初一数学上册一元一次方程应用题及答案
- 格式:doc
- 大小:16.00 KB
- 文档页数:3
一元一次方程应用题知能点1:市场经济、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1. 某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2. 一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B. 80%×(1+45%)x - x = 50C. x-80%×(1+45%)x = 50D.80%×(1-45%)x - x = 504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,?经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,?但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,?在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50?元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1?分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
初一上册数学一元一次方程应用题工程问题1. 甲乙两人共同完成一项工作需要4天,如果甲单独做需要6天,乙单独做需要多少天?解析:设乙单独做需要x天,则甲的工作效率为1/6,乙的工作效率为1/x。
两人共同的工作效率为1/4。
根据工作效率的加法原则,我们有:1/6 + 1/x = 1/4解这个方程,得到:x = 12答案:乙单独做需要12天。
2. 一个水池,甲单独排水需要8小时,乙单独排水需要12小时,两人同时排水需要多少时间?解析:设两人同时排水需要x小时,则甲的工作效率为1/8,乙的工作效率为1/12。
两人共同的工作效率为1/x。
根据工作效率的加法原则,我们有:1/8 + 1/12 = 1/x解这个方程,得到:x = 24/5答案:两人同时排水需要24/5小时。
3. 一个工程队完成某项工程,如果每天工作10小时,需要4天完成。
如果每天工作8小时,需要多少天?解析:设需要x天完成工程,则工程总量为10小时/天 * 4天 = 40小时。
如果每天工作8小时,我们有: 8小时/天 * x天 = 40小时解这个方程,得到:x = 5答案:需要5天。
4. 一个工厂生产一批产品,甲机器每天生产200个,乙机器每天生产150个。
两台机器同时工作,多少天可以完成生产任务?解析:设需要x天完成生产任务,则两台机器每天共同生产的数量为200个 + 150个 = 350个。
设总生产任务为N个,我们有:350个/天 * x天 = N个解这个方程,得到:x = N / 350答案:需要N / 350天完成生产任务。
(N为具体的生产任务总数)5. 小明骑自行车去图书馆,以每小时15公里的速度行驶,需要40分钟。
如果以每小时20公里的速度行驶,需要多少时间?解析:首先将40分钟转换为小时,即40分钟 = 40/60小时 = 2/3小时。
设以20公里/小时速度行驶需要x小时,我们有:15公里/小时 * 2/3小时 = 20公里/小时 * x小时解这个方程,得到:x = 1/4将x小时转换为分钟,即1/4小时 * 60分钟/小时 = 15分钟答案:需要15分钟。
精心整理一元一次方程经典应用题知能点1:市场经济、打折销售问题×100% (1)商品利润=商品售价-商品成本价(2)商品利润率=商品利润商品成本价(3)商品销售额=商品销售价×商品销售量(4)商品的销售利润=(销售价-成本价)×销售量(5)商品打几折出售,就是按原价的百分之几十出售,如商品打8折出售,即按原价的80%出售.1.某商店开张,为了吸引顾客,所有商品一律按八折优惠出售,已知某种皮鞋进价60元一双,八折出售后商家获利润率为40%,问这种皮鞋标价是多少元?优惠价是多少元?2.一家商店将某种服装按进价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的进价是多少?3.一家商店将一种自行车按进价提高45%后标价,又以八折优惠卖出,结果每辆仍获利50元,这种自行车每辆的进价是多少元?若设这种自行车每辆的进价是x元,那么所列方程为()A.45%×(1+80%)x-x=50B.80%×(1+45%)x-x=50C.x-80%×(1+45%)x=50D.80%×(1-45%)x-x=504.某商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则至多打几折.5.一家商店将某种型号的彩电先按原售价提高40%,然后在广告中写上“大酬宾,八折优惠”.经顾客投拆后,拆法部门按已得非法收入的10倍处以每台2700元的罚款,求每台彩电的原售价.知能点2:方案选择问题6.某蔬菜公司的一种绿色蔬菜,若在市场上直接销售,每吨利润为1000元,•经粗加工后销售,每吨利润可达4500元,经精加工后销售,每吨利润涨至7500元,当地一家公司收购这种蔬菜140吨,该公司的加工生产能力是:如果对蔬菜进行精加工,每天可加工16吨,如果进行精加工,每天可加工6吨,•但两种加工方式不能同时进行,受季度等条件限制,公司必须在15天将这批蔬菜全部销售或加工完毕,为此公司研制了三种可行方案:方案一:将蔬菜全部进行粗加工.方案二:尽可能多地对蔬菜进行粗加工,没来得及进行加工的蔬菜,•在市场上直接销售.方案三:将部分蔬菜进行精加工,其余蔬菜进行粗加工,并恰好15天完成.你认为哪种方案获利最多?为什么?7.某市移动通讯公司开设了两种通讯业务:“全球通”使用者先缴50•元月基础费,然后每通话1分钟,再付电话费0.2元;“神州行”不缴月基础费,每通话1•分钟需付话费0.4元(这里均指市内电话).若一个月内通话x分钟,两种通话方式的费用分别为y1元和y2元.(1)写出y1,y2与x之间的函数关系式(即等式).(2)一个月内通话多少分钟,两种通话方式的费用相同?(3)若某人预计一个月内使用话费120元,则应选择哪一种通话方式较合算?8.某地区居民生活用电基本价格为每千瓦时0.40元,若每月用电量超过a千瓦时,则超过部分按基本电价的70%收费。
七年级上册数学第四单元一元一次方程应用题知识点1:数字问题(1)要搞清楚数的表示方法:一个三位数的百位数字为a,十位数字是b,个位数字为c(其中a、b、c均为整数,且1≤a≤9, 0≤b≤9, 0≤c≤9)则这个三位数表示为:100a+10b+c(百位数字a·100+十位数字b·10+个位数字c)。
然后抓住数字间或新数、原数之间的关系找等量关系列方程。
(2)数字问题中一些表示:两个连续整数之间的关系,较大的比较小的大1;偶数用2n表示,连续的偶数用2n+2或2n—2表示;奇数用2n+1或2n—1表示。
例1. 一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。
[分析]由已知条件给出了百位、个位与十位上的数的关系,若设十位上的数为x,则百位上的数为x+7,个位上的数是3x,等量关系为三个数位上的数字和为17。
解:设这个三位数十位上的数为X,则百位上的数为x+7,个位上的数是3xx+x+7+3x=17 解得x=2 x+7=9,3x=6答:这个三位数是926练习:1. 一个两位数,个位上的数是十位上的数的2倍,如果把十位与个位上的数对调,那么所得的两位数比原两位数大36,求原来的两位数。
2.有一个两个位数,两个数位上的数字之和是9,如果把个位数字与十位数字对调,那么所得的两位数比原来的两位数大63.求原来的两位数。
知识点2:若干应用问题等量关系的规律(1)和、差、倍、分问题此类题既可表示运算关系,又可表示相等关系,要结合题意特别注意题目中的关键词语的含义,如相等、和差、几倍、几分之几、多、少、快、慢等,它们能指导我们正确地列出代数式或方程式。
增长量=原有量×增长率现在量=原有量+增长量(2)等积变形问题常见几何图形的面积、体积、周长计算公式,依据形虽变,但体积不变.①圆柱体的体积公式 V=底面积×高=S·h=πr2h②长方体的体积 V=长×宽×高=abc例1.兄弟两人今年分别为15岁和9岁,多少年后(或前)兄的年龄是弟的年龄的2倍。
人教版七年级上册 一元一次方程实际应用题-打折销售问题(含答案)一、单选题1.一款新型的太阳能热水器进价2000元,标价3000元,若商场要求以利润率不低于5%的售价打折出售,则设销售员出售此商品最低可打x 折,由题意列方程,得( )A.()3000x 200015%=-B.3000x 20005%2000-= C.()x 3000200015%10⋅=⋅- D.()x 3000200015%10⋅=⋅+ 2.某种商品每件的标价是270元,按标价的八折销售时,仍可获利20%,则这种商品每件的进价为( )A .180元B .200元C .225元D .元3.某商店出售两件衣服,每件卖了200元,其中一件赚了25%,而另一件赔了20%.那么商店在这次交易中( )A .亏了10元钱B .赚了10钱C .赚了20元钱D .亏了20元钱 4.一个商店把某件商品按进价加20%作为定价,后来老板按定价8折192元卖出这件商品,那么老板在销售这件商品的过程中的盈亏情况为( )A.盈利16元B.亏损24元C.亏损8元D.不盈不亏5.某商店购进甲、乙两种商品共160件,甲每件进价为15元,售价20元;乙每件进价为35元,售价45元;售完这批商品利润为l100元,设甲为x 件,则购进甲商品的件数满足方程( ) +15(160-x)=1100(160-x)+10x=1100 +25(160-x)=1100 +10(160-x)=l1006.中百超市推出如下优惠方案:(1)一次性购物不超过100元,不享受优惠;(2)一次性购物超过100元,但不超过300元一律9折;(3)一次性购物超过300元一律8折.王波两次购物分别付款80元、252元,如果他将这两次所购商品一次性购买,则应付款( )A.288元 B.332元 C.288元或316元 D.332元或363元$二、填空题7.某商场将一件玩具按进价提高60%后标价,销售时按标价打折销售,结果相对于进价仍获利20%,则这件玩具销售时打的折扣是_____.8.某个“清涼小屋”自动售货机出售A、B、C三种饮料.A、B、C三种饮料的单价分別是2元/瓶、3元/瓶、5元/瓶.工作日期间,每天上货量是固定的,且能全部售出,其中,A饮科的数量(单位:瓶)是B饮料数量的2倍,B饮料的数量(单位:瓶)是C饮料数量的2倍.某个周六,A、B、C三种饮料的上货量分別比一个工作日的上货量增加了50%、60%、50%,且全部售出.但是由于软件bug,发生了一起错单(即消费者按某种饮料一瓶的价格投币,但是取得了另一种饮料1瓶),结果这个周六的销售收入比一个工作日的销售收入多了503元.则这个“清凉小屋”自动售货机一个工作日的销售收入是_____元.三、解答题9.华联超市购进一批四阶魔方,按进价提高40%后标价,为了让利于民,增加销量,超市决定打八折出售,这时每个魔方的售价为28元.(1)求魔方的进价(2)超市卖出一半后,正好赶上双十一促销,商店决定将剩下的魔方以每3个80元的价格出售,很快销售一空,这批魔方超市共获利2800元,求该超市共购进魔方多少个$10.某水果批发市场苹果的价格如表(1)小明分两次共购买40千克,第二次购买的数量多于第一次购买的数量,共付出216元,小明第一次购买苹果_____千克,第二次购买_____千克.(2)小强分两次共购买100千克,第二次购买的数量多于第一次购买的数量,且两次购买每千克苹果的单价不相同,共付出432元,请问小强第一次,第二次分别购买苹果多少千克(列方程解应用题)`11.某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标12.某超市计划购进甲、乙两种商品共1200件,这两种商品的进价、售价如下表:^⑴超市如何进货,进货款恰好为46000元.⑵为确保乙型节能灯顺利畅销,在(1)的条件下,商家决定对乙型节能灯进行打折出售,且全部售完后,乙型节能灯的利润率为20%,请问乙型节能灯需打几折13.13.马刚家附近有甲乙两家超市,春节来临之际两个超市分别给出了不同的促销方案:甲超市购物全场折,乙超市购物①不超过200元,不给予优惠;②超过200元而不超过500元,打9折;③超过500元,其中的500元仍打9折,超过500元的部分打8折.(假设两家超市相同商品的标价都一样)(1)当一次性购物标价总额是300元时,甲乙两个超市实付款分别是多少(2)当标价总额是多少元时,甲乙超市实付款一样#14.某开发商进行商铺促销,广告上写着如下条款:投资者购买商铺后,必须由开发商代租赁5年,5年期满后由开发商以比原商铺标价高20%的价格进行回购,投资者可在以下两种购铺方案中做出选择:方案一:按照商铺标价一次性付清铺款,每年可获得的租金为商铺标价的10%;方案二:按商铺标价的八折一次性付清铺款,前3年商铺的租金收益归开发商所有,3年后每年可获得的租金为商铺标价的9%(1)问投资者选择哪种购铺方案,5年后所获得的投资收益率更高为什么(注:投资收益率=投资收益实际投资额×100%)>(2)对同一标价的商铺,甲选择了购铺方案一,乙选择了购铺方案二,那么5年后两人获得的收益相差万元.问甲乙两人各投资了多少万元15.平价商场经销的甲、乙两种商品,甲种商品每件售价60元,利润率为50%;乙种商品每件进价50元,售价80元.(1)甲种商品每件进价为元,每件乙种商品利润率为.(2)若该商场同时购进甲、乙两种商品共50件,恰好总进价为2100元,求购进甲种商品多少件(3)在“元旦”期间,该商场只对甲乙两种商品进行如下的优惠促销活动:按上述优惠条件,若小华一次性购买乙种商品实际付款504元,求小华在该商场购买乙种商品多少件$16.某车间有16名工人,每人每天可加工甲种零件5个或乙种零件4个.在这16名工人中,一部分人加工甲种零件,其余的加工乙种零件.已知每加工一个甲种零件可获利16元,每加工一个乙种零件可获利24元.若此车间一共获利1440元,求这一天有几个工人加工甲种零件.17.列方程解应用题:“双十一”期间,某电商决定对网上销售的商品一律打8折销售,黄芳购买一台某种型号的手机时发现,每台手机比打折前少支付400元,求每台该种型号的手机打折前的售价.)18.列方程解应用题某文具店一支铅笔的售价为元,一支圆珠笔的售价为2元,在元旦期间该店举行文具优惠活动,铅笔按原价打八折出售,圆珠笔按原价打九折出售,结果两种笔共卖出60支,卖得87元,则在这次优惠活动中卖出铅笔、圆珠笔各多少支19.列方程...解应用题:某社区超市第一次用6000元购进甲、乙两种商品,其中乙商品的件数比甲商品件数的一半多15件,甲、乙两种商品的进价和售价如下表:(注:获利=售价-进价)(1)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润(2)该超市第二次以第一次的进价又购进甲、乙两种商品.其中购进甲种商品的件数不变,购进的乙种商品的件数是第一次购进乙种商品件数的3倍;甲商品按原价销售,乙商品打折销售.第二次两种商品都销售完以后获得的总利润比第一次获得的总利润多180元,求第二次乙种商品是按原价打几折销售20.某蔬菜经营户,用1200元从菜农手里批发了长豆角和番茄共450千克,长豆角和番茄当天的批发价和零售价如表:(1)这天该经营户批发了长豆角和番茄各多少千克《(2)当天卖完这些番茄和长豆角能盈利多少元21.某文教店购进一批钢笔,按进价提高40%后标价,为了增加销量,文教店决定按标价打八折出售,这时每支钢笔的售价为28元.(1)求每支钢笔的进价为多少元;(2)该文教店卖出这批钢笔的一半后,决定将剩下的钢笔以每3支80元的价格出售,很快销售完毕,销售这批钢笔文教店共获利2800元,求该文教店共购进这批钢笔多少支(22.某电器商销售一种微波炉和电磁炉,微波炉每台定价800元,电磁炉每台定价200元,“双十一”期间商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台微波炉送一台电磁炉;方案二:微波炉和电磁炉都按定价的90%付款.现某客户要到该卖场购买微波炉2台,电磁炉x台(x>2).(1)若该客户按方案一购买,需付款___元.(用含x的代数式表示)若该客户按方案二购买,需付款___元.(用含x的代数式表示)(2)若x=5时,通过计算说明此时按哪种方案购买较为合算!(3)当x=5时,你能给出一种更为省钱的购买方案吗试写出你的购买方法.23.“丰收1号”油菜籽的平均每公顷产量为2400kg,含油率为40%.“丰收2号”油菜籽比“丰收1号”的平均每公顷产量提高了300kg,含油率提高了10个百分点。
一元一次方程应用题类型二数字类型1.(基础)阅读下列材料,并完成任务.学习了一元一次方程,我们就可以利用它把无限循环小数化为分数.以无限循环小数为例,它的循环节有两位,若设,由可得,0.730.73737373= 0.73x = 0.730.73737373= ,所以,解方程,得,于是,.10073.737373x = 10073x x -=7399x =730.7399= (1)类比应用:(直接写出答案,不写过程)___________;____________;0.2= 0.12=(2)能力提升:将化为分数形式,写出解答过程;1.23(3)拓展探究:请运用上面的方法说明.0.91=2.(基础)阅读理解题,阅读下列材料:若一个三位数的十位数字是个位数字的2倍,我们称这个三位数为“倍尾数”,如521.(1)已知一个“倍尾数”的百位数字比十位数字大1,其各位数字之和是16,求这个“倍尾数”;(2)若一个“倍尾数”的各位数字之和是17,求出所有符合要求的“倍尾数”.3.(中等)将正整数1至2018按照一定规律排成下表:13457891012141516171819212223242526272829303132……记a ij 表示第i 行第j 个数,如a 14=4表示第1行第4个数是4.(1)直接写出a 32= ,a 55= ;(2)①若a ij =2018,那么i = ,j = ,②用i ,j 表示a ij = ;(3)将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和能否等于2027.若能,求出这5个数中的最小数,若不能说明理由.4.(难)仔细阅读下列材料.“分数均可化为有限小数或无限循环小数”,反之“有限小数或无限循环小数均可化为分数”.例如:1140.254=÷=38185 1.655==÷=1130.33=÷= 反之2510.251004==16831.611055===那么怎么化成呢?0.313解:∵0.310 3.330.3⨯==+∴不妨设,则上式变为10x=3+x,解得x=即.0.3=x 1310.3=3 根据以上材料,回答下列问题:(1)将分数化为小数: =_________,=_________;74411(2)将小数化为分数:=_________, =_________;0.4 1.5(3)将小数化为分数,需要写出推理过程.1.021.02和差倍分类型5.(基础)某年级组织部分学生参加语文、数学、英语课外活动兴趣小组,下面两幅统计图反映了学生自愿报名(每人限报一科)的情况,请你根据图中信息回答下列问题:(1)该年级报名参加英语课外活动兴趣小组的人数占全年级人数的百分数是______,请补全条形统计图;(2)根据实际情况,需从英语课外活动小组抽调部分同学到数学课外活动小组,使数学课外活动小组的人数是英语课外活动小组人数的3倍,则应从中抽调多少名学生?6.(基础)晶晶看一本书,第一天看了总页数的,第二天看的是第一天的,剩下12页没有看3558完.这本书有多少页?7.(中等)如图,是线段上一点,,,点、点分别从点、P AB 15cm AB =10cm AP =C D P 点出发向点方向运动,点的运动速度为,点的运动速度为,运动的时间为B A C 1cm/s D 2cm /s .ts (1)运动后,求的长;1s CD (2)运动时间为多少时,点会与点重合;.D C (3)运动时间为多少时,的长度为.CD 2cm(4)当点继续在的延长线上运动时,是否存在,若存在,求出此时的运动时间,D BA 2CD AC =若不存在,请说明理由.8.(难)学校组织植树活动,已知在甲处植树的有220人,在乙处植树的有96人.(1)若要使甲处植树的人数是乙处植树人数的3倍,应从乙处调多少人去甲处?(2)为了尽快完成植树任务,现调m 人去两处支援,其中,若要使甲处植树的人数仍90100m <<然是乙处植树人数的3倍,则应调往甲,乙两处各多少人?电费和水费类型9.(基础)某市对居民用水实行阶梯水费,收费标准如表:月用水量不超过12吨的部分超过12吨不超过20吨的部分超过20吨的部分收费标准(元/吨)a a +14(1)甲用户上月用水30吨,其该月水费为 元(用含a 的代数式表示);(2)若a =1.5,乙用户上月水费为30元,求乙用户该月的用水量.10.(基础)我市为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y (元)与所用的水量x (吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y 与x 之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨.11.(中等)为充分发挥市场机制和价格杠杆在水资源配置中的作用,促进节约用水,提高用水效率,2017年7月1日起某地实行阶梯水价,价目如表(注:水费按月结算,表示立方米):3m 价目表每月用水量单价(元/)3m 不超过18的部分3超出18不超出25的部分4超出25的部分7例:某户居民5月份共用水,则应缴水费(元).323m 3184(2318)74⨯+⨯-=(1)若A 居民家1月份共用水,则应缴水费_______元;312m (2)若B 居民家2月份共缴水费66元,则用水________;3m (3)若C 居民家3月份用水量为(a 低于,即),且C 居民家3、4两个月用水量3m a 320m 20a <共,求3、4两个月共缴水费多少元?(用含a 的代数式表示)340m 12.(难)某市居民使用自来水按月收费,标准如下:①若每户月用水不超过10m 3,按a 元/m 3收费;②若超过10m 3,但不超过20m 3,则超过的部分按1.5a 元/m 3收费,未超过10m 3部分按①标准收费;③若超过20m 3,超过的部分按2a 元/m 3收费,未超过20m 3部分按②标准收费;(1)若用水20m 3,应交水费 元;(用含a 的式子表示)(2)小明家上个月用水21m 3,交水费81元,求a 的值;(3)在(2)的条件下,小明家七、八两个月共交水费240元,七月份用水xm 3超过10m 3,但不足20m 3,八月份用水ym 3超过20m 3,当x ,y 均为整数时,求y 的值.行程类型13.(基础)快车和慢车同时从甲乙两地相向开出,快车每小时行40千米,经过3小时,快车已驶过中点25千米,这时快车与慢车还相距7千米,慢车每小时行多少千米?14.(基础)小明和小亮练习一百米赛跑,小明的速度是6米/秒,小亮的速度是7.5米/秒.(1)列方程求解:若小明先跑3秒,小亮经过多长时间追上小明?(2)若小明先跑4秒,小亮能否追上小明?(直接写出结果,不必说明理由)15.(中等)A、B两地相距900km,甲车从A地驶向B地,2h后距B地800km,与此同时乙车以100km/h的速度沿着相同的道路从A地驶向B地.(1)甲车的速度为 km/h;甲车出发 h,乙车能追上甲车;(2)甲、乙两车,谁先到达B地?提前多长时间?(3)甲车出发 h.两车相距20km.16.(难)中秋节期间,小明计划外出游玩,他有两种出行线路:线路一是自己开车;线路二是先坐高铁再骑行;其中线路二的路程是线路一的2倍,且乘坐高铁部分路程占线路二全程的95%,剩余路程为骑行路程.已知高铁平均速度是开车平均速度的5倍,若最终两种出行方式所花费时间一致,则开车速度是骑行速度的多少倍?比列分赔类型17.(基础)为响应稳书记“足球进校园”的号召,某学校在某商场购买甲、乙两种不同足球,购实甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种是球数量是购类乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元.(1)求这间商场出售每个甲种足球、每个乙种足球的售价各是多少元;(2)按照实际需要每个班须配备甲足球2个,乙种足球1个,购买的足球能够配备多少个班级?(3)若另一学校用3100元在这商场以同样的售价购买这两种足球,且甲种足球与乙种足球的个数比为2:3,求这学校购买这两种足球各多少个?18.(基础)吉阳配件厂男工人数与女工人数的比是6:7,若调走30名女工,则女工与男工人数的比为5:6,这个车间原有女工多少人?202019.(中等)年春节前夕,突如其来的新型冠状病毒肺炎造成口罩紧缺,为满足社会需求,A B某一工厂需购买、两种材料,用于生产甲、乙两种口罩,每件分别使用的材料和数量如表:A种B种甲型30kg10kg乙型20kg 20kgA15B25其中种材料每千克元,种材料每千克元.10(1)若生产甲型口罩的数量比生产乙型口罩的数量多件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?A B385000500(2)若工厂用于购买、两种材料的资金不超过元,且需生产两种口罩共件,求至少能生产甲种口罩多少件?20.(难)七年(1)(2)两班各40人参加垃圾分类知识竞赛,规则如图.比赛中,所有同学均按要求一对一连线,无多连、少连.(1)分数5,10,15,20中,每人得分不可能是________分.(2)七年(1)班有4人全错,其余成员中,满分人数是未满分人数的2倍;七年(2)班所有人都得分,最低分人数的2倍与其他未满分人数之和等于满分人数.①问(1)班有多少人得满分?②若(1)班除0分外,最低得分人数与其他未满分人数相等,问哪个班的总分高?答案1.(1),;(2)见详解;(3)见详解29433【详解】解:(1)设,,则有,,0.2x =0.12y = 10 2.222x = 10012.121212y = ∴,,102x x -=10012y y -=解得:,,29x =433y =∴,,20.29= 40.1233= 故答案为,;29433(2)设,则有,0.23x =10023.232323x = ∴,解得:,10023x x -=2399x =∴,230.2399= ∴;··1221.2399=(3)设,则有,0.9x =109.9999x = ∴,109x x -=解得:,1x =∴.0.91=2.(1)这个“倍尾数”为763;(2)符合要求的“倍尾数”有863和584【详解】解:(1)设这个“倍尾数”个位上的数字为x ,则十位上的数字为2x ,百位上的数字为2x +1,由题意可得x +2x +2x +1=16解得:x=3则十位上的数字为2×3=6,百位上的数字为6+1=7∴这个“倍尾数”为763答:这个“倍尾数”为763;(2)设这个“倍尾数”个位上的数字为a ,则十位上的数字为2a ,百位上的数字为17-3a ,由个位数字可得:a 可以为0、1、2、3、4、5、6、7、8、9,由十位数字可得:a 可以为0、1、2、3、4,由百位数字可得:a 可以为3、4、5,∴a=3或4当a=3时,这个“倍尾数”为863;当a=4时,这个“倍尾数”为584;答:符合要求的“倍尾数”有863和584.3.(1)18,37;(2)①253,2,②8(i ﹣1)+j ;(3)不能,见解析【详解】解:(1)根据表格可以得出a 32=18;∵前面4行一共有8×4=32个数,∴第5行的第1个数为33,则第5行的第5个数为37,即a 55=37.故答案为18;37;(2)①∵2018÷8=252…2,∴2018是第253行的第2个数,∴i =253,j =2.故答案为253,2;②根据题意,可得a ij =8(i ﹣1)+j .故答案为8(i ﹣1)+j ;(3)设这5个数中的最小数为x ,则其余4个数可表示为x +4,x +9,x +11,x +18,根据题意,得x +x +4+x +9+x +11+x +18=2027,解得x =397.∵397÷8=49…5,∴397是第50行的第5个数,而此时x +4=401是第51行的第1个数,与397不在同一行,∴将表格中的5个阴影格子看成一个整体并平移,所覆盖的5个数之和不能等于2027.4.(1)1.75, ;(2) ;(3)答案见解析.0.36 49519试题分析:(1)用分子除以分母即可;(2)设 根据例题得到, 设则 然后求解即0.4x = ,104x x =+ 1.510.5,=+ 0.5x =,105x x =+,可;(3)设根据题意得到,然后求得的值,最后再加上1即可.0.02x =,1002x x =+x试题解析:()174 1.75;4110.36÷=÷= ;故答案为1.75;0.36.(2)设根据题意得:10x =4+x ,解得: 0.4x = ,4.9x =设,则,解得: 0.5x = ,105x x =+,5.9x =551.510.511.99=+=+= 故答案为45,1.99(3)设根据题意得100x =2+x ,解得:0.02x =,299x =21011.021.9999=+= 5.(1)30%,补全的条形图如图,见解析;(2)从英语组抽调5名学生.【详解】解:(1)∵参加数学的学生有25人,占总体的50%,∴总人数为:25÷50%=50(人),∴参加英语课外活动兴趣小组的人数占全年级人数的百分数是,15100%30%50⨯=故 30%,参加语文课外活动兴趣小组的人数有:50-15-25=10(人),补全统计图如下:(2)设需从英语组抽调x 名同学到数学组,根据题意得:3(15-x)=25+x ,解得:x=5.答:应从中抽调5名学生.6.这本书有480页【详解】解:设这本书有x 页,根据题意可得方程:,35312585x x x +⨯+=2312,58x x -=解得:x =480,答:这本书有480页.7.(1)4cm ;(2)5s ;(3)3s 或7s ;(4)存在,或15s253s【详解】解:(1)当时,,,,1t =111CP cm =⨯=212BD cm =⨯=15105PB AB AP cm =-=-=∴,523PD PB BD cm =-=-=134CD CP PD cm=+=+=(2)当点与点重合时,,D C BD CP PB =+∴,∴25t t =+5t =∴运动时间为时,点会与点重合,5s D C (3)当点在点的左侧时C D ,,2CD BC BD =-=∴,522t t +-=∴;3t =当点在点的右侧时C D ,2CD BD BC =-=∴,()252t t -+=∴;7t =∴运动时间为或时,的长度为,3cm 7cm CD 2cm (4)∵点在的延长线上,D BA ∴,()255CD BD BC t t t =-=-+=-当点在上运动时,,C AP 10AC AP CP t =-=-∵,2CD AC =∴,()5210t t -=-∴.253t =当点在的延长线上运动时,,C PA 10AC CP AP t =-=-∵,2CD AC =∴,()5210t t -=-∴.15t =∴当点继续在的延长线上运动时,存在,此时的运动时间为,或.D BA 2CD AC =253s15s 8.(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人【详解】解:(1)设应从乙处调x 人到甲处,则乙处剩下(96-x )人,列方程得: 220396x x +=(-)解得:x=17(2)设调往甲处y 人,甲处现有(220+y )人,则调往乙处(m-y )人,乙处现有(96+m-y )人,由此可得方程:()220y 396m y +=+-∴4y-3m 68=∴68+3m y 4=∵,y<m,m ,y 均为整数90100m <<当m=91时:(舍去)68+3m 341y =44=当m=92时:68+3m 344y ==8644=当m=93时:(舍去)68+3m 347y =44=当m=94时:(舍去)68+3m 350175y ==442=当m=95时:(舍去)68+3m 353y =44=当m=96时:68+3m 356y ==8944=当m=97时:(舍去)68+3m 359y =44=当m=98时:(舍去)68+3m 362181y ==442=当m=99时:(舍去)68+3m 365y =44=综上所述:当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人答:(1)应从乙处调7人去甲处;(2)当m=92时: 则应调往甲处各86人,乙处6人当m=96时: 则应调往甲处各89人,乙处7人9.(1)(20a +48);(2)乙用户该月的用水量为16.8吨.【详解】解:(1)12a +8(a +1)+(30﹣20)×4=20a +48(元),故该月水费为(20a +48)元,故(20a +48);(2)若a =1.5,12×1.5=18(元),12×1.5+8×(1.5+1)=38(元),∵18<30<38,∴乙用户该月的用水量超过12吨不超过20吨,设乙用户该月的用水量为x 吨,根据题意得:18+2.5(x ﹣2)=30,解得:x =16.8.答:乙用户该月的用水量为16.8吨.10.(1)2元;(2);(3)15吨.()3101030y x x =-<≤【详解】(1)解:当x =10时,水费是20元,则每吨水费为20÷10=2(元/吨)(2)解:当10<x ≤30时,设y =kx +b ,将(10,20)和(30,80)代入可得10203080k b k b +=⎧⎨+=⎩解得,310k b =⎧⎨=-⎩∴直线y =3x -10(10<x ≤30)(3)解:设居民三月份用水x 吨,则四月份用水x +4吨,当x =10时,水费:2×10+3×14-10=52(元)<82元,故x >10,则水费:3x -10+3(x +4)-10=82,6882x ∴-=解得x =15,答:这户居民三月份用水15吨.11.(1)36;(2)21;(3)a <15时,(187-4a )元;15≤a ≤18时,(142-a )元;18<a ≤20时,124元【详解】解:(1)∵12<18,∴应缴水费12×3=36(元),故36;(2)设B 居民家2月份用水x m 3,∴3×18+4×(x -18)=66,解得x =21.故21.(3)①当a <15时,4月份的用水量超过25m 3共缴水费:3a +3×18+4(25-18)+7(40-a -25)=187-4a ,②当15≤a ≤18时,4月份的用水量不低于22m 3且不超过25m 3共缴水费:3a +3×18+4(40-a -18)=142-a ,③当18<a ≤20时,4月份的用水量超过20m 3且不超过22m 3共缴水费:3×18+4(a -18)+3×18+4(40-a -18)=124.12.(1)25a ;(2)a =3;(3)y 的值为41或38【详解】解:(1)由题意得:10a +10×1.5a =25a (元)故答案是:25a .(2)根据题意,25a +2a =81解得a =3;(3)根据题意,30+4.5(x ﹣10)+30+45+6(y ﹣20)=240.4.5x +6y =3003x +4y =2004y =200﹣3x3504xy =-因为x 取11至19的整数,且y 为整数,所以x 应为4的倍数.当x =12时,y =41:当x =16时,y =38.综上所述,y 的值为41或38.13.21千米【详解】解:设慢车每小时行x 千米,根据题意得:,403253725x ⨯-=++解得:.21x =则慢车每小时行21千米.14.(1)12秒;(2)不能.【详解】解:(1)设小亮经过秒追上小明,x 依题意得,7.5636x x -=⨯,1.518x ∴=12x ∴=答:若小明先跑3秒,小亮经过12秒追上小明.(2)若小明先跑4秒,设小亮经过秒追上小明,y 则,7.5624y y -=,1.524y ∴=16y ∴=,7.57.516120,120100y m m =⨯=> 故小亮不能追上小明.15.(1)50,4;(2)乙车先到达B 地,提前7h ;(3)3.6或4.4.【详解】解:(1)甲车2h 行驶的路程900﹣800=100(km ),∴甲车的速度为100÷2=50(km/h );设甲车出发xh ,乙车能追上甲车,由题意得:50x =100(x ﹣2),解得x =4:故50,4;(2)2h 后甲车到达B 地的时间:800÷50=16(h ),乙车到达B 地的时间:900÷100=9(h ),16﹣9=7(h ),答:乙车先到达B 地,提前7h ;(3)设甲车出发xh ,两车相距20km ,①甲车在前,乙车在后,两车相距20km ,50x ﹣100(x ﹣2)=20,解得:x =3.6;②乙车在前,甲车在后,两车相距20km ,100(x ﹣2)﹣50x =20,解得:x =4.4,答:甲车出发 3.6h 或4.4h ,两车相距20km .故3.6或4.4.16.6.2【详解】解:设线路一的路程为y ,开车的速度为,骑行速度为,则线路二的路线为2y ,高铁的速度为1x 2x ,根据题意,15x 高铁的路程为:,295% 1.9y y ⨯=则骑行的路程为:,2 1.90.1y y y -=由两种出行方式所花费时间一致,∴,1121.90.15y y y x x x =+解得:;12 6.2x x =∴开车速度是骑行速度的6.2倍.17.(1)甲种足球需50元,乙种足球需70元;(2)20个班级;(3)甲种足球40个,乙种足球60个.【详解】解:(1)设购买一个甲种足球需x 元,则购买一个乙种足球需(x+20)元,可得: 20001400220xx =⨯+解得:x=50经检验x=50是原方程的解且符合题意答:购买一个甲种足球需50元,则购买一个乙种足球需70元;(2)由(1)可知该校购买甲种足球==40个,购买乙种足球20个,2000x 200050∵每个班须配备甲足球2个,乙种足球1个,答:购买的足球能够配备20个班级;(3)设这学校购买甲种足球2x 个,乙种足球3x 个,根据题意得:2x×50+3x×70=3100解得:x=20∴2x=40,3x=60答:这学校购买甲种足球40个,乙种足球60个.18.105【详解】设车间原有女工7a 人,则男工人数6a ,根据题意得730566a a -=解得a=15,经检验,符合题意,∴这个车间原有女工7×15=105人19.(1)生产甲、乙两种口罩分别为80件、70件;(2)至少能生产甲种口罩150件【详解】(1)设乙型口罩的数量为件,则甲型口罩的数量为件x ()10x +根据题意,得:()()()301510251020152025x x ⨯+⨯+=⨯+⨯∴70x =∴1080x +=∴生产甲、乙两种口罩分别为80件、70件;(2)设甲型口罩的数量为件,则乙型口罩的数量为件x ()500x -根据题意,得:()()()3015102520152025500385000x x ⨯+⨯+⨯+⨯-≤∴150x ≥∴至少能生产甲种口罩150件.20.(1)15;(2)①七年级(1)班有24人得满分;②七年级(2)班的总分高.【详解】解:(1)根据题意,连对0个得分为0分;连对一个得分为5分;连对两个得分为10分;连对四个得分为20分;不存在连对三个的情况,则得15分是不可能的;故15.(2)①根据题意,设七年(1)班满分人数有x 人,则未满分的有人,则2x,4402x x ++=解得:,24x =∴(1)班有24人得满分;②根据题意,(1)班中除0分外,最低得分人数与其他未满分人数相等,∴(1)班得5分和10分的人数相等,人数为:(人);1(40424)62--=∴(1)班得总分为:(分);40656102420570⨯+⨯+⨯+⨯=由题意,(2)班存在得5分、得10分、得20分,三种情况,设得5分的有y 人,得10分的有z 人,满分20分的有人,(2)y z +∴,(2)40y z y z +++=∴,3240y z +=∴七(2)班得总分为:(分);51020(2)453015(32)1540600y z y z y z y z +++=+=+=⨯=∵,570600<∴七(2)班的总分高.。
初一一元一次方程应用题及答案1、甲乙两队原计划各修100千米。
甲队在乙队离开期间额外修了10*0.6=6千米,因此甲队修了106千米,乙队修了94千米。
2、自动笔的单价为2元,钢笔的单价为4元。
3、(1)该商品房的成本是60/(1+25%)=48万元。
2)设2010年每平方米的成本为x元,则每平方米售价为60/(1-20%)/(1+33.33%)=元。
因此x=48/(*100)=0.0384万元,即每平方米的成本为384元,每平方米的利润为-384=元。
4、5辆A型车已经装运了100吨物资,还需调用10辆B型车才能完成任务。
5、甲厂每天至少需要处理垃圾8小时。
6、共有7间宿舍,31名女生。
7、新单价为1600元,让利后的实际销售价为1280元。
每部手机的成本价是1200元。
2.为了保证今年按新单价让利销售的利润不低于20万元,需要销售多少部彩屏手机?9.___在百货大楼买了30个信封,包括A型号和B型号,共花费45元。
每个B型号信封比每个A型号信封便宜2分,求每个信封的单价。
10.两车站相距275km,慢车以50km/h的速度从甲站开往乙站,1小时后,快车以75km/h的速度从乙站开往甲站。
慢车开出多少小时后与快车相遇?11.一辆汽车以40km/h的速度从甲地开往乙地,行驶3小时后遇到雨,平均速度减少10km/h。
结果比预计晚45分钟到达乙地,求甲乙两地的距离。
12.某车间的钳工班分为甲队和乙队,甲队人数是乙队人数的2倍。
将甲队16人调到乙队后,甲队剩下的人数比乙队的人数的一半少3人。
求甲队和乙队原来的人数。
13.某商店3月份的利润为10万元,5月份的利润为13.2万元。
已知5月份的月增长率比4月份增加了10个百分点,求3月份的月增长率。
14.七年级一班女生分配到若干间宿舍住宿,每个房间可住5人或8人。
如果每个房间住5人,会有5个女生无法安排住宿;如果每个房间住8人,则会有一间房间空置,还有一些女生无法安排住宿。
2023学年七年级数学上册第五章【一元一次方程】应用题训练卷一、解答题1.《孙子算经》是中国古代重要的数学著作之一.其中记载的“百鹿入城”问题很有趣.原文如下:今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?大意为:现在有100头鹿进城,每家领取一头后还有剩余,剩下的鹿每三家分一头,则恰好取完.问城中共有多少户人家?2.饺子源于古代的角子,饺子原名“娇耳”,一个饺子皮加馅就可以做一个饺子.中国北方还流行一种面食—合子,含有团团圆圆的美好寓意,在两层饺子皮中间加一层馅,就可以包成一个合子.“元旦”这天,妈妈走进书房对正在学习的小刚说;“妈妈刚才在厨房包饺子,结果面和多了,做了106个饺子皮,最后包的饺子和合子一共是98个.”小刚说:“妈妈,我能用学过的数学知识列一元一次方程,求出妈妈包的饺子和合子分别是多少.”请你写出小刚的解答过程.3.将连续的奇数1,3,5,7,9……排成如下的数表:(1)十字框中的5个数的和与中间的数23有什么关系?若将十字框上下左右平移,可框住另外5个数,这5个数还有这种规律吗?(2)设十字框中中间的数为a,用含a的式子表示十字框中的其他四个数;(3)十字框中的5个数的和能等于2019吗?若能,请写出这5个数;若不能,说明理由.4.中国移动公司现推出两种移动电话计费方式:方式一:免月租费,本地通话费每分钟0.39元;方式二:月租费18元,本地通话费每分钟0.15元.(1)若某用户选择方式一,本地通话时间为120分钟,则他应支付话费多少元?(2)本地通话时间在什么范围时,选择方式二更合算?5.元旦期间,某商场开展优惠促销活动,将甲种商品打六折出售,乙种商品打八折出售,已知甲、乙两种商品的原销售单价之和为1400元,某顾客参加活动购买甲、乙两种商品各一件,共付款1000元.(1)甲、乙两种商品原销售单价各是多少元?(2)商场在这次促销活动中共销售甲种商品800件,乙种商品1500件,共获利99000元,已知在促销活动中,每件甲种商品的利润比每件乙种商品的利润低20元,那么甲、乙两种商品每件的进价分别是多少元?6.“双减”政策实施以后学生有了更多的体验生活、学习其它知识的时间.今年为了丰富学生的课外生活,某学校计划购入A、B两种课外书,其中A种课外书每本20元,B种课外书每本30元,且购买A种课外书的数量比B种课外书的2倍还多10本,总花费为1950元.(1)求购买A、B种课外书的数量;(2)某商店搞促销活动,A种课外书按8折销售,B种课外书按9折销售,则学校此次可以节省多少钱?7.平价商场经销的甲、乙两种商品,甲种商品每件进价70元,售价98元;乙种商品每件进价80元,售价128元.(1)若该商场同时购进甲、乙两种商品共50件,恰好总进价为3800元,求购进甲、乙两种商品各多少件?(2)在“元旦”期间,该商场只对乙种商品进行如下的优惠促销活动:按下表优惠条件,打折前一次性购物总金额优惠措施少于等于480元不优惠超过480元,但不超过680元其中480元不打折,超过480元的部分给予6折优惠超过680元按购物总额给予7.5折优惠若小华一次性购买乙种商品实际付款576元,求小华在该商场购买乙种商品多少件?8.某商场经销的甲、乙两种商品,甲种商品每件售价60元,盈利20元;乙种商品每件进价50元,售价80元.(1)甲种商品每件的进价为_________元.(2)该商场同时购进甲、乙两种商品共50件,若全部销售完获得总利润为1200元,求购进甲种商品多少件?(3)在“元旦”期间,该商场对甲乙两种商品进行如下图优惠促销活动:按原价一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按原价的九折超过600元其中600元部分仍按九折优惠,超过600元的部分打八折优惠按上述优惠条件,若小华第一次购买甲商品花了352元,第二次购买乙商品花了682元,请你帮忙计算如果甲、乙两种商品合起来一次性购买,是否更节省?若更节省请算一算节省多少钱?若不节省,请说明理由.9.某社区超市用1131元钱从批发商处购进了甲、乙两种商品共100千克,甲、乙这天每千克的批发价与零售价如下表所示:商品名甲乙批发价(元/千克)10.512零售价(元/千克)1520(1)该社区超市这天批发甲商品和乙商品各多少千克?(2)该社区超市当天卖完这两种商品一共可以获得多少元的利润?(3)如果当天两种商品总数卖去一半后,剩下的按各自的零售价打八折出售,最终当天全部卖完后共获得450元利润,求打折后卖出的甲商品和乙商品各有多少千克?10.某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同类型的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场用9万元同时购进甲、乙两种不同型号的电视机共50台,求应购进甲、乙两种电视机各多少台?(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.试问:同时购进两种不同型号电视机的方案可以有几种(每种方案必须刚好用完9万元)?为使销售时获利最多,应选择哪种进货方案?并说明理由.11.为了鼓励同学们加强体育锻炼,某校准备举行冬季长跑比赛,为奖励长跑优胜者,学校需要购买一些冬奥会吉祥物冰墩墩、雪容融水杯和徽章.了解到某商店水杯的单价比徽章的单价多11元,若买2个水杯和3个徽章共需67元.(1)水杯和徽章的单价各是多少元?(2)该商店推出两种优惠方案,方案一:消费金额超过200元的部分打八折;方案二:全店商品打九折.若学校需要购买10个水杯和30个徽章,选择哪种方案更优惠?12.为庆祝元旦活动,某中学组织大合唱比赛,甲、乙两个班级共92人(其中甲班51人以上,不足55人)准备统一购买服装参加演出,下面是某服装厂给出的演出服装的价格表为:购买服装的套数1套至50套51套至90套91套及以上每套服装的价格50元40元30元(1)甲、乙两个班级共92人合起来统一购买服装共需付款____________元;(2)如果两个班级分别单独购买服装一共应付4080元,甲、乙两个班级各有多少学生准备参加演出?(3)如果甲班有8名同学抽调去参加书法绘画比赛不能参加演出,请你为两个班级设计一种最省钱的购买服装方案.13.我们学校七年级同学参加“研学”活动,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座位车,则多出一辆,且其余客车恰好坐满,已知45座客车租金200元,60座客车租金300元,问:(1)七年级同学多少人?原计划租车45座的客车多少辆?(2)若你是七年级组长,要使每个同学都有座位,应如何租车最划算?花钱多少元?14.冬季到来,为了能让老百姓吃上新鲜的水果,哈达水果市场到合作的苹果生产基地收购苹果,去年在苹果基地收购20吨(1吨1000 千克)苹果,收购价为每千克1.2元,今年收购苹果的数量提高了25%,收购价降低了16.(1)今年苹果生产基地将苹果销售给哈达水果市场,收入比去年提高了多少元?(2)从产地到哈达水果市场的距离是400千米,今年有甲、乙两种车型供选择,每辆车的运载能力和运费如下表所示:(假设每辆车均可以满载,且只能选一种车型)车型甲乙汽车运载量(吨/辆)810汽车运费(元/辆·千米) 2.53选哪种车型来运输水果,才能保证运费较低?(3)在(2)的条件下,今年采用运费较低的运输方式,如果在运输及销售过程中苹果的损耗为10%,今年销售这批苹果要获得2900元的利润,哈达市场苹果的销售价是每千克多少元?15.列方程解应用题:一商场经销A 、B 两种商品,A 种商品每件进价为40元,利润率为50%;B 种商品每件进价为50元,售价为80元.(1)A 种商品每件售价为___________元,每件B 种商品利润率为____________;(2)若该商场同时购进A 、B 两种商品共50件,恰好总进价为2100元,求购进A 种商品多少件?(3)在“春节”期间,该商场只对A 、B 两种商品进行如下的优惠促销活动:打折前一次性购物总金额优惠措施少于等于450元不优惠超过450元,但不超过600元按总售价打九折超过600元其中600元部分八折优惠,超过600元的部分七折优惠按上述优惠措施,小华一次性购买A 、B 两种商品实际付款522元,求若没有优惠促销,则小华在该商场购买同样的商品要付多少元?16.随着互联网的普及和城市交通的多样化,人们的出行方式有了更多的选择.下图是某市两种网约车的收费标准,例:乘车里程为30公里:若选乘出租车,费用为:14 2.2(303)1(3010)93.4+⨯-+⨯-=(元);若选乘曹操出行(快选),费用为:3010 2.4300.8(3010)0.46011640+⨯+⨯-+⨯⨯=(元).请回答以下问题:(1)周末小明有事外出,要选乘网约车,如果乘车费用预算为25元,他的行车里程数最大是多少公里?(2)元旦期间,小明外出游玩,约车时发现曹操出行(快选)有优惠活动;总费用打八折.于是小明决定选乘曹操出行(快选).付费后,细心的小明发现:相同的里程,享受优惠活动后的曹操出行(优先)的费用还比租车多了1.8元,求小明乘车的里程数.17.育才学校组织七、八年级老师到省内参加研讨会,需要租用大巴车接送老师往返学校和参会地,现租赁公司有25座和45座两种型号的大巴车可供选择.(1)已知25座大巴车每辆每天的租金比45座大巴车的租金便宜80元,学校第一天租用2辆45座和5辆25座大巴车,共付租金1140元,则学校租用25座和45座大巴车每辆每天的租金各是多少元?(2)因为第二天学习内容主要针对七年级的老师,所以八年级的老师不用参加,因此要重新确定租车方案.现有如下两种选择:方案一:全部租用25座的大巴车,则有一辆车空出15个座位;方案二:全部租用45座的大巴车,刚好坐满且比只租用25座的大巴车少租3辆.请分别计算出使用两种方案所需要的租金,并说明哪种方案更省钱.18.某校七年级组织各班同学参观科技馆.由各班班长负责买票,每班人数都多于40人,票价每张30元,一班班长问售票员买团体票是否可以优惠,售票员说:40人以上的团体票有两种优惠方案可选择:方案一:全体人员打九折;方案二:先购买一张150元年卡,凭年卡购买团体票每人可享八折优惠.(1)若一班有x (40x >)人,则方案一需付___________元钱,方案二需付___________元钱(用含x 的代数式表示);(2)若二班有45名学生,则二班选择哪个方案更优惠?(3)一班班长思考一会儿说,我们班无论选择哪种方案要付的钱是一样的,你知道一班有多少人吗?TAXI起步费:14元超3公里费:超过的部分2.2元/公里远途费:超过10公里后,1元/公里曹操出行(快选)起步费:10元里程费:2.4元/公里远途费:超过10公里后,0.8元/公里时长费:0.4元/分钟(速度:40公里/时)19.为倡导节约用水,某市采用阶梯价格调控手段达到节水目的,价目标准如下(水费按月缴纳):第一梯度:月用水量不超过12吨的部分,每吨2元.第二梯度:月用水量超过12吨但不超过20吨的部分,每吨3元.第三梯度:月用水量超过20吨的部分,每吨5元.若甲用户月用水量为()20m m>吨,则用含m的式子表示甲用户当月应缴纳的水费为______元.(2)若乙用户6,7两个月共用水42吨(其中6月份用水量超过12吨,7月份用水量超过22吨),一共缴纳的水费为110元,问乙用户6,7月份各用水多少吨?20.甲,乙两地相距162千米,甲地有一辆货车,速度为每小时48千米,乙地有一辆客车,速度为每小时60千米,求:(1)若两车同时相向而行,货车在路上耽误了半小时,多长时间可以相遇?(2)若两车相向而行,同时出发,多长时间两车相距54千米?21.为实施乡村振兴战略,解决某山区老百姓出行难的问题,当地政府决定修建一条高速公路.其中一段长为146米的山体隧道贯穿工程由甲乙两个工程队负责施工.甲工程队独立工作2天后,乙工程队加入,两工程队又联合工作了1天,这3天共掘进26米.已知甲工程队每天比乙工程队多掘进2米.(1)求甲工程队每天掘进多少米(2)按此速度完成这项隧道贯穿工程,甲乙两个工程队还需联合工作多少天.22.如图,某链条每节长为2.8cm,每两节链条相连接部分重叠的圆的直径为1cm,按这种连接方式,完成下面各题.(1)2节链条的总长度为______cm;3节链条的总长度为______cm;4节链条的总长度为______cm;(2)根据上述规律,n节链条的总长度为多少cm;(用含n的式子表示,不用说理)(3)一根链条的总长度能否为73cm若能,请求出该链条由几节组成;若不能,请说明理由.23.粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标,某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降40%.(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;(2)求明年改装的无人驾驶出租车是多少辆.24.“十一”长假期间,小张和小李决定骑自行车外出旅游,两人相约一早从各自家中出发,已知两家相距10千米,行程中小张必经过小李家.(1)若两人同时出发,小张车速为18千米每小时,小李车速为12千米每小时,经过多少小时两人能相遇?(2)若小李的车速为10千米/时,小张提前20分钟出发,两人商定小李出发后半小时二人相遇,则小张的车速应为多少?参考答案:1解:设城中共有x 户人家,依题意得:x +3x=100,解得:x =75,答:城中有75户人家.2.解:设妈妈包了x 个饺子,则合子为()98x -个根据题意得:()298106x x +-=∴90x =∴9898908x -=-=∴妈妈包的饺子和合子分别是90个和8个.3.解:(1)721232539115235++++==⨯,所以十字框中的5个数的和为中间的数23的5倍,无论十字框如何平移,框住的5个数的和均为中间数的5倍,故这5个数还有这种规律;(2)根据题意可得,另外4个数分别为16a -,2a -,2a +,16a +;(3)不能,理由如下:设中间的数为x ,根据题意,得52019x =,解得20195x =,因为20195不是整数,所以十字框中的5个数的和不能等于2019.4.(1)由题意得,话费为:120×0.39=46.8(元).答:他应支付话费46.8元;(2)设本地通话时间是x 分钟,由题意得,0.39x >18+0.15x ,解得:x >75.答:本地通话时间大于75分钟,选择方式二更合算.5(1)解:设甲种商品原销售单价是x 元,乙种商品原销售单价是()1400x -元,则()0.60.814001000x x +-=解得600x =,∴14001400600800x -=-=,答:甲种商品原销售单价是600元,乙种商品原销售单价是800元;(2)设每件甲种商品的利润为a 元,则每件乙种商品的利润为()20a +元,则()80015002099000a a ++=解得30a =,∴2050a +=,∴甲种商品每件的进价是6000.630330⨯-=元;乙种商品每件的进价是8000.850590⨯-=元;∴甲、乙两种商品每件的进价分别是330元、590元.6.(1)解:设B 种课外书x 本,则A 种课外书()210x +本.()20210301950x x ++=,解得2521060x x =+=,,答:购买A 种课外书60本,B 种课外书25本.(2)896020253016351010⨯⨯+⨯⨯=(元),19501635315-=(元),答:学校此次可以节省315元.7.(1)解:设购进甲种商品x 件,则乙种商品()50x -件,由题意得:()70+80503800x x -=,解得:20x =,则50502030x -=-=(件),答:购进甲种商品20件、购进乙种商品30件;(2)解:设小华在该商场购买乙种商品x 件,∵小华实际付款为576元,576>480,∴小华享受了优惠措施,∵乙种商品的售价为128元,∴小华应付款为128x 元,假如小华享受的是第二种优惠措施,由题意得:()480+1284800.6576x -⨯=解得:5x =,∴小华应付款为1285640⨯=(元),符合第二种优惠条件;假如小华享受的是第三优惠措施,由题意得:1280.75576x ⨯=,解得:6x =,∴小华应付款为1286768⨯=(元),符合第三种优惠条件;答:小华在商场购买乙种商品5件或6件.8.(1)解:甲种商品每件的进价为:602040-=(元),故答案为:40.(2)解:设购进甲种商品x 件,则购进乙种商品()50x -件,根据题意得:()()208050501200x x +--=,解得:30x =,503020-=(件),答:购进甲种商品30件,则购进乙种商品20件.(3)解:小华第一次购买甲商品花了352元,45090%405⨯=,∵352405<,∴第一次购买的甲商品没有优惠,价格为352元,∵小华第二次购买乙商品花了682元,且682600>,∴第二次购买乙商品的价格一定超过了600元,设第二次购买乙商品的价格为y 元,根据题意得:()6009060080682%%y ⨯+-⨯=,解得:777.5y =,两种商品的总价格为352777511295..+=(元),甲、乙两种商品合起来一次性购买花费为:()600903527775600809636%.%.⨯++-⨯=(元),∵112959636..<,∴甲、乙两种商品合起来一次性购买更节省,1129596361659...-=(元),答:甲、乙两种商品合起来一次性购买更节省,能够节省165.9元.9.(1)解:设批发甲商品x 千克,由题意可得:()10.5121001131x x +-=,解得:46x =,∴1004654-=,∴批发甲商品46千克,乙商品54千克;(2)()()1510.546201254639-⨯+-⨯=元,∴一共可以获得639元的利润;(3)100250÷=(千克),设打折后卖出的甲商品m 千克,则乙商品()50m -千克,由题意可得:()()()()()()()1510.54620125450150.810.5200.81250450m m m m --+---+⨯-+⨯--=⎡⎤⎣⎦,解得:11m =,∴501139-=(千克).∴打折后卖出的甲商品11千克,乙商品39千克.10.(1)设购甲种电视机x 台,乙种电视机()50x -台.列方程得,()150021005090000x x +-=,解得25x =,50502525x -=-=,∴购甲种电视机25台,乙种电视机25台;(2)分三种情况计算:①只购买甲、乙两种电视机,根据(1)可知,购甲种电视机25台,乙种电视机25台;②设购甲种电视机y 台,丙种电视机()50y -台.则()150025005090000y y +-=,解得:35y =,50503515y -=-=∴购甲种电视机35台,丙种电视机15台;③设购乙种电视机z 台,丙种电视机()50z -台.则()210025005090000z z +-=解得:87.5z =,5087.537.5<0-=-(不合题意,舍去);即进货方案有两种,方案一:购甲种电视机25台,乙种电视机25台;方案二:购甲种电视机35台,丙种电视机15台;方案一:25150252008750⨯+⨯=.方案二:35150152509000⨯+⨯=元.∵8750<9000,∴购买甲种电视机35台,丙种电视机15台获利最多.11.(1)解:(1)设水杯的单价是x 元,则徽章的单价是()11x -元,根据题意,得:()231167x x +-=,解得20x =,徽章:1120119x -=-=.答:水杯的单价是20元,徽章的单价是9元;(2)方案一:1020930470⨯+⨯=(元),()4702000.8216-⨯=(元),200216416+=(元),方案二:()10209300.9423⨯+⨯⨯=(元),∵416423<,∴选择方案一更优惠.12.(1)解:30922760⨯=(元),∴甲、乙两个班级合起来统一购买服装共需付款2760元.故答案为:2760.(2)解:设甲班有x 名学生准备参加演出,∵甲、乙两个班级共92人,其中甲班51人以上,不足55人,∴乙班少于50人,根据题意得()4050924080x x +-=,解得52x =,∴925240-=(名).答:甲、乙两个班级分别有52名学生和40名学生准备参加演出.(3)解: 两班联合购买91套服装的费用:91302730⨯=(元)两班联合购买84套服装的费用:()928403360-⨯=(元)甲、乙单独购买的总费用:405044504200⨯+⨯=(元)∵2730元<3360元<4200元,∴甲、乙两班联合购买91套演出服装比最省钱.13.(1)解:设原计划租用45座客车x 辆,依题意得:()4515601x x +=-,解得:5x =,则学生人数为:45515240⨯+=(人),答:七年级同学240人,原计划租车45座的客车5辆;(2)由(1)可知:只租45座的客车需6辆,费用为:62001200⨯=;只租60座的客车需4辆,费用为:43001200⨯=;租45座的客车4辆,60座的客车1辆,费用为:420013001100⨯+⨯=;1100<1200,答:应租45座的客车4辆、60座的客车1辆最划算,费用为1100元.14.(1)解:20吨20000=千克,去年的收入为20000 1.224000⨯=元,今年的收入为()120000125% 1.21250006⎛⎫⨯+⨯⨯-= ⎪⎝⎭元,则今年收入比去年提高了25000240001000-=元.(2)解:今年收购苹果量为()20125%25⨯+=吨,125838÷=,1251022÷=,若选甲车型,则需要4辆,费用为4400 2.54000⨯⨯=元;若选乙车型,则需要3辆,费用为340033600⨯⨯=元36004000< ∴选乙车运费较低.(3)解:设哈达市场苹果的销售价是每千克x 元,()25000110%2900360025000x ⨯-=++解得 1.4x =答:哈达市场苹果的销售价是每千克1.4元.15(1)解:由题意可得,A 种商品每件售价为:40(150%)60⨯+=,B 种商品利润率为:8050100%60%50-⨯=,故答案为:60,60%;(2)解:设购进A 种商品x 件,则购进B 种商品()50x -件,根据题意,得4050(50)2100x x +-=解得40x =,答:购进A 种商品40件;(3)解:设费用为y 元,∵522450>,∴小华在该商场购买的商品一定打折,①打折前购物金额超过450元,但不超过600元时,根据题意,得0.9522y =,解得580y =;②打折前购物金额超过600元时,根据题意,得(6000.80.)7600522y ⨯+-=,解得660y =,综上,若没有优惠促销,则小华在该商场购买同样的商品要付580元或660元.16.(1)解:10公里出租车收费:()14 2.21031415.429.4+⨯-=+=(元),10公里曹操出行收费:1010 2.4100.460102464040+⨯+⨯⨯=++=(元),设他的行车里程数为x 公里,∵2529.4<,2540<,∴10x <.出租车:()14 2.2325x +⨯-=,解得:8x =.曹操出行:10 2.40.4602540x x ++⨯⨯=,解得:5x =.∵85>,∴小明行车路程数最大是8公里.(2)设小明乘车的里程数为y 公里.①3y ≤时,10 2.40.4600.814 1.840y y ⎡⎤++⨯⨯⨯-=⎢⎥⎣⎦,解得: 3.253y =>(舍去).②310y <≤时,[]10 2.40.4600.814 2.2(3) 1.840y y y ⎡⎤++⨯⨯⨯-+⨯-=⎢⎥⎣⎦,解得:6y =.③10y >时,()()()10 2.40.8100.4600.814 2.2310 1.840yy y y y ⎡⎤⎡⎤++⨯-+⨯⨯⨯-+⨯-+-=⎣⎦⎢⎥⎣⎦,解得:15y =.综上所述,小明乘车里程数为6公里或15公里.17.(1)解:设25座的客车每辆每天的租金为x 元,则45座的客车每辆每天的租金为()80x +元,则:()28051140x x ++=,解得:140x =,80220x ∴+=,答:25座的客车每辆每天的租金为140元,45座的客车每辆每天的租金为220元;(2)解:设这个学校七年级老师共有y 名,则1532545y y+=+,解得:135y =,租45座客车数量:方案一的费用:()1351525140840+÷⨯=(元),方案二的费用:135********÷⨯=(元),840660> ,答:方案二更省钱.18.(1)解:由题意得:方案一需付9302710x x ⨯=元;方案二需付()8150302415010x x +⨯=+元,故答案为:27x ,()24150x +;(2)解:方案一需付27451215⨯=元;方案二需付150********+⨯=元,∵12151230<,∴二班选择方案一更优惠;(3)解:由题意得,2415027x x +=,解得50x =,∴一班有50人,答:一班有50人.19.(1)若甲用户月用水量为()20m m >吨,则用含m 的式子表示甲用户当月应缴纳的水费为()()()12220123205552m m ⨯+-⨯+-⨯=-元,故答案为:552m -;(2)解:设乙用户6月份用水x 吨,则7月份用水()42x -吨,依题意,6月用水量符合第二梯度,7月份用水量符合第三梯度,()()12212354252110x x ⨯+-⨯+--=解得18x =,421824-=(吨).答:乙用户6月份用水18吨,7月份用水24吨.20.(1)解:设经过x 小时可以相遇,()480.560162x x ⨯-+=,解得:3118x =,答:经过3118小时可以相遇.(2)解:设经过y 小时两车相距54千米,486016254y y ⨯+=-,解得:1y =,答:经过1小时两车相距54千米.21.(1)解:设甲工程队每天掘进x 米,则乙工程队每天掘进()2x -米,由题意得,()2++2=26x x x -,解得=7x ,所以甲工程队每天掘进7米.(2)解:146261075-=+(天);∴甲乙两个工程队还需联合工作10天.22.(1)解:由题意得:1节链条的长度 2.8cm =,2节链条的总长度[2.8(2.81)] 4.6cm =+-=,3节链条的总长度[2.8(2.81)2] 6.4cm =⨯=+-,4节链条的总长度[2.8(2.81)3]8.2cm =⨯=+-,故答案为:4.6;6.4;8.2;(2)根据(1)可得,n 节链条的总长度为()()()2.8 2.811 1.81cm n n +--=+;(3)一根链条的总长度可以为73cm ,设该链条由x 节组成,根据题意得1.8173x +=,解得40x =,∴总长度为73cm 的链条由40节组成.23.(1)50(150%)25⨯-=(万元).故明年每辆无人驾驶出租车的预计改装费用是25万元;(2)设明年改装的无人驾驶出租车是x 辆,则今年改装的无人驾驶出租车是(260)x -辆,依题意有50(260)259000x x -+=,解得160x =.故明年改装的无人驾驶出租车是160辆.24.(1)设经过t 小时两人能相遇,由题意可得:181210t t -=,解得:53t =.所以两人经过53小时两人能相遇;(2)设小张的车速为x 千米/小时,则相遇时小张所走的路程为(11)23x x +千米,小李走的路程为:11052⨯=(千米),∴1151023x x +=+,解得18x =.答:小张的车速为每小时18千米.。
《一元一次方程》应用题分类:相遇与追击类问题综合练习1.根据我省“十二五”铁路规划,连云港至徐州客运专线项目建成后,连云港至徐州的最短客运时间将由现在的2小时18分缩短为36分钟,其速度每小时将提高260km.求提速后的火车速度.(精确到1km/h)2.一架飞机往返于两城之间,顺风需要5小时30分,逆风时需6小时,已知风速是每小时24千米,求两城之间的距离.3.小张和父亲预定搭家门口的公共汽车赶往火车站,去家乡看望爷爷.在行驶了一半路程时,小张向司机询问到达火车站的时间,司机估计继续乘公共汽车到火车站时火车将正好开出.根据司机的建议,小张和父亲随即下车改乘出租车,车速提高了一倍,结果赶在火车开出前15分钟到达火车站.已知公共汽车的平均速度是30千米/小时,问小张家到火车站有多远?4.李伟从家里骑摩托车到火车站,如果每小时行30千米,那么比火车开车时间早到15分钟,若每小时行18千米,则比火车开出时间迟到15分钟.若李伟打算在火车开出前10分钟到达火车站,求李伟此时骑摩托车的速度该是多少?5.一条环行跑道长400米,甲每分钟行550米,乙每分钟行250米.(1)甲、乙两人同时同地反向出发,问多少分钟后他们首次相遇?(2)甲、乙两人同时同地同向出发,问多少分钟后他们首次相遇?6.运动场跑道周长400m,爷爷跑步的速度是小红的.(1)他们从同一起点沿跑道的相反方向同时出发,min后两人第一次相遇,求他们的跑步速度;(2)如果他们第一次相遇后小红立即转身也沿爷爷的方向跑,那么几分钟后他们再次相遇?7.某学校的一名学生从家到校去上课,他先以每小时4千米的速度步行了全程的一半后,再搭上速度为20千米/时的顺路班车,所以比原来需要的时间早到了一小时,问他家到学校的距离是多少千米?8.从甲地到乙地的路有一段平路与一段上坡路.如果骑自行车保持平路每小时行15km,上坡路每小时行10km,下坡路每小时行18km,那么从甲地到乙地需29min,从乙地到甲地需25min.从甲地到乙地的路程是多少?9.列方程解应用题:成都到雅安的高速公路全长147千米,上午八时一辆货车由雅安到成都,车速是每小时60千米,半小时后,一辆小轿车从雅安出发去追赶货车,车速是每小时80千米.问:小轿车从雅安出发到追到货车用了多少小时?10.某中学租用两辆小汽车(速度相同)同时送1名带队老师和7名七年级学生到市区参加数学竞赛.每辆车限坐4人(不包括司机),其中一辆小汽车在距离考场15千米的地方出现故障,此时离截止进考场时刻还有42分钟,这时唯一可利用的只有另一辆小汽车,且这辆车的平均速度是60千米/时,人步行速是5千米/时.(人上下车的时间不记)(1)若小汽车送4人到达考场后再返回到出故障处接其他4人.请你通过计算说明能否在截止进考场的时刻前到达考场?(2)带队老师提出一种方案:先将4人用车送到考场,另外4人同时步行前往考场,小汽车到达考场后返回再接步行的4人到达考场.请你通过计算说明方案的可行性.(3)所有学生、老师都到达考场,最少需要多少时间?参考答案1.解:设连云港至徐州客运专线的铁路全长为xkm,列方程得:﹣=260,1.7x=358.8,解得x=,≈352km/h.答:提速后的火车速度约是352km/h.2.解:设两城之间的距离为x千米,由题意得:﹣=24×2解得:x=3168答:两城之间的距离为3168千米.3.解:由题目分析,根据时间差可列一元一次方程:x﹣x=,即:x=,解得:x=30千米.答:小张家到火车站有30km.4.解:设火车开出时间为x小时,由题意得:30(x﹣)=18(x+),解得x=1.设李伟骑车速度为每小时y千米,y==27.故李伟骑车速度为每小时27千米.5.解:(1)设甲、乙两人同时同地反向出发,x分钟后他们首次相遇.则(550+250)x=400,解得x=.故甲、乙两人同时同地反向出发,分钟后他们首次相遇.(2)设甲、乙两人同时同地同向出发,y分钟后他们首次相遇.则(550﹣250)y=400,解得y=.故甲、乙两人同时同地同向出发,分钟后他们首次相遇.6.解:(1)设小红的跑步速度是xm/min,则爷爷跑步的速度是xm/min,由题意得:x+×x=400,解得:x=200.x=120.答:小红的跑步速度是200m/min,则爷爷跑步的速度是120m/min.(2)设y分钟后他们再次相遇.由题意得:200y﹣120y=400,解得:y=5.答:5分钟后两人首次相遇.7.解:设他家到学校的距离是x千米,﹣1=,5x﹣40=x,x=10,故他家到学校的距离是10千米.8.解:设平路所用时间为x小时,29分=小时,25分=小时,则依据题意得:10(﹣x)=18(),解得:x=,则甲地到乙地的路程是15×+10×()=6.5km,答:从甲地到乙地的路程是6.5km.9.解:设轿车从出发到追上货车用了x小时,由题意得:60×+60x=80x解得:x=1.5;答:轿车从出发到追上货车用了1.5小时.10.解:(1)所需要的时间是:15×3÷60×60=45分钟,∵45>42,∴不能在截至进考场的时刻前到达考场;(2)先将4人用车送到考场,另外4人同时步行前往考场,汽车到考场后返回到与另外4人的相遇处再载他们到考场.先将4人用车送到考场所需时间为=0.25(h)=15(分钟).0.25小时另外4人步行了1.25km,此时他们与考场的距离为15﹣1.25=13.75(km),设汽车返回t(h)后与先步行的4人相遇,5t+60t=13.75,解得t=.汽车由相遇点再去考场所需时间也是h.所以用这一方案送这8人到考场共需15+2××60≈40.4<42.所以这8个人能在截止进考场的时刻前赶到;(3)8人同时出发,4人步行,先将4人用车送到离出发点xkm的A处,然后这4个人步行前往考场,车回去接应后面的4人,使他们跟前面4人同时到达考场,由A处步行前考场需(h),汽车从出发点到A处需(h)先步行的4人走了5×(km),设汽车返回t(h)后与先步行的4人相遇,则有60t+5t=x﹣5×,解得t=,所以相遇点与考场的距离为:15﹣x+60×=15﹣(km).由相遇点坐车到考场需:(﹣)(h).所以先步行的4人到考场的总时间为:(++﹣)(h),先坐车的4人到考场的总时间为:(+)(h),他们同时到达则有:++﹣=+,解得x=13.将x=13代入上式,可得他们赶到考场所需时间为:(+)×60=37(分钟).∵37<42,∴他们能在截止进考场的时刻前到达考场.。
一、填空题(每小题3分,共18分)
1.甲、乙二人在长为400米的圆形跑道上跑步,已知甲每秒钟跑9米,乙每秒钟跑7米.
(1)当两人同时同地背向而行时,经过__________秒钟两人首次相遇;
(2)两人同时同地同向而行时,经过__________秒钟两人首次相遇.
2.为改善生态环境,避免水土流失,某村积极植树造林,原计划每天植树60棵,实际每天植树80棵,结果比预计时间提前4天完成植树任务,则计划植树__________棵.
3.用一根绳子围成一个正方形,又用这根绳子围成一个圆,已知圆的半径比正方形的边长少2(π-2)米,请问这根绳子的长度是__________米.
4.某种鲜花进货价为每枝5元,若按标价的八折出售仍可获利3元,问标价为每枝多少元,若设标价为每枝x元,则可列方程为__________,解之得x=__________.5.如果一个两位数上的十位数是个位数的一半,两个数位上的数字之和为9,则这个两位数是__________.
6.一种药品现在售价56.10元,比原来降低了15%,问原售价为__________元.三、简答题(共58分)
15.(13分)用一根长40 cm的铁丝围成一个平面图形,(1)若围成一个正方形,则边长为__________,面积为__________,此时长、宽之差为__________.
(2)若围成一个长方形,长为12 cm,则宽为______,面积为______,此时长、宽之差为____.
(3)若围成一个长方形,宽为5 cm,则长为______,面积为______,此时长、宽之差为______.
(4)若围成一个圆,则圆的半径为________,面积为______(π取3.14,结果保留一位小数).
(5)猜想:①在周长不变时,如果围成的图形是长方形,那么当长宽之差越来越小时,长方形的面积越来越______(填“大”或“小”),②在周长不变时,所围成的各种平面图形中,______的面积最大.
学生成绩:
家长签字:
16.(9分)某市中学生排球赛中,按胜一场得2分,平一场得1分,负一场得0分计算,市第四中学排球队参加了8场比赛,保持不败的记录,共得了13分,问其中胜了几场
17.(9分)小赵和小王交流暑假中的活动,小赵说:“我参加科技夏令营,外出一个星期,这七天的日期数之和是84,你知道我是几号出去的吗”小王说:“我假期到舅舅家去住了七天,日期数的和再加月份数也是84,你能猜出我是几月几号回家的”试试看,列出方程,解决小赵与小王的问题.
18.(9分)一批树苗按下列方法依次由各班领取:第一班取100棵和余下的,第二班取200棵和余下的,第三班取300棵和余下的,……最后树苗全部被取完,且各班的树苗数都相等,求树苗总数和班级数.
19.(9分)李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元”刘磊算了一下说:“你一定搞错了”李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少想一想有没有可能找回27.60元,试用方程的知识给予解释.
20.(9分)初一(4)班课外乒乓球小组买了两副乒乓球板,如果每人付9元,那么多了5元,如果每人付8元,那么还缺2元,请你根据以上情境提出问题,并列方程求解.
学生成绩:
家长签字:
参考答案
一、1.(1)25(2)2002.9603.8π4.80%x=5+3105.366.66
三、15.(1)101000(2)8964(3)157510(4)6.4128.6(5)大圆
四、16.设胜了x场,可列方程:2x+(8-x)=13,解之得x=5
17.小赵是9号出去的,小王是7月15号回家的(提示:可设七天的中间一天日期数是x,则其余六天分别为x-3,x-2,x-1,x+1,x+2,x+3,由题意列方程,易求得中间天数,对小王的情形,由于七天的日期数之和是7的倍数,因为84是7
的倍数,所以月份数也是7的倍数,可知月份数是7,且在8号至14号在舅舅家.故于7月15号回家.
18.树苗共8100棵,有9个班级(提示:本题的设元列方程有多种方法,可以设树苗总数x棵,由第一、第二两个班级的树苗数相等可列方程:
100+ (x-100)=200+ [x-200-100-(x-100)],也可设有x个班级,则最后一个班级取树苗100x棵,倒数第二个班级先取100(x-1)棵,又取“余下的”也是最后一个班级的树苗数的,由最后两班的树苗相等,可得方程:
100(x-1)+ x=100x若注意到倒数第二个班级先取的100(x-1)棵比100x棵少100棵,即得=100,还可以设每班级取树苗x棵,得=100.
19.购买单价1.80元的笔记本24本,单价2.60元的笔记本12本.如果按李红原来报的价格,那么设购买单价1.80元的笔记本x本,列方程可得:1.8x+2.6(36-x)=100-27.60,
解之得x=2.60不符合实际问题的意义,所以没有可能找回27.60元.
20.略。