .R =2rB .r R 3=C .R =3rD .R =4r10.如图,扇形OAB 是一个圆锥的侧面展开图,若小正方形方格的边长为1,则这个圆锥的底面半径为( ).A .21 B .22 C .2 D .2211.如图,矩形ABCD 中,AB =18cm ,AD =12cm ,以AB 上一点O 为圆心,OB 长为半径画恰与DC 边相切,交AD 于F 点,连结OF .若将这个扇形OBF 围成一个圆锥,求这个圆锥的底面积S .12.如图,圆锥的轴截面是边长为6cm 的正三角形ABC ,P 是母线AC 的中点.求在圆锥的侧面上从B 点到P 点的最短路线的长.(2013•鸡西第7题3分)7.将半径为4cm 的半圆围成一个圆锥,这个圆锥的高为 cm .(2012•鸡西第17题3分)17. 用半径为9,圆心角为120°的扇形围成一个圆锥,则圆锥的高为 .(2011•鸡西第16题3分)将一个半径为6㎝,母线长为15㎝的圆锥形纸筒沿一条母线 剪开并展平,所得的侧面展开图的圆心角是 度.(2010•鸡西第4题3分)4.如图,⊙A 、⊙B 、⊙C 两两不相交,且半径都是2cm,则图中三个扇形(即阴影部分)面积之和是 cm 2.(2009•鸡西第5题3分)如图,一条公路的转弯处是一段圆弧(图中的AB ),点O 是这段弧的圆心,C 是AB 上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,则这段弯路的半径是 m .(2011黑龙江龙东,6,3分)6、已知扇形的圆心角为60°,圆心角所对的弦长是2cm ,则此扇形的面积为 cm 2。
圆锥的侧面积和全面积习题精选一、选择题1.一个扇形的半径为300厘米,圆心角为120°.用它做成一个圆锥的侧面,则圆锥的高等于().A.20π厘米B.10π厘米C.20厘米D.2.下列图形沿着某一直线旋转180°后,一定能形成圆锥的是().A.直角三角形B.等腰三角形C.矩形D.扇形3.将图(1)中的三角形绕直线l旋转一周,可以得到如图(2)所示的立体图形的是().4.圆锥的锥角为90°,则圆锥的侧面展开图中扇形的圆心角的度数为().A.90°︒B.C.180°︒D.51,则圆锥侧面展开图的面积为().A.2πB.πC.D6.若圆锥的高与底面圆的直径相等,则底面积与侧面积之比为().A.1B.1:2C.1D.1;1.57.用半径l0厘米、圆心角215°的扇形做成一个圆锥的侧面,则这个圆锥的高为()厘米.A.4B.8C.6D8.圆锥的侧面积为8π平方厘米,其轴截面为一等边三角形,则该轴截面的面积为().A.B.C.平方厘米D.平方厘米二、填空题1.一个圆锥的高为l0厘米,侧面展开图是一个半圆,则此圆锥的侧面积为______平方厘米.2.圆锥的轴截面为等边三角形,且母线长为5厘米,则其锥角为_______,轴截面面积为________,圆锥侧面积为___________。
3.圆锥底面半径为1厘米,侧面展开图面积为2π平方厘米,则侧面展开图的圆心角为________。
4.如图,圆锥形的烟囱帽的底面直径是80厘米,母线长为50厘米,则这个烟囱帽的展开图的面积是_______平方厘米(结果保留π).三、解答题1.已知扇形的圆心角为120°,面积为300 平方厘米.(1)求扇形的弧长;(2)若把此扇形卷成一个圆锥,那么这个圆锥的轴截面面积是多少?2.如图,矩形ABCD中,AB=1,若直角三角形ABC绕AB旋转所得的圆锥侧面积和矩形ABCD绕AB旋转所得圆柱的侧面积相等,求BC的长.3.如图2,粮仓的顶部是圆锥形,这个圆锥形的底面周长为36米,母线长为8米.为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头重合部分,那么这座粮仓的实际须用油毡面积是多少?4.如图,有一个直径为1米的圆形铁皮,要从中剪出一个最大的圆心角为90°的扇形ABC.(1)求剩下的阴影部分面积;(2)用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?5.如图,将钝角三角形ABC绕直线l旋转一周,那么旋转以后得到一个什么样的几何体?试求该几何体的全面积.(已知∠BCA =30°,∠BAD =45°,BC =10)答案:一、1.D 解析:由题意,知AO 为圆锥的高,设AO=h ,BO 为圆的半径,且BO=R ,AB 为圆锥的每线设为l 。
2.8圆锥的侧面积一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•锡山区期中)已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2 2.(2020•通州区一模)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1 B.2 C.3 D.4 3.(2020•宜兴市一模)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3 B.6πC.3πD.6 4.(2020•张家港市模拟)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()A.540π元B.360π元C.180π元D.90π元5.(2019秋•海州区校级期末)如图,如果从半径为6cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是()A.2cm B.4cm C.6cm D.8cm6.(2019秋•新吴区期末)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的全面积是()A.65πcm2B.90πcm2C.130πcm2D.155πcm2 7.(2019秋•江都区期末)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm 8.(2020•迎江区校级模拟)如图,已知在Rt△ABC中,∠BAC=90°,AC=4,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A.9πB.12πC.15πD.20π二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为cm.10.(2020•无锡)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=cm2.11.(2020•邗江区二模)圆锥的母线长为4cm,侧面积为8πcm2,圆锥的底面圆的半径为cm.12.(2020•吴中区二模)已知圆锥的侧面积为10πcm2,母线长为5cm,则该圆锥的底面半径为cm.13.(2020•徐州模拟)若一个圆锥的母线长为6cm,它的侧面展开图是半圆,则这个圆锥的底面半径为cm.14.(2020•江都区二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=4,扇形的圆心角θ=120°,则该圆锥母线l的长为.15.(2020•扬中市模拟)已知圆锥的底面圆半径为cm,高为cm,则圆锥的侧面积是cm2.16.(2020•徐州模拟)如图,圆锥底面半径为r,母线长为6,其侧面展开图是圆心角为180°的扇形,则r的值为.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•五峰县期末)如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?18.(2019秋•东海县期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,4)、B(﹣4,4)、C(﹣6,2),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D点,则D点坐标为;(2)连接AD、CD,则圆D的半径长为(结果保留根号).∠ADC的度数为°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长(结果保留根号)19.(2019秋•淮安区期中)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;20.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.答案解析一、选择题(本大题共8小题,每小题3分,共24分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•锡山区期中)已知圆锥的底面半径为4cm,母线长为5cm,则圆锥的侧面积是()A.20cm2B.20πcm2C.10cm2D.10πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算即可.【解析】这个圆锥的侧面积2π×4×5=20π(cm2).故选:B.2.(2020•通州区一模)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1 B.2 C.3 D.4【分析】根据弧长公式求出扇形弧长,根据圆的周长公式计算,得到答案.【解析】扇形的弧长4π,∴圆锥的底面圆的周长=4π,∴圆锥的底面圆半径2,故选:B.3.(2020•宜兴市一模)圆锥的底面半径为1,母线长为3,则该圆锥侧面积为()A.3 B.6πC.3πD.6【分析】根据扇形面积公式求出圆锥侧面积.【解析】圆锥的底面周长=2π×1=2π,即圆锥的侧面展开图扇形的弧长为2π,则圆锥侧面积2π×3=3π,故选:C.4.(2020•张家港市模拟)如图,粮仓的顶部是圆锥形状,这个圆锥底面的半径长为3m,母线长为6m,为防止雨水,需在粮仓顶部铺上油毡,如果油毡的市场价是每平方米10元钱,那么购买油毡所需要的费用是()A.540π元B.360π元C.180π元D.90π元【分析】圆锥的侧面积=底面周长×母线长÷2.算出侧面积后乘以单价即可.【解析】底面半径为3m,则底面周长=6π,侧面面积6π×6=18π(m2).所需要的费用=18π×10=180π(元),故选:C.5.(2019秋•海州区校级期末)如图,如果从半径为6cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的底面半径是()A.2cm B.4cm C.6cm D.8cm【分析】易求得扇形的弧长,除以2π即为圆锥的底面半径.【解析】扇形的弧长为:8πcm,圆锥的底面半径为:8π÷2π=4cm,故选:B.6.(2019秋•新吴区期末)已知圆锥的底面半径为5cm,母线长为13cm,则这个圆锥的全面积是()A.65πcm2B.90πcm2C.130πcm2D.155πcm2【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形面积公式计算扇形的侧面积,然后计算扇形的底面积,从而求得答案.【解析】这个圆锥的侧面积2π×5×13=65π(cm2).底面积为:52×π=25π(cm2),所以全面积为65π+25π=90π(cm2).故选:B.7.(2019秋•江都区期末)若将半径为24cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.3cm B.6cm C.12cm D.24cm【分析】易得圆锥的母线长为12cm,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径.【解析】圆锥的侧面展开图的弧长为2π×24÷2=24π(cm),∴圆锥的底面半径为24π÷2π=12(cm),故选:C.8.(2020•迎江区校级模拟)如图,已知在Rt△ABC中,∠BAC=90°,AC=4,BC=5,若把Rt△ABC绕直线AC旋转一周,则所得圆锥的侧面积等于()A.9πB.12πC.15πD.20π【分析】由勾股定理易得圆锥的底面半径长,那么圆锥的侧面积2π×底面半径×母线长,把相应数值代入即可求解.【解析】∵AC=4,BC=5,∴由勾股定理得:AB=3∴底面的周长是:6π∴圆锥的侧面积等6π×5=15π,故选:C.二、填空题(本大题共8小题,每小题3分,共24分.不需写出解答过程,请把答案直接填写在横线上)9.(2020•连云港)用一个圆心角为90°,半径为20cm的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为5cm.【分析】设这个圆锥的底面圆半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr,然后解关于r的方程即可.【解析】设这个圆锥的底面圆半径为r,根据题意得2πr,解得r=5(cm).故答案为:5.10.(2020•无锡)已知圆锥的底面半径为1cm,高为cm,则它的侧面展开图的面积为=2πcm2.【分析】先利用勾股定理求出圆锥的母线l的长,再利用圆锥的侧面积公式:S侧=πrl 计算即可.【解析】根据题意可知,圆锥的底面半径r=1cm,高h cm,∴圆锥的母线l2,∴S侧=πrl=π×1×2=2π(cm2).故答案为:2π.11.(2020•邗江区二模)圆锥的母线长为4cm,侧面积为8πcm2,圆锥的底面圆的半径为2 cm.【分析】根据扇形面积公式S lr计算即可.【解析】设圆锥的底面圆的半径为rcm,则圆锥的底面周长为2πrcm,∴圆锥的侧面展开图扇形的弧长为2πrcm,由题意得,2πr×4=8π,解得,r=2,故答案为:2.12.(2020•吴中区二模)已知圆锥的侧面积为10πcm2,母线长为5cm,则该圆锥的底面半径为2cm.【分析】根据圆锥的侧面积和圆锥的母线长求得圆锥的弧长,利用圆锥的侧面展开扇形的弧长等于圆锥的底面周长求得圆锥的底面半径即可.【解析】∵圆锥的母线长是5cm,侧面积是10πcm2,∴圆锥的侧面展开扇形的弧长为:l4π,∵锥的侧面展开扇形的弧长等于圆锥的底面周长,∴r2cm.故答案为:2.13.(2020•徐州模拟)若一个圆锥的母线长为6cm,它的侧面展开图是半圆,则这个圆锥的底面半径为3cm.【分析】由于圆锥的母线长为6cm,侧面展开图是圆心角为180°扇形,设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm,然后利用扇形的面积公式即可得到关于r的方程,解方程即可求解.【解析】设圆锥底面半径为rcm,那么圆锥底面圆周长为2πrcm,所以侧面展开图的弧长为2πrcm,S圆锥侧面积2πr×6,解得:r=3,故答案为:3.14.(2020•江都区二模)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=4,扇形的圆心角θ=120°,则该圆锥母线l的长为12.【分析】由于圆锥的侧面展开图为扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.则利用弧长公式得到2π×4,然后解方程即.【解析】根据题意得2π×4,解得l=12.故答案为12.15.(2020•扬中市模拟)已知圆锥的底面圆半径为cm,高为cm,则圆锥的侧面积是πcm2.【分析】先利用勾股定理计算出圆锥的母线长,然后根据扇形的面积公式计算这个圆锥的侧面积.【解析】这个圆锥的母线长6,所以这个圆锥的侧面积2π6π(cm2).故答案为π.16.(2020•徐州模拟)如图,圆锥底面半径为r,母线长为6,其侧面展开图是圆心角为180°的扇形,则r的值为3.【分析】根据底面圆周长=扇形的弧长,构建方程即可解决问题.【解析】由题意:2πr,解得r=3,故答案为:3.三、解答题(本大题共4小题,共52分.解答时应写出文字说明、证明过程或演算步骤)17.(2019秋•五峰县期末)如图所示,已知扇形AOB的半径为6cm,圆心角的度数为120°,若将此扇形围成一个圆锥,则:(1)求出围成的圆锥的侧面积为多少?(2)求出该圆锥的底面半径是多少?【分析】(1)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算;(2)根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式计算.【解析】(1)圆锥的侧面积12π(cm2);(2)该圆锥的底面半径为r,根据题意得2πr,解得r=2.即圆锥的底面半径为2cm.18.(2019秋•东海县期中)如图,在正方形网格图中建立平面直角坐标系,一条圆弧经过网格点A(0,4)、B(﹣4,4)、C(﹣6,2),请在网格图中进行如下操作:(1)若该圆弧所在圆的圆心为D点,则D点坐标为(﹣2,0);(2)连接AD、CD,则圆D的半径长为2(结果保留根号).∠ADC的度数为90°;(3)若扇形ADC是一个圆锥的侧面展开图,求该圆锥的底面圆的半径长(结果保留根号)【分析】(1)根据线段垂直平分线的性质得出D点位置,结合图形得到点D的坐标;(2)利用点的坐标结合勾股定理得出⊙D的半径长,根据勾股定理的逆定理∠ADC的度数;(3)利用圆锥的底面圆的周长等于侧面展开图的扇形弧长即可得出答案.【解析】(1)分别作AB、BC的垂直平分线,两直线交于点D,则点D即为该圆弧所在圆的圆心,由图形可知,点D的坐标为(﹣2,0),故答案为:(﹣2,0);(2)圆D的半径长2,AC2,AD2+CD2=20+20=40,AC2=40,则AD2+CD2=AC2,∴∠ADC=90°,故答案为:2;90;(3)设圆锥的底面圆的半径长为r,则2πr,解得,r.19.(2019秋•淮安区期中)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.(1)以直线BC为轴,把△ABC旋转一周,求所得圆锥的底面圆周长.(2)以直线AC为轴,把△ABC旋转一周,求所得圆锥的侧面积;【分析】(1)易得底面半径为6m,直接利用圆的周长公式求得底面圆的周长即可;(2)利用勾股定理求得母线的长,然后求得圆锥的侧面积即可.【解析】(1)2π×6=12π.(2)∵∠C=90°,AC=6,BC=8,∴AB10,所以以直线AC为轴,把△ABC旋转一周,得到的圆锥的侧面积10×2π×8=80π;20.(2019•邵阳)如图,在等腰△ABC中,∠BAC=120°,AD是∠BAC的角平分线,且AD=6,以点A为圆心,AD长为半径画弧EF,交AB于点E,交AC于点F.(1)求由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积;(2)将阴影部分剪掉,余下扇形AEF,将扇形AEF围成一个圆锥的侧面,AE与AF正好重合,圆锥侧面无重叠,求这个圆锥的高h.【分析】(1)利用等腰三角形的性质得到AD⊥BC,BD=CD,则可计算出BD=6,然后利用扇形的面积公式,利用由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF进行计算;(2)设圆锥的底面圆的半径为r,利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和弧长公式得到2πr,解得r =2,然后利用勾股定理计算这个圆锥的高h.【解析】∵在等腰△ABC中,∠BAC=120°,∴∠B=30°,∵AD是∠BAC的角平分线,∴AD⊥BC,BD=CD,∴BD AD=6,∴BC=2BD=12,∴由弧EF及线段FC、CB、BE围成图形(图中阴影部分)的面积=S△ABC﹣S扇形EAF6×123612π;(2)设圆锥的底面圆的半径为r,根据题意得2πr,解得r=2,这个圆锥的高h4.。
圆锥的侧面积和全面积1.已知圆锥的侧面展开图的面积是15πcm2,母线长是5cm,则圆锥的底面半径为(•)A.32cm B.3cm C.4cm D.6cm2.(阅读理解题)下面的解答对吗?若错误,请改正.题目:已知圆锥的侧面展开图的圆心角为180°,底面积为15cm2,则圆锥的侧面积为多少?解:∵底面15cm2,∴πr2=15,即r2=15π.∵扇形的圆心角为180°,∴圆锥侧面积为2180360rπ=7.5cm2.3.如果圆锥的母线长为6cm,底面直径为6cm,•那么这个圆锥的全面积为______cm2.4.(过程探究题)补充解题过程:牧民居住的蒙古包的形状一个圆柱与圆锥的组合体,尺寸如图1所示,请你算出要搭建这样一个蒙古包至少需要多少平方米的篷布?(π取3.14,•结果保留一位小数)解:圆锥的底面半径为r=_______,高为1.2m,则据勾股定理可求圆锥的母线a=•_______=______.圆锥的侧面积:S扇形=πar=______=______.圆柱的底面周长为________.圆柱的侧面积是一个长方形的面积,则S长方形=_______.搭建一个这样的蒙古包至少需要_______平方米的篷布.图1 图2 图35.一个扇形如图2所示,半径为10cm,圆心角为270°,•用它做成一个圆锥的侧面,那么圆锥的高为______cm.6.圆锥的母线长为5cm,高为3cm,在它的侧面展开图中,•扇形的圆心角是________.7.如图3所示,用一个半径为R,圆心角为90°的扇形做成一个圆锥的侧面,设圆锥底面半径为r,则R:r=________.8.劳技课上,王红制成了一顶圆锥形纸帽,已知纸帽底面圆半径为10cm,•母线长50cm,则制成一顶这样的纸帽所需纸面积至少为()A.250πcm2B.500πcm2C.750πcm2D.100πcm29.从一个直径为1的圆形铁皮上剪出一个圆心角为120°的扇形ABC,用所剪的扇形铁皮围成一个圆锥,此圆锥的底面圆半径为()A.23B.13C.16D.4310.已知圆锥的侧面展开图的面积是15πcm2,母线长是5cm,则圆锥的底面半径为(•)A.32cm B.3cm C.4cm D.6cm11.(阅读理解题)下面的解答对吗?若错误,请改正.题目:已知圆锥的侧面展开图的圆心角为180°,底面积为15cm2,则圆锥的侧面积为多少?解:∵底面15cm2,∴πr2=15,即r2=15π.∵扇形的圆心角为180°,∴圆锥侧面积为2180360rπ=7.5cm2.12.如果圆锥的母线长为6cm,底面直径为6cm,•那么这个圆锥的全面积为______cm2.13.已知扇形的圆心角为120°,面积为300πcm2.(1)求扇形的弧长.(2)若把此扇形卷成一个圆锥,则这个圆锥的全面积是多少?14.在如图所示,一个机器零件(尺寸单位:mm)表面涂上防锈漆,请你帮助计算一下这个零件的表面积.15.(教材变式题)如图所示是一纸杯,它的母线AC和EF延长后形成的立体图形是圆锥.该圆锥的侧面展开图是扇形OAB.经测量,纸杯上开口圆的直径为6cm,下底面直径为4cm,母线长EF=8cm.求扇形OAB的圆心角及这个纸杯的表面积.(面积计算结果用表示)p答案:回顾探索扇形,L,2πr,πrL,πr(L+r)课堂测控1.B2.错正解:设圆锥的底面半径为r,扇形的半径为a,则πr2=15,∴2πr=218015180,22,180360aa a r Sπππ⨯∴==∴==2.3.27π4.52m,2.77,2.77×3.14×2.5,21.74,15.7,28.26,50.0课后测控1.522.288°3.4:1 4.B 5.C6.解:(1)212012030300,30.360180RR lπππ=∴=∴==20πcm.(2)2πr=L,r=10,∴S底=πr2=100π,∴S全=S侧+S底=400π.7.解:S表面积=S圆柱侧+S圆锥侧+S圆柱底=2πrh+πrL+πr2=8000π+2000π+1600π=11600π≈3.64×104(mm2).8.解:由题意可知:AB=6π,CD=4π,设∠AOB=n°,AO=R,则CO=R-8,由弧长公式得:(8)6,180180n R n Rπππ-==4π.解方程组618045 4180824nR nnR n R cm ⨯==⎧⎧⎨⎨⨯=-=⎩⎩得.故扇形OAB的圆心角是45°,OC=R-8=16(cm),所以S扇形OCD=12×4π×16=•32π(cm2),S扇形OAB=12×6π×24=72π(cm2),S纸杯侧面积=S扇形OAB-S扇形OCD=40π(cm2),S纸杯底面积=π·22=4π(cm2),S纸杯表面积=40π+4π=44π(cm2).。
圆锥的侧面积 习题精选一、选择题1.已知圆锥的高为5,底面半径为2,则该圆锥侧面展开图的面积是[ ]A .25π B .2π C .5π D .6π 2.圆锥的高为3cm , 母线长为5cm , 则它的表面积是____cm 2.[ ]A .20pB .36pC .16pD .28p3.已知圆锥的底面半径为3 , 母线长为12 , 那么圆锥侧面展开图所成扇形的圆角为[ ]A .180°B .120°C .90°D .135°4.如果圆锥的高与底面直径相等 , 则底面面积与侧面积之比为[ ]A .1∶5B .2∶5C .∶D .2∶35.边长为a 的等边三角形 , 绕它一边上的高所在直线旋转180° , 所得几何体的表面积为[ ]A .243a B .243a π C .243a π D .π2a 6.若底面直径为6cm 的圆锥的侧面展开图的圆心角为216°,则这个圆锥的高是____cm .[ ]A .8B .91C .6D .47.在一个边长为4cm 正方形里作一个扇形(如图所示) , 再将这个扇形剪下卷成一个圆锥的侧面 , 则这个圆锥的高为_____cm .[ ]A .253 B .15 C .7 D .13 8.用圆心角为120° , 半径为6cm 的扇形围成圆锥的侧面 , 则这个圆锥的高为[ ]A .4B .42C .22D .329.△ABC 中 , AB =6cm , ∠A =30° , ∠B =15° , 则△ABC 绕直线AC 旋转一周所得几何体的表面积为____cm 2.[ ]A .(18+92)πB .18+92C .(36+182)πD .36+18210.圆锥的母线长为10cm , 底面半径为3cm , 那么圆锥的侧面积为___cm 2.[ ]A .30B .30pC .60pD .15p11.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长3 m ,为防雨需在粮仓的顶部铺上油毡,那么这块油毡的面积至少为[ ]A .6 m 2B .6πm 2C .12 m 2D .12πm 212.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥的高为[ ]A .aB .a 33C .a 3D .a 2313.一个圆锥的高为310cm ,侧面展开图是一个半圆,则圆锥的全面积是[ ] A .200πcm 2 B .300πcm 2 C .400πcm 2 D .360πcm 2二、填空题1.已知圆锥的母线长是10cm ,侧面展开图的面积是60πcm 2,则这个圆锥的底面半径是 cm .2.已知圆锥的底面半径是2cm,母线长是5cm,则它的侧面积是.3.圆锥的轴截面是一个等边三角形,则这个圆锥的底面积、侧面积、全面积的比是.4.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的底面半径为.5.一个扇形,半径为30cm,圆心角为120°,用它做成一个圆锥的侧面,那么这个圆锥的全面积为.6.一个圆锥形的烟囱帽的侧面积为2000πcm2,母线长为50cm,那么这个烟囱帽的底面直径为()A.80cm B.100cm C.40cm D.5cm三、解答题1.已知圆锥的母线长6 cm;底面半径为3 cm,求圆锥的侧面展开图中扇形的圆心角.2.一个圆锥形的零件,经过轴的剖面是一个等腰直角三角形,则它的侧面展开图扇形的圆心角是多少?(结果精确到1°)3.如图,一个圆柱的底面半径为40 cm,高为60 cm,从中挖去一个以圆柱上底为底、下底圆心为顶点的圆锥,得到一个几何体,求其全面积.4.已知:一个圆锥的侧面展开图是圆心角为36°的扇形,扇形面积为10 cm2.求这圆锥的表面积.5.已知:一个圆锥的侧面积与表面积的比为2∶3.求这圆锥的锥角.6.已知:一个圆锥的底半径 r=10cm,过轴的截面的顶角为60°.求它的侧面展开图的圆心角的度数及侧面积.7.要用铁片焊制一个无盖的圆锥形容器,使容器的口径为20cm,8.已知:一个圆锥的侧面展开图是半径为 20 cm,圆心角为120°的扇形,求这圆锥的底半径和高.9.已知:一个圆锥的高为h ,一个平行于底面的截面把圆锥的侧面分成面积相等的两部分.求这截面与圆锥顶点的距离.答案:一、1.D 2.B 3.C 4.A 5.B 6.D 7.B 8.B 9.A 10.B 11.B . 12.D . 13.B .二、1.6 解:设圆锥的底面半径为r ,则21·2πr·10=60π,解得r=6.2.10πcm 2 解:S 侧=2πr ·l ·21=π×2×5=10π(cm 2).3.1:2:3 解:设轴截面(等边三角形)边长为a ,则圆锥的底面半径为21a ,母线为a.∴S 底=π·(2a )2=4πa 2,S 侧=21·2π·2a ·a=2πa 2.S 全=S 底+S 侧=2224324a a a πππ=+.∴S 底:S 侧:S 全=22243:42:4a a a πππ=1:2:3.点拨:恰当设元,分别求出各面积再求比值. 4.10cm 解:l =180********⨯=ππR n =20π,∴2πr=20π,r=10cm. 5.400πcm 2 点拨:l =180120π×30=20π,20π=2πr ,r=10,S 底=πr 2=102π=100π,S 侧=21l R=21×20π×30=300π,∴S 全=S 底+S 侧=400cm 2. 6.A 点拨:由公式S 侧=21·2πr·R=πrR ,所以50πr=2000π,2r=80.三、1.180°.2.约为255°.3.π)138004006(+cm 2.以l=10r .又S 圆锥侧 =10=πrl=10πr 2,所以底面积πr 2=1.5.60°.提示:设圆锥的底半径为r ,母线长为l .则由已知条件得πrl∶πr (l+r )=2∶3.由此得l=2r .这就知道锥角的一半为30°.6.180°,200πcm 2.提示:圆锥的母线 l=20.所以侧面展7.料是扇形.扇形的圆心角为240°,半径为15cm ,料的面积为8.9.的侧面积为πrl .设截面与圆锥的顶点的距离为h′,截面半径为r′,圆锥的母线被截面截出的以圆锥的顶点为一端的线段的长为l′,则。
达标训练
基础·巩固·达标
1.圆锥的底面积为25π,母线长为13 cm ,这个圆锥的底面圆的半径为__________cm ,高为_________cm ,侧面积为__________cm 2. 提示:圆的面积为 S=πr 2,所以 r=∏∏
25=5(cm);圆锥的高为22513-=12(cm);侧面积为 2
1
×10π·13=65π(cm 2
).
答案:5 12 65π
2.圆锥的轴截面是一个边长10 cm 的正三角形,则这个圆锥的侧面积为__________cm 2,锥角为_________,高为__________cm.
提示:S 侧面积=2
1
×10π×10=50π(cm 2);锥角为正三角形的内角,高为正三角形的高.
答案:50π
60
3
5
3.已知Rt △ABC 的两直角边AC =5 cm ,BC =12 cm ,则以BC 为轴旋转所得的圆锥的侧面积为___________cm 2,这个圆锥的侧面展开图的弧长为_________cm ,面积为_________cm 2.
提示:以BC 为轴旋转所得圆锥的底面半径为5 cm ,高为12 cm ,母线长为
13 cm.利用公式计算.
答案:65π
10π
65π
4.如图24-4-16,已知圆锥的底面直径为4,母线长为6,则它的全面积为__________.
图24-4-16
提示:圆锥的全面积为侧面积加底面积. 答案:16π
5.若圆锥的底面直径为 6 cm ,母线长为 5 cm ,则它的侧面积为___________.(结果保留π)
提示:已知底面直径和母线长直接代入圆锥侧面积公式即可.设圆锥底面半径为r ,母线为l ,则r=3 cm ,l=5 cm
∴S 侧=πr ·l=π×3×5=15π(cm 2).
答案:15π
6.若圆锥的侧面展开图是一个半径为a 的半圆,则圆锥
A.a
B.
a 3
3 C.3a D.
2
3a
提示:展开图的弧长是a π,故底面半径是2
a ,这时母线长、底面半径和高
构成直角三角形.答案:
D
7.粮仓的顶部是圆锥形,这个圆锥的底面直径是4 m ,母线长为3 m ,为
A.6 m 2
B.6π m 2
C.12 m 2
D.12π m 2
提示:侧面积=2
1底面直径·π·母线长=2
1×4×π×3=6π(m 2).
答案:
B
8.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°.如果把Rt △ABC 绕直线AC 旋转一周得到一个圆锥,其全面积为S 1;把Rt △ABC 绕直线AB 旋转一周得到另一个圆锥,其全面积为S
2.那么S 1∶S 2
A.2∶3
B.3∶4
C.4∶9
D.5∶12
提示:根据题意分别计算出S 1和S 2即得答案.在求S 1和S 2时,应分清圆锥侧面展开图(扇形)的半径是斜边BC ,弧长是以AB (或AC )为半径的圆
的周长.
∵∠A =90°,AC =8,AB =6,
∴BC =222268+=+AB AC =10.
当以AC 为轴时,AB 为底面半径,S 1=S 侧+S 底=πAB ·BC +πAB 2=π×6×10+π×36=96π.
当以AB 为轴时,AC 为底面半径,S 2=S 侧+S 底=80π+π×82=144π.
∴S 1∶S 2=96π∶144π=2∶3A
.
答案:
A
综合·应用·创用
9.一个圆锥的高为33 cm ,侧面展开图是半圆,求:(1)圆锥母线与底面半径的比;(2)锥角的大小;(3)圆锥的全面积.
提示:圆锥的母线在侧面展开图中是扇形的半径,底面周长是展开图中扇形的弧长,锥角是轴截面的等腰三角形的顶角.知道圆锥母线和底面半径,
就可由扇形面积公式求侧面积,底面积加侧面积就得圆锥全面积. 解:如图,AO 为圆锥的高,经过AO 的截面是等腰△ABC ,则AB 为圆锥母线l ,BO 为底面半径r.
(1)因圆锥的侧面展开图是半圆,所以2πr=πl ,则r
l =2;
(2)因r
l =2,则有AB =2OB ,∠BAO =30°,所以∠BAC =60°,即锥角为60°.
(3)因圆锥的母线l ,高h 和底面半径r 构成直角三角形,所以l 2=h 2+r 2;又l=2r ,h=33
cm ,则r=3 cm ,l=6 cm.
所以S 表=S 侧+S 底=πrl +πr 2=3·6π+32π=27π(cm 2).
10.已知圆锥底面直径AB =20,母线SA =30.C 为母线SB 的中点.今有一小虫沿圆锥侧面从A 点爬到C 点觅食.问它爬过的最短距离应是多少? 提示:小虫沿圆锥侧面从A 点爬到C 点,其轨迹是空间的一条曲线,且在一曲面上.依题意画出圆锥的侧面展开图,如图所示.不难看出,母线S B 把扇形分成相等的两部分.从A 点到C 点的线段AC 的长度就是所求的最短距
离.
答案: 315.
回顾·热身·展望
11.(2010东北师大附中月考) 如图24-2-17①,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成如图24-2-17②所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系是( )
A.R=2r
B.R=94r
C.R=3r
D.R=4r
图24-2-17 答案:
D
12.(河北模拟) 如图24-4-18,已知圆锥的母线长OA =8,地面圆的半径r =2.若一只小虫从A 点出发,绕圆锥的侧面爬行一周后又回到A 点,则小虫爬行的最短路线的长是__________.(结果保留根式)
图24-4-18
提示:如右图,圆锥的侧面展开图是扇形,它的圆心角是
︒∏
︒
⨯∏⨯⨯90818022=,
连接AB ,则△AOB 是等腰直角三角形,OA =OB =8,所以AB =288822=+.
答案:28
13.(江苏南通模拟) 已知圆锥的母线与高的夹角为30°,母线长为4 cm ,则它的侧面积为__________cm 2(结果保留π).
提示:S 圆锥侧=2
1
×2×π×2
1×4×4=8π. 答案:8π
14.(四川内江课改区模拟) 如图24-1-19,有一圆锥形粮堆,其主视图是边长为6m的正三角形ABC ,母线AC 的中点P 处有一老鼠正在偷吃粮食,小猫从B 处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是____________m.(结果不取近似数)
图24-4-19
提示:小猫经过的最短路程是圆锥侧面展开图中的P B (如图). 则扇形的圆心角为
6
6
180⨯∏⨯∏⨯=180°.因为P 在AC
所以∠P AB =90°.在Rt △P AB 中,P A =3,AB =6
则P B =533622=+.
答案: 53。