离散数学 数理逻辑2.1-2
- 格式:ppt
- 大小:197.00 KB
- 文档页数:34
离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。
离散数学第2版课后习题答案离散数学是计算机科学和数学领域中一门重要的学科,它研究离散对象及其关系、结构和运算方法。
离散数学的应用非常广泛,包括计算机科学、信息科学、密码学、人工智能等领域。
而离散数学第2版是一本经典的教材,它系统地介绍了离散数学的基本概念、原理和方法。
本文将为读者提供离散数学第2版课后习题的答案,帮助读者更好地理解和掌握离散数学的知识。
第一章:基本概念和原理1.1 命题逻辑习题1:命题逻辑的基本符号有哪些?它们的含义是什么?答:命题逻辑的基本符号包括命题变量、命题联结词和括号。
命题变量用字母表示,代表一个命题。
命题联结词包括否定、合取、析取、条件和双条件等,分别表示“非”、“与”、“或”、“如果...则...”和“当且仅当”。
括号用于改变命题联结词的优先级。
习题2:列举命题逻辑的基本定律。
答:命题逻辑的基本定律包括德摩根定律、分配律、结合律、交换律、吸收律和否定律等。
1.2 集合论习题1:什么是集合?集合的基本运算有哪些?答:集合是由一些确定的对象组成的整体,这些对象称为集合的元素。
集合的基本运算包括并、交、差和补等。
习题2:列举集合的基本定律。
答:集合的基本定律包括幂等律、交换律、结合律、分配律、吸收律和德摩根定律等。
第二章:数理逻辑2.1 命题逻辑的推理习题1:什么是命题逻辑的推理规则?列举几个常用的推理规则。
答:命题逻辑的推理规则是用来推导命题的逻辑规则。
常用的推理规则包括假言推理、拒取推理、假言三段论和析取三段论等。
习题2:使用推理规则证明以下命题:如果A成立,则B成立;B不成立,则A不成立。
答:假言推理规则可以用来证明该命题。
根据假言推理规则,如果A成立,则B成立。
又根据假言推理规则,如果B不成立,则A不成立。
2.2 谓词逻辑习题1:什么是谓词逻辑?它与命题逻辑有何区别?答:谓词逻辑是一种扩展了命题逻辑的逻辑系统,它引入了谓词和量词。
与命题逻辑不同,谓词逻辑可以对个体进行量化和描述。
数理逻辑和离散数学的关系数理逻辑和离散数学是两个与数学紧密相关的学科,它们在逻辑推理和离散结构上有着密切的联系。
数理逻辑是研究符号逻辑、形式逻辑和数理符号系统的学科,而离散数学则是研究离散对象、离散结构和离散算法的学科。
本文将从数理逻辑和离散数学的定义、研究内容以及它们之间的关系进行探讨。
我们来了解一下数理逻辑。
数理逻辑是研究推理和证明的一门学科,它利用符号和形式系统来研究逻辑的规律和原理。
数理逻辑主要包括命题逻辑、谓词逻辑和模态逻辑等分支。
命题逻辑研究命题之间的逻辑关系,谓词逻辑则引入了谓词和量词的概念,用于研究量化和谓词之间的逻辑关系,而模态逻辑则研究命题的可能性和必然性等模态概念。
数理逻辑在数学、计算机科学、哲学等领域有着广泛的应用,例如在证明定理、验证计算机程序、人工智能等方面起着重要的作用。
接下来,我们来介绍一下离散数学。
离散数学是研究离散对象和离散结构的一门学科,它主要包括集合论、图论、代数结构、组合数学等分支。
离散数学研究的对象是离散的、不连续的数学结构,与连续的实数和实数运算相对应。
离散数学的研究内容包括集合的运算和关系、图的性质和算法、代数系统的结构和性质、组合数学中的排列组合等。
离散数学在计算机科学、密码学、网络优化等领域有着广泛的应用,例如在网络拓扑设计、图像处理、密码算法等方面发挥着重要作用。
数理逻辑和离散数学之间存在着密切的关系。
首先,数理逻辑为离散数学提供了严密的推理和证明方法。
数理逻辑的符号系统和形式化推理方法为离散数学的证明和推理提供了基础。
通过数理逻辑的方法,我们可以准确地表达和证明离散数学中的结论,确保其准确性和严谨性。
离散数学为数理逻辑提供了具体的应用背景和实例。
离散数学中的离散结构和离散算法为数理逻辑提供了实际的应用场景。
例如,图论中的图模型可以用于表示逻辑推理的过程,集合论中的集合运算和关系可以用于描述命题逻辑和谓词逻辑中的逻辑关系。
离散数学中的算法和计算复杂性理论也为数理逻辑中的计算问题提供了解决方案。
数理逻辑与离散数学数理逻辑与离散数学是一门研究数学中的逻辑和离散结构的学科。
它们在数学领域中扮演着重要的角色,为数学家和计算机科学家提供了强大的工具和方法。
在这篇文章中,我们将探讨数理逻辑与离散数学的基本概念、应用和发展。
1. 数理逻辑的基本概念数理逻辑是研究逻辑的数学分支,它主要关注命题、谓词和推理的形式化。
数理逻辑的基本概念包括命题逻辑、谓词逻辑和形式系统等。
命题逻辑研究的是命题的真假和推理的正确性,谓词逻辑则引入了个体和谓词的概念,用于描述更加复杂的逻辑结构。
形式系统则是数理逻辑的基础,它定义了逻辑推理的规则和语法。
2. 离散数学的基本概念离散数学是研究离散结构的数学分支,它主要关注离散对象和离散关系的性质。
离散数学的基本概念包括集合论、图论、代数结构等。
集合论研究的是集合的性质和运算,图论则研究的是图的性质和算法。
代数结构则是研究代数系统的抽象结构,包括群、环和域等。
3. 数理逻辑与离散数学的应用数理逻辑和离散数学在数学和计算机科学中有广泛的应用。
在数学领域,它们被用于证明和推理,帮助数学家发现新的定理和结论。
在计算机科学领域,数理逻辑和离散数学为计算机科学家提供了建模和分析的工具。
例如,图论被广泛应用于网络和路由算法的设计,离散数学的概念被用于设计和分析算法的正确性和复杂性。
4. 数理逻辑与离散数学的发展数理逻辑和离散数学作为学科的发展可以追溯到19世纪末。
随着数学和计算机科学的发展,它们变得越来越重要。
在20世纪,数理逻辑和离散数学得到了快速发展,涌现出了许多重要的理论和方法。
例如,哥德尔的不完备性定理揭示了数理逻辑的局限性,图论的四色定理解决了染色问题的一个重要难题。
总结起来,数理逻辑与离散数学是一门研究数学逻辑和离散结构的学科,它们在数学和计算机科学中有重要的应用和发展。
通过形式化和抽象化,数理逻辑和离散数学帮助数学家和计算机科学家研究和理解复杂的问题。
随着科学技术的不断进步,数理逻辑和离散数学将继续发展,为人类的认知和计算能力提供更强大的支持。
离散数学逻辑公式大全化简
离散数学逻辑公式大全:
一、对称表达式
1. 对立矛盾:P∧(¬P),这就意味着,实际上什么都不是真。
2. 波尔定理:(P→Q)∨(Q→P),即P和Q之一必定是另一个的条件。
3. 谓词逻辑:∀xPx,表明了P是对任意x是真的。
二、蕴涵表达式
1. 因果关系:P→Q,其中P是因,Q是果。
2. 排中律:P∨(Q∧R)≡(P∨Q)∧(P∨R),即P既支持Q和R的同时满足,也支持Q和R的分别满足。
3. 简单蕴涵:P→Q,Q即P的蕴涵结果。
三、命题逻辑
1. 范式:¬(P∨Q)即¬P∧¬Q,这表明,若P和Q两者成立其一,则结果
为假。
2. 合取范式:P ∨ Q,表示只要PQ其一成立,结果即成立。
3. 否定范式:P→Q,表示只有当P成立,Q才会成立,否则结果为假。
四、可辩证表达式
1. 含义性质:P→Q,表明当P为真时,Q也可能为真,但可能有证据
表明P为假时,Q也可能为假。
2. 对抗性质:¬P∧Q,表明当P(或Q)被否定时,另一方会加强对这个变量的认可。
3. 不可满足性:P∧¬P,表明两个性质之间存在矛盾,因此,这种形式无法同时满足。
《离散数学》教学大纲一、教学目的与要求(一)目的本课程教学的目的是培养学生的数学思维能力,使学生得到良好的数学训练,提高学生的抽象思维和逻辑推理能力,为从事计算机的应用提供坚实的理论基础。
通过教学,最终使学生能够在众多的概念中要找出最重要的,在众多的定理中找出最根本的,将这些少量的概念和定理能够透彻地理解,自如地运用。
(二)要求1. 有效地掌握该门课程中的所有概念。
通过讲课和布置一定数量的习题使学生能够使用所学的概念对许多问题作出正确的判断。
2. 通过课程中许多定理的证明过程复习概念,了解证明的思路,学会证明的方法,并使学生掌握定理的内容和结果。
3. 通过介绍各种做题的方法,启发学生独立思维的能力。
创造性的提出自己解决问题的方法,提高学生解决问题的能力。
4.通过该门课程的学习使学生掌握逻辑思维和逻辑推理的能力,培养学生正规的逻辑思维方式。
二、教学重点及难点(一)重点1.集合论:集合恒等式,关系运算,关系性质,等价关系,偏序关系2.数理逻辑:等价演算,推理理论3.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群4.图论:图的基本概念,图的矩阵,根树,有向树和有序树。
5.代数系统:代数系统,群的性质,子群,陪集与拉格朗日定理,循环群,置换群(二)难点关系的运算,偏序关系,一阶逻辑推理,陪集,置换群,根树的应用三、教学方法采用多媒体和板书相结合,采用启发式和案例教学,以知识为载体,培养学生分析解决问题的思维方式和方法,激发学生创造性思维。
四、教学时数54学时,每周3学时五、考试或考察方式本课程为考试课考试方式六、学时安排序号章节内容学时1 第一章集合与关系122 第二章命题逻辑123 第三章谓词逻辑94 第四章图论125 第五章代数系统9合计54第一章集合与关系 1.1 集合的概念与运算一、教学目的及要求:1、掌握集合的两种表示法2、判别元素是否属于给定的集合3、判别两个集合之间是否存在包含、相等、真包含等关系4、掌握集合的基本运算(幂集运算,普通运算和广义运算)并能化简集合表达式二、教学难点及重点:教学重点:1. 集合的两种表示法2. 集合之间的包含、相等、真包含等关系3. 集合的基本运算(幂集运算,普通运算和广义运算)教学难点:集合的运算三、教学基本内容:1.集合的概念,集合的两种表示法2.元素与集合的关系3.两个集合之间的关系:包含、相等、真包含等关系4.空集,全集,幂集的概念5. 集合的基本运算(幂集运算,普通运算和广义运算),化简集合表达式四、作业习题1.1 2、3、5、7、9第一章集合与关系(1.2,1.3)一、教学目的及要求:1.掌握有序对的定义2.掌握笛卡儿积运算和性质3.熟练掌握二元关系的定义4.掌握二元关系表达式、关系矩阵、关系图的表示法5. 掌握关系的逆和合成运算二、教学难点及重点:教学重点:1.有序对的定义2.笛卡儿积运算和性质3.二元关系的定义4.二元关系表达式、关系矩阵、关系图的表示法5. 关系的逆和合成运算教学难点:笛卡儿积运算和性质、关系的合成三、教学基本内容:1.有序对的概念2.有序对的性质3.有序n元组4.笛卡儿积的定义5.笛卡儿积的运算和性质6.二元关系的概念7.集合A到B的关系、集合A上的关系的定义8.关系表达式、关系矩阵、关系图的表示法9.关系的逆和合成运算四、作业习题1.2 1、3、4、5、6 习题1.3 1、2、7、11第一章集合与关系(1.4)一、教学目的及要求:1.掌握二元关系的基本性质及其关系矩阵、关系图上的体现2.掌握二元关系的各种性质存在的充要条件3.了解二元关系各种性质与集合运算的关系4.掌握自反性、对称性、传递性的证明方法二、教学难点及重点:教学重点:1.二元关系的基本性质:自反性,非自反性,对称性,反对称性,传递性2.二元关系的各种性质存在的充要条件3.二元关系的基本性质在关系矩阵、关系图上的体现4.二元关系各种性质与集合运算的关系5.自反性、对称性、传递性的证明方法教学难点:1.二元关系的各种性质存在的充要条件2.自反性、对称性、传递性的证明方法三、教学基本内容:1.自反性的定义及关系矩阵、关系图的特征2.非自反性的定义及关系矩阵、关系图的特征3.对称性的定义及关系矩阵、关系图的特征4.反对称性的定义及关系矩阵、关系图的特征5.传递性的定义及关系矩阵、关系图的特征6.二元关系的各种性质存在的充要条件7.集合的并、交运算对自反性的保持8.集合的并、交运算对对称性的保持9.集合的并、交运算对传递性的保持10.二元关系性质的证明四、作业习题 1.4 1、2、3、4、8第一章集合与关系(1.5) 一、教学目的及要求:1.掌握二元关系闭包的含义2.掌握二元关系闭包的性质3.掌握二元关系闭包的计算方法二、教学难点及重点:教学重点:1.二元关系的闭包:自反闭包、对称闭包、传递闭包2.二元关系的闭包计算的基本定理3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质教学难点:二元关系闭包的求法三、教学基本内容:1.闭包的定义:自反闭包、对称闭包、传递闭包2.利用集合与闭包的关系计算闭包3.利用关系矩阵和关系图计算闭包4.二元关系的闭包的性质5.闭包与闭包之间的关系6. 集合、关系矩阵、关系图之间的转换四、作业习题1.5 1、2、3、9第一章集合与关系(1.6) 一、教学目的及要求:1.掌握等价关系及其条件2.掌握等价关系与划分的联系二、教学难点及重点:教学重点:1.等价关系及充要条件2.等价关系与划分的联系教学难点:等价关系的划分三、教学基本内容:1.等价关系的定义2.利用矩阵表示等价关系3.等价关系的充要条件4.等价类与商集的定义5.等价关系与划分的联系四、作业习题 1.6 2、4、5、6第一章集合与关系(1.7) 一、教学目的及要求:1.了解序关系的概念2.掌握偏序与拟序3. 掌握哈斯图4. 掌握全序与良序二、教学难点及重点:教学重点:1.偏序与拟序2.哈斯图3. 全序与良序教学难点:全序与良序三、教学基本内容:1.序关系的概念:偏序关系、拟序关系2.偏序的充分必要条件3.拟序的充分必要条件4.覆盖的定义5.哈斯图6.极大元与极小元7.全序结构与良序结构四、作业习题 1.7 2、5、8第二章命题逻辑(2.1、2.2) 一、教学目的及要求:1.分清简单命题(既原子命题)与复合命题2.深刻理解5种常用联结词的涵义,每种联结词的真值3.分清“相容或”与“排斥或”4. 掌握命题公式及其真值表5. 掌握命题公式的类型与判定二、教学难点及重点:教学重点:1. 命题的概念2.简单命题(既原子命题)与复合命题3. 5种常用联结词4. “相容或”与“排斥或”5. 命题公式及其真值表6. 命题公式的类型与判定教学难点:“相容或”与“排斥或”逻辑区别、命题公式的判定三、教学基本内容:1.命题的概念,真命题,假命题,真值2.命题的判断,简单命题的符号化3.联结词4.每个联结词表示的逻辑关系5.每个联结词的真值6. 命题公式的真值表7. 命题公式的类型8. 命题公式的判定四、作业习题2.1 2、3、4 习题2.2 1、2、3、5第二章命题逻辑(2.3) 一、教学目的及要求:1.掌握命题公式的等价2.掌握命题公式的蕴含3.理解置换定理与对偶定理二、教学难点及重点:教学重点:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理教学难点:命题公式的关系及真值表演算三、教学基本内容:1.命题公式的等价2.命题公式的蕴含3.置换定理与对偶定理四、作业习题2.3 1、2、3、4第二章命题逻辑(2.4)一、教学目的及要求:1.了解文字、简单析取式、简单合取式、析取范式,合取范式,主析取范式与主合取范式等概念。