【三维设计】人教A版数学选修2-3全册练习:1.2.1 第一课时 排列与排列数公式(含答案解析)
- 格式:doc
- 大小:49.50 KB
- 文档页数:3
[课时达标检测]一、选择题1.已知下列问题:①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;②从甲、乙、丙三名同学中选出两名同学参加一项活动;③从a ,b ,c ,d 四个字母中取出2个字母;④从1,2,3,4四个数字中取出2个数字组成一个两位数.其中是排列问题的有( )A .1个B .2个C .3个D .4个解析:选B ①是排列问题,因为两名同学参加的活动与顺序有关;②不是排列问题,因为两名同学参加的活动与顺序无关;③不是排列问题,因为取出的两个字母与顺序无关;④是排列问题,因为取出的两个数字还需要按顺序排成一列.2.已知A 2n +1-A 2n =10,则n 的值为( )A .4B .5C .6D .7解析:选B 由A 2n +1-A 2n =10,得(n +1)n -n(n -1)=10,解得n =5.3.A 67-A 56A 45=( ) A .12B .24C .30D .36 解析:选D A 67=7×6×A 45,A 56=6×A 45,所以原式=36A 45A 45=36. 4.若n ∈N *,n<20,则(20-n)(21-n)(22-n)…(29-n)·(30-n)等于( )A .A 1020-nB .A 1120-nC .A 1030-nD .A 1130-n解析:选D 从(20-n)到(30-n)共有11个数,其中最大的数为30-n.5.(兰州模拟)要从a ,b ,c ,d ,e 5个人中选出1名组长和1名副组长,但a 不能当副组长,则不同的选法种数是( )A .20B .16C .10D .6解析:选B 不考虑限制条件有A 25种选法,若a 当副组长,有A 14种选法,故a 不当副组长,有A 25-A 14=16种不同的选法.二、填空题6.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成______________个以b 为首的不同的排列,它们分别是________________________________________________________________________. 解析:画出树形图如下:可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed.答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed7.集合P ={x|x =A m 4,m ∈N *},则集合P 中共有________个元素.解析:因为m ∈N *,且m≤4,所以P 中的元素为A 14=4,A 24=12,A 34=A 44=24,即集合P 中有3个元素.答案:38.从集合{0,1,2,5,7,9,11}中任取3个元素分别作为直线方程Ax +By +C =0中的系数A ,B ,C ,所得直线经过坐标原点的有________条.解析:易知过原点的直线方程的常数项为0,则c =0,再从集合中任取两个非零元素作为系数A 、B ,有A 26种,而且其中没有相同的直线,所以符合条件的直线有A 26=30条. 答案:30三、解答题9.解不等式:A 42x +1>140A 3x .解:根据原方程,x ∈N *,且应满足:⎩⎪⎨⎪⎧2x +1≥4,x≥3,解得x≥3. 根据排列数公式,原不等式可化为(2x +1)·2x·(2x -1)·(2x -2)<140x·(x -1)·(x -2).∵x≥3,∴两边同除以4x(x -1),得(2x +1)·(2x -1)<35(x -2),即4x 2-35x +69<0,解得3<x<534. ∵x ∈N *,∴x =4或x =5.10.写出下列问题的所有排列.(1)甲、乙、丙、丁四名同学站成一排;(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长.解:(1)四名同学站成一排,共有A44=24个不同的排列,它们是:甲乙丙丁,甲丙乙丁,甲丁乙丙,甲乙丁丙,甲丙丁乙,甲丁丙乙;乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.(2)从五名同学中选出两名同学任正、副班长,共有A25=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54.。
1.2排列与组合1.2.1排列整体设计教材分析分类加法计数原理是对完成一件事的所有方法的一个划分,依分类加法计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步乘法计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类加法计数原理和分步乘法计数原理的地位是有区别的,分类加法计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌啰嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础.分类加法计数原理和分步乘法计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题.这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关的是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.课时分配3课时第一课时教学目标知识与技能了解排列数的意义,掌握排列数公式及推导方法,并能运用排列数公式进行计算.过程与方法经历排列数公式的推导过程,从中体会“化归”的数学思想.情感、态度与价值观能运用所学的排列知识,正确地解决实际问题,体会“化归”思想的魅力.重点难点教学重点:排列、排列数的概念.教学难点:排列数公式的推导.教学过程引入新课提出问题1:前面我们学习了分类加法计数原理和分步乘法计数原理,请同学们回顾两个原理的内容,并回顾两个原理的区别与联系.活动设计:教师提问,学生补充.活动成果:1.分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有m n种不同的方法.那么完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理和分步乘法计数原理,回答的都是有关做一件事的不同方法种数的问题,区别在于:分类加法计数原理针对的是“分类”问题,其中各种方法相互独立,每一种方法只属于某一类,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对的是“分步”问题,各个步骤中的方法相互依存,某一步骤中的每一种方法都只能做完这件事的一个步骤,只有各个步骤都完成才算做完这件事.应用两种原理解题:①分清要完成的事情是什么;②是分类完成还是分步完成,“类”间互相独立,“步”间互相联系;③有无特殊条件的限制.设计意图:复习两个原理,为新知识的学习奠定基础.提出问题2:研究下面三个问题有什么共同特点?能否对下面的计数问题给出一种简便的计数方法呢?问题一:从5人的数学兴趣小组中选2人分别担任正、副组长,有多少种不同的选法?问题二:用1,2,3,4,5这5个数字组成没有重复数字的两位数,共有多少个?问题三:从a,b,c,d,e这5个字母中,任取两个按顺序排成一列,共有多少种不同的排法?活动设计:先独立思考,后小组交流,请同学发言、补充.活动成果:共同特点:问题三中把字母a,b,c,d,e分别代表人,就是问题一;分别代表数,就是问题二.把上面问题中所取的对象叫做元素,于是问题一、二、三都变成问题:从五个不同的元素中任取两个,然后按顺序排成一列,共有多少种不同的排列方法?我们把这一类问题称为排列问题,这就是我们今天要研究的内容.设计意图:通过三个具体的实例引入新课.探究新知提出问题1:你能把上述三个问题总结一下,概括出排列的定义吗?活动设计:学生举手发言、学生补充,教师总结.活动成果:从n个不同元素中,任取m(m≤n)个元素(这里的被取元素各不相同)按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列;(2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同.从n个不同元素中,任取m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用符号A m n表示.注意区别排列和排列数的不同:“一个排列”是指:从n个不同元素中,任取m(m≤n)个元素按照一定的顺序排成一列,不是数;“排列数”是指从n个不同元素中,任取m(m≤n)个元素的所有排列的个数,是一个数.所以符号A m n只表示排列数,而不表示具体的排列.设计意图:引导学生通过具体实例总结概括出排列和排列数的概念,培养学生的抽象概括能力.提出问题2:从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,这是不是个排列问题,排列数怎么求?活动设计:学生独立思考,举手回答.活动成果:这个问题就是从甲、乙、丙3名同学中每次选取2名同学,按照参加上午的活动在前,参加下午的活动在后的顺序排列,一共有多少种不同的排法的问题,是排列问题.解决这一问题可分两个步骤:第1步,确定参加上午活动的同学,从3人中任选1人,有3种方法;第2步,确定参加下午活动的同学,当参加上午活动的同学确定后,参加下午活动的同学只能从余下的2人中去选,于是有2种方法.根据分步乘法计数原理,在3名同学中选出2名,按照参加上午活动在前,参加下午活动在后的顺序排列的不同方法共有3×2=6种,如右图所示.设计意图:分析具体例子,巩固排列的定义,探索求排列数的方法.提出问题3:从1,2,3,4这4个数字中,每次取出3个排成一个三位数,共可得到多少个不同的三位数,是不是排列问题,怎样求排列数?活动设计:学生独立思考,举手回答.活动成果:这显然是个排列问题,解决这个问题分三个步骤:第一步先确定百位上的数,在4个数中任取1个,有4种方法;第二步确定十位上的数,从余下的3个数中取,有3种方法;第三步确定个位上的数,从余下的2个数中取,有2种方法.由分步乘法计数原理共有:4×3×2=24种不同的方法,用树形图排出,并写出所有的排列.由此可写出所有的排法.显然,从4个数字中,每次取出3个,按“百”“十”“个”位的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数.可以分三个步骤来解决这个问题:第1步,确定百位上的数字,在1,2,3,4这4个数字中任取1个,有4种方法;第2步,确定十位上的数字,当百位上的数字确定后,十位上的数字只能从余下的3个数字中去取,有3种方法;第3步,确定个位上的数字,当百位、十位上的数字确定后,个位的数字只能从余下的2个数字中去取,有2种方法.根据分步乘法计数原理,从1,2,3,4这4个不同的数字中,每次取出3个数字,按“百”“十”“个”位的顺序排成一列,共有4×3×2=24种不同的排法,因而共可得到24个不同的三位数,如图所示.由此可写出所有的三位数:123,124,132,134,142,143,213,214,231,234,241,243,312,314,321,324,341,342,412,413,421,423,431,432.设计意图:分析具体例子,巩固排列的定义,探索求排列数的方法.提出问题4:由以上两个问题我们发现:A 23=3×2=6,A 34=4×3×2=24,你能否得出A 2n 的意义和A 2n 的值?活动设计:学生举手发言、学生补充,教师总结.活动成果:由A 2n 的意义:假定有排好顺序的2个空位,从n 个元素a 1,a 2,…,a n 中任取2个元素去填空,一个空位填一个元素,每一种填法就得到一个排列;反过来,任一个排列总可以由这样的一种填法得到,因此,所有不同的填法的种数就是排列数A 2n .由分步乘法计数原理知完成上述填空共有n(n -1)种填法,∴A 2n =n(n -1).设计意图:由特殊到一般,引导学生逐步推导出排列数公式.提出问题5:有上述推导方法,你能推导出A 3n ,A m n 吗?活动设计:学生自己推导,学生板演.活动成果:求A 3n 可以按依次填3个空位来考虑,∴A 3n =n(n -1)(n -2),求A m n 可以按依次填m 个空位来考虑:A m n =n(n -1)(n -2)…(n -m +1),由此可以得到排列数公式:A m n=n(n -1)(n -2)…(n -m +1)(m ,n ∈N ,m≤n). 说明:(1)公式特征:第一个因数是n ,后面每一个因数比它前面一个少1,最后一个因数是n -m +1,共有m 个因数;(2)全排列:当n =m 时即n 个不同元素全部取出的一个排列.全排列数:A n n =n(n -1)(n -2)…2·1=n !(叫做n 的阶乘).另外,我们规定0!=1.所以A m n =n(n -1)(n -2)…(n -m +1)=n !(n -m )!=A n n A n -m n -m. 设计意图:引导学生逐步利用分步乘法计数原理推导出排列数公式.理解新知分析下列问题,哪些是求排列数问题?(1)有5本不同的书,从中选3本送给3名同学,每人各一本,共有多少种不同的送法?(2)有5种不同的书,要买3本送给3名同学,每人各一本,共有多少种不同的送法?(3)用0,1,2,3,4这5个数字,可以组成多少个没有重复数字的三位数?(4)用1,2,3,4,5这5个数字,可以组成多少个没有重复数字的三位数?(5)从1,2,3,4四个数字中,任选两个做加法,其不同结果有多少种?(6)从1,2,3,4四个数字中,任选两个做除法,其不同结果有多少种?活动设计:学生自己完成,没有把握的问题和同桌讨论.教师巡视,找同学说出答案和理由.活动成果:(1)是 (2)不是 (3)是 (4)是 (5)不是 (6)不是(2)不是从5个不同的元素中选出三个不同的元素,而是从多个可以相同的元素中,选出三个元素排成一列,不符合排列中元素不同的规定.(3)是排列问题,但排列数中有一部分0在百位的不是三位数.(5)中选出的两个元素的和与顺序无关,不符合排列的定义.设计意图:加深对排列和排列数的理解.应用新知例1解方程:3A 3x =2A 2x +1+6A 2x .思路分析:利用排列数公式求解即可.解:由排列数公式得:3x(x -1)(x -2)=2(x +1)x +6x(x -1),∵x≥3,∴3(x -1)(x -2)=2(x +1)+6(x -1),即3x 2-17x +10=0,解得x =5或x =23,∵x≥3,且x ∈N ,∴原方程的解为x =5. 点评:解含排列数的方程和不等式时要注意排列数A m n 中,m ,n ∈N 且m≤n 这些限制条件,要注意含排列数的方程和不等式中未知数的取值范围.【巩固练习】1.解不等式:A x 9>6A x -29.2.求证:(1)A n n =A m n ·A n -m n -m (2)(2n )!2n ·n !=1·3·5…(2n -1). 解答或证明:1.解:原不等式即9!(9-x)!>6·9!(11-x)!, 也就是1(9-x)!>6(11-x)·(10-x)·(9-x)!,化简得:x 2-21x +104>0, 解得x<8或x>13,又∵2<x≤7,且x ∈N ,所以,原不等式的解集为{3,4,5,6,7}.2.证明:(1)A m n ·A n -m n -m =n !(n -m)!(n -m)!=n !=A n n ,∴原式成立. (2)2n !2n ·n !=2n·(2n -1)·(2n -2)…4·3·2·12n ·n !=2n n·(n -1)…2·1·(2n -1)(2n -3)…3·12n ·n !=n !·1·3…(2n -3)(2n -1)n !=1·3·5…(2n -1)=右边, ∴原式成立.点评:公式A m n =n(n -1)(n -2)…(n -m +1)常用来求值,特别是m ,n 均为已知时;公式A m n =n !(n -m)!常用来证明或化简.【变练演编】化简:(1)12!+23!+34!+…+n -1n !;(2)1×1!+2×2!+3×3!+…+n×n !. (1)解:原式=1!-12!+12!-13!+13!-14!+…+1n -1!-1n !=1-1n !. (2)提示:由(n +1)!=(n +1)n !=n×n !+n !,得n×n !=(n +1)!-n !, 原式=(n +1)!-1.【达标检测】1.计算:(1)A 310;(2)A 812A 712. 2.若A m n =17×16×15×…×5×4,则n =______,m =______.3.若n ∈N *,且55<n <69,则(55-n)(56-n)…(68-n)(69-n)用排列数符号表示为______.答案:1.(1)720 (2)5 2.17 14 3.A 1569-n课堂小结1.知识收获:排列概念、排列数公式.2.方法收获:化归.3.思维收获:分类讨论、化归思想.补充练习【基础练习】1.若x =n !3!,则x =( ) A .A 3n B .A n -3n C .A n 3 D .A 3n -32.与A 310·A 77不等的是( ) A .A 910B .81A 88C .10A 99D .A 10103.若A 5m =2A 3m ,则m 的值为( )A .5B .3C .6D .74.计算:2A 59+3A 699!-A 610=________;(m -1)!A n -1m -1·(m -n)!=________. 【拓展练习】5.若2<(m +1)!A m -1m -1≤42,则m 的解集是________. 6.(1)已知A m 10=10×9×…×5,那么m =__________; (2)已知9!=362 880,那么A 79=__________;(3)已知A 2n =56,那么n =____________;(4)已知A 2n =7A 2n -4,那么n =____________.答案:1.B 2.B 3.A 4.1 1 5.{2,3,4,5,6}6.(1)6 (2)181 440 (3)8 (4)7设计说明本节课是排列组合的第一课时,本节课的主要内容就是用两个原理推导出排列数公式.本节课的特点是学生自己发现并总结定义,自主探究,自主完成排列数公式的推导.备课资料可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题.在这类问题使用住店处理的策略中,关键是正确判断哪个是底数,哪个是指数.例1 (1)将6个不同的小球放到3个不同的盒子中,有多少种不同的方法?(2)6个人争夺3个项目的冠军,有多少种不同的方法?解析:(1)36;(2)63.例2由1,2,3,4,5,6这6个数字共可以组成多少个不同的7位数?解析:完成此事共分7步,第一步:从6个数字中任取一个数字放在首位,有6种不同的办法,第二步:从6个数字中任取一个数字放在十万位,有6种不同的办法,依次类推,由分步乘法计数原理知共可以组成67个不同的7位数.(设计者:殷贺)。
人教A版高中数学选修2-3全册知能训练目录第1章1.1知能优化训练第1章1.2.1第一课时知能优化训练第1章1.2.1第二课时知能优化训练第1章1.2.2第一课时知能优化训练第1章1.2.2第二课时知能优化训练第1章1.3.1知能优化训练第1章1.3.2知能优化训练第2章2.1.1知能优化训练第2章2.1.2知能优化训练第2章2.2.1知能优化训练第2章2.2.2知能优化训练第2章2.2.3知能优化训练第2章2.3.1知能优化训练第2章2.3.2知能优化训练第2章2.4知能优化训练第3章3.1知能优化训练第3章3.2知能优化训练1.从A 地到B 地要经过C 地和D 地,从A 地到C 地有3条路,从C 地到D 地有2条路,从D 地到B 地有4条路,则从A 地到B 地不同走法的种数是( )A .3+2+4=9B .1C .3×2×4=24D .1+1+1=3解析:选C.由题意从A 地到B 地需过C 、D 两地,实际就是分三步完成任务,用乘法原理.2.某学生去书店,发现3本好书,决定至少买其中一本,则购买方式共有( )A .3种B .6种C .7种D .9种解析:选C.分3类:买1本书,买2本书和买3本书,各类的购买方式依次有3种、3种和1种,故购买方式共有3+3+1=7(种).3.(2011年高考课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13B.12C.23D.34解析:选A.甲、乙两位同学参加3个小组的所有可能性有3×3=9(种),其中甲、乙两人参加同一个小组的情况有3(种).故甲、乙两位同学参加同一个兴趣小组的概率P =39=13. 4.将3封信投入6个信箱内,不同的投法有________种.解析:第1封信有6种投法,第2、第3封信也分别有6种投法,因此共有6×6×6=216种投法.答案:216一、选择题1.现有4件不同款式的上衣和3条不同颜色的长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数为( )A .7B .12C .64D .81解析:选B.要完成配套,分两步:第1步,选上衣,从4件上衣中任选一件,有4种不同选法;第2步,选长裤,从3条长裤中任选一条,有3种不同选法.故共有4×3=12种不同的配法.2.从A 地到B 地,可乘汽车、火车、轮船三种交通工具,如果一天内汽车发3次,火车发4次,轮船发2次,那么一天内乘坐这三种交通工具的不同走法为( )A .1+1+1=3B .3+4+2=9C .3×4×2=24D .以上都不对答案:B3.十字路口来往的车辆,如果不允许回头,共有不同的行车路线( )A .24种B .16种C .12种D .10种解析:选C.完成该任务可分为四类,从每一个方向入口都可作为一类,如图:从第1个入口进入时,有3种行车路线;同理,从第2个,第3个,第4个入口进入时,都分别有3种行车路线,由分类加法计数原理可得共有3+3+3+3=12种不同的行车路线,故选C.4.从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有() A.30个B.42个C.36个D.35个解析:选C.第一步取b的数,有6种方法,第二步取a的数,也有6种方法,根据乘法计数原理,共有6×6=36种方法.5.从集合{1,2,3,4,5}中任取2个不同的数,作为直线Ax+By=0的系数,则形成不同的直线最多有()A.18条B.20条C.25条D.10条解析:选A.第一步取A的值,有5种取法,第二步取B的值有4种取法,其中当A=1,B=2时,与A=2,B=4时是相同的;当A=2,B=1时,与A=4,B=2时是相同的,故共有5×4-2=18(条).6.用1,2,3三个数字组成一个四位数,规定这三个数必须全部使用,且同一数字不能相邻出现,这样的四位数有()A.36个B.18个C.9个D.6个解析:选B.分3步完成,1,2,3这三个数中必有某一个数字被使用2次.第1步,确定哪一个数字被使用2次,有3种方法;第2步,把这2个相同的数字排在四位数不相邻的两个位置上有3种方法;第3步,将余下的2个数字排在四位数余下的两个位置上,有2种方法.故有3×3×2=18个不同的四位数.二、填空题7.加工某个零件分三道工序,第一道工序有5人,第二道工序有6人,第三道工序有4人,从中选3人每人做一道工序,则选法有________种.解析:选第一、第二、第三道工序各一人的方法数依次为5、6、4,由分步乘法计数原理知,选法总数为N=5×6×4=120.答案:1208.如图是某校的校园设施平面图,现用不同的颜色作为各区域的底色,为了便于区分,要求相邻区域不能使用同一种颜色.若有6种不同的颜色可选,则有________种不同的着色方案.解析:操场可从6种颜色中任选1种着色;餐厅可从剩下的5种颜色中任选1种着色;宿舍区和操场、餐厅颜色都不能相同,故可从其余的4种颜色中任选1种着色;教学区和宿舍区、餐厅的颜色都不能相同,故可从其余的4种颜色中任选1种着色.根据分步乘法计数原理,共有6×5×4×4=480种着色方案.答案:4809.从1,2,3,4,7,9六个数中,任取两个数作对数的底数和真数,则所有不同的对数的值的个数为________.解析:(1)当取1时,1只能为真数,此时对数的值为0.(2)不取1时,分两步:①取底数,5种;②取真数,4种.其中log23=log49,log32=log94,log24=log39,log42=log93,∴N=1+5×4-4=17.答案:17三、解答题10.8张卡片上写着0,1,2,…,7共8个数字,取其中的三张卡片排放在一起,可组成多少个不同的三位数?解:先排放百位,从1,2,…,7共7个数中选一个有7种选法;再排十位,从除去百位的数外,剩余的7个数(包括0)中选一个,有7种选法;最后排个位,从除前两步选出的数外,剩余的6个数中选一个,有6种选法.由分步乘法计数原理,共可以组成7×7×6=294个不同的三位数.11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法?解:若黄瓜种在第一块土地上,则有3×2×1=6种不同种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2×1=6(种).故不同的种植方法共有6×3=18(种).12.某校学生会由高一年级5人,高二年级6人,高三年级4人组成.(1)选其中一人为学生会主席,有多少种不同的选法?(2)若每年级选1人为校学生会常委成员,有多少种不同的选法?(3)若要选出不同年级的两人分别参加市里组织的两项活动,有多少种不同的选法?解:(1)分三类:第一类,从高一年级选一人,有5种选择;第二类,从高二年级选一人,有6种选择;第三类,从高三年级选一人,有4种选择.由分类加法计数原理,共有5+6+4=15种选法.(2)分三步完成:第一步,从高一年级选一人,有5种选择;第二步,从高二年级选一人,有6种选择;第三步,从高三年级选一人,有4种选择.由分步乘法计数原理,共有5×6×4=120种选法.(3)分三类:高一、高二各一人,共有5×6=30种选法;高一、高三各一人,共有5×4=20种选法;高二、高三各一人,共有6×4=24种选法;由分类加法计数原理,共有30+20+24=74种选法.1.用1,2,3,4,5这5个数字,组成无重复数字的三位数,其中奇数共有()A.30个B.36个C.40个D.60个解析:选B.分2步完成:个位必为奇数,有A13种选法;从余下的4个数中任选2个排在三位数的百位、十位上,有A24种选法.由分步乘法计数原理,共有A13×A24=36个无重复数字的三位奇数.2.6人站成一排,甲、乙、丙3个人不能都站在一起的排法种数为()A.720 B.144C.576 D.684解析:选C.(间接法)甲、乙、丙三人在一起的排法种数为A44×A33;不考虑任何限制,6人的全排列有A66.∴符合题意的排法种数为:A66-A44×A33=576.3.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个节目插入原节目单中,那么不同插法种数为()A.42 B.30C.20 D.12解析:选A.分两类:①两个新节目相邻的插法有6A22种;②两个新节目不相邻的插法有A26种.故N=6×2+6×5=42.4.将红、黄、蓝、白、黑5种颜色的小球,分别放入红、黄、蓝、白、黑5种颜色的小口袋中,若不允有空袋,且红口袋中不能装入红球,则有______种不同的放法.解析:先装红球,且每袋一球,所以有A14×A44=96(种).答案:96一、选择题1.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600C.4320 D.5040解析:选B.利用插空法,先将4个音乐节目和1个曲艺节目全排列有A55种,然后从6个空中选出2个空将舞蹈节目全排列有A26种,所以共有A55A26=3600(种).故选B.2.某省有关部门从6人中选4人分别到A、B、C、D四个地区调研十二五规划的开局形势,要求每个地区只有一人,每人只去一个地区,且这6人中甲、乙两人不去A地区,则不同的安排方案有()A.300种B.240种C.144种D.96种解析:选B.A地区有A14种方法,其余地区有A35种方法,共有A14A35=240(种).3.用数字1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有() A.48个B.36个C.24个D.18个解析:选B.个位数字是2的有3A33=18(个),个位数字是4的有3A33=18(个),所以共有36个.4.8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为()A.A88A29B.A88A210C.A88A27D.A88A26解析:选A.运用插空法,8名学生间共有9个空隙(加上边上空隙),先把老师排在9个空隙中,有A29种排法,再把8名学生排列,有A88种排法,共有A88×A29种排法.5.五名男生与两名女生排成一排照相,如果男生甲必须站在中间,两名女生必须相邻,符合条件的排法共有()A.48种B.192种C.240种D.288种解析:选B.(用排除法)将两名女生看作1人,与四名男生一起排队,有A55种排法,而女生可互换位置,所以共有A55×A22种排法,男生甲插入中间位置,只有一种插法;而4男2女排列中2名女生恰在中间的排法共有A22×A44(种),这时男生甲若插入中间位置不符合题意,故符合题意的排列总数为A55×A22-A44×A22=192.6.由1、2、3、4、5组成没有重复数字且1、2都不与5相邻的五位数的个数是() A.36 B.32C.28 D.24解析:选A.分类:①若5在首位或末位,共有2A12×A33=24(个);②若5在中间三位,共有A13×A22×A22=12(个).故共有24+12=36(个).二、填空题7.5人站成一排,甲必须站在排头或排尾的不同站法有________种.解析:2A44=48.答案:488.3个人坐8个位置,要求每人的左右都有空位,则有________种坐法.解析:第一步:摆5个空位置,○○○○○;第二步:3个人带上凳子插入5个位置之间的四个空,有A34=24(种),故有24种不同坐法.答案:249.5名大人要带两个小孩排队上山,小孩不排在一起也不排在头、尾,则共有________种排法(用数字作答).解析:先让5名大人全排列有A55种排法,两个小孩再依条件插空有A24种方法,故共有A55A24=1440种排法.答案:1440三、解答题10.7名班委中有A、B、C三人,有7种不同的职务,现对7名班委进行职务具体分工.(1)若正、副班长两职只能从A、B、C三人中选两人担任,有多少种分工方案?(2)若正、副班长两职至少要选A、B、C三人中的一人担任,有多少种分工方案?解:(1)先排正、副班长有A23种方法,再安排其余职务有A55种方法,依分步计数原理,共有A23A55=720种分工方案.(2)7人中任意分工方案有A77种,A、B、C三人中无一人任正、副班长的分工方案有A24 A55种,因此A、B、C三人中至少有一人任正、副班长的方案有A77-A24A55=3600(种).11.用0,1,2,3,4,5这六个数字:(1)能组成多少个无重复数字的四位偶数?(2)能组成多少个无重复数字且为5的倍数的五位数?(3)能组成多少个无重复数字的比1325大的四位数?解:(1)符合要求的四位偶数可分为三类:第一类:0在个位时,有A 35个;第二类:2在个位时,首位从1,3,4,5中选定1个有A 14种,十位和百位从余下的数字中选,有A 24种,于是有A 14×A 24(个);第三类:4在个位时,与第二类同理,也有A 14×A 24(个).由分类加法计数原理得:共有A 35+2A 14×A 24=156(个).(2)为5的倍数的五位数可分为两类:第一类:个位上为0的五位数有A 45个;第二类:个位上为5的五位数有A 14×A 34(个),故满足条件的五位数共有A 45+A 14×A 34=216(个).(3)比1325大的四位数可分为三类:第一类:形如2,3 ,4 ,5 ,共有A 14×A 35(个);第二类:形如14 ,15 ,共有A 12×A 24(个); 第三类:形如134 ,135 ,共有A 12×A 13(个).由分类加法计数原理可得,比1325大的四位数共有:A 14×A 35+A 12×A 24+A 12×A 13=270(个).12.7名师生站成一排照相留念,其中老师1人,男学生4人,女学生2人,在下列情况下,各有多少种不同站法?(1)两名女生必须相邻而站;(2)4名男生互不相邻;(3)若4名男生身高都不等,按从高到低的顺序站;(4)老师不站中间,女生不站两端.解:(1)2名女生站在一起有站法A 22种,视为一种元素与其余5人全排,有A 66种排法,所以有不同站法A 22×A 66=1440(种).(2)先站老师和女生,有站法A 33种,再在老师和女生站位的间隔(含两端)处插入男生,每空一人,则插入方法A 44种,所以共有不同站法A 33×A 44=144(种).(3)7人全排列中,4名男生不考虑身高顺序的站法有A 44种,而由高到低有从左到右和从右到左的不同,所以共有不同站法2×A 77A 44=420(种). (4)中间和两侧是特殊位置,可分类求解如下:①老师站在两侧之一,另一侧由男生站,有A 12×A 14×A 55种站法;②两侧全由男生站,老师站除两侧和正中的另外4个位置之一,有A 14×A 24×A 44种站法,所以共有不同站法A 12×A 14×A 55+A 14×A 24×A 44=960+1152=2112(种).1.5A35+4A24=()A.107B.323C.320 D.348解析:选D.原式=5×5×4×3+4×4×3=348.2.4×5×6×…·(n-1)·n等于()A.A4n B.A n-4nC.n!-4! D.A n-3n解析:选D.原式可写成n·(n-1)·…×6×5×4,故选D.3.6名学生排成两排,每排3人,则不同的排法种数为()A.36 B.120C.720 D.240解析:选C.排法种数为A66=720.4.下列问题属于排列问题的是________.①从10个人中选2人分别去种树和扫地;②从10个人中选2人去扫地;③从班上30名男生中选出5人组成一个篮球队;④从数字5,6,7,8中任取两个不同的数作幂运算.解析:①选出的2人有不同的劳动内容,相当于有顺序.②选出的2人劳动内容相同,无顺序.③5人一组无顺序.④选出的两个数作为底数或指数其结果不同,有顺序.答案:①④一、选择题1.甲、乙、丙三地客运站,需要准备在甲、乙、丙三地之间运行的车票种数是() A.1 B.2C.3 D.6解析:选D.A23=6.2.已知A2n+1-A2n=10,则n的值为()A.4 B.5C.6 D.7解析:选B.由A2n+1-A2n=10,得(n+1)n-n(n-1)=10,解得n=5.3.从5本不同的书中选两本送给2名同学,每人一本,则不同的送法种数是() A.5 B.10C.20 D.60解析:选C.A25=20.4.将3张不同的电影票分给10人中的3人,每人一张,则不同的分法种数是() A.2160 B.720C.240 D.120解析:选B.A310=10×9×8=720.5.某段铁路所有车站共发行132种普通车票,那么这段铁路共有车站数是()A.8 B.12C.16 D.24解析:选B.设车站数为n,则A2n=132,n(n-1)=132,∴n =12.6.S =1!+2!+3!+…+99!,则S 的个位数字为( )A .0B .3C .5D .7解析:选B.∵1!=1,2!=2,3!=6,4!=24,5!=120,6!=720,…∴S =1!+2!+3!+…+99!的个位数字是3.二、填空题7.若A m 10=10×9×…×5,则m =________.解析:10-m +1=5,得m =6.答案:68.A n +32n +A n +14=________.解析:由⎩⎪⎨⎪⎧ n +3≤2n ,n +1≤4,n ∈N *,得n =3, ∴A n +32n +A n +14=6!+4!=744. 答案:7449.甲、乙、丙、丁四人轮读同一本书,则甲首先读的安排方法有________种. 解析:甲在首位,相当于乙、丙、丁全排,即3!=3×2×1=6.答案:6三、解答题10.解不等式:A x 9>6A x -29.解:原不等式可化为9!(9-x )!>6·9!(9-x +2)!, 其中2≤x ≤9,x ∈N *,∴(11-x )(10-x )>6,即x 2-21x +104>0,∴(x -8)(x -13)>0,∴x <8或x >13.又∵2≤x ≤9,x ∈N *,∴2≤x <8,x ∈N *.故x =2,3,4,5,6,7.11.解方程3A x 8=4A x -19.解:由3A x 8=4A x -19得3×8!(8-x )!=4×9!(10-x )!. ∴3×8!(8-x )!=4×9×8!(10-x )(9-x )(8-x )!. 化简得:x 2-19x +78=0,解得x 1=6,x 2=13.∵x ≤8,且x -1≤9,∴原方程的解是x =6.12.判断下列问题是否为排列问题.(1)北京、上海、天津三个民航站之间的直达航线的飞机票的价格(假设来回的票价相同);(2)选2个小组分别去植树和种菜;(3)选2个小组去种菜;(4)选10人组成一个学习小组;(5)选3个人分别担任班长、学习委员、生活委员;(6)某班40名学生在假期相互通信.解:(1)中票价只有三种,虽然机票是不同的,但票价是一样的,不存在顺序问题,所以不是排列问题;(2)植树和种菜是不同的,存在顺序问题,属于排列问题;(3)、(4)不存在顺序问题,不属于排列问题;(5)中每个人的职务不同,例如甲当班长或当学习委员是不同的,存在顺序问题,属于排列问题;(6)A给B写信与B给A写信是不同的,所以存在着顺序问题,属于排列问题.所以在上述各题中(2)、(5)、(6)属于排列问题.1.编号为1、2、3、4、5、6、7的七盏路灯,晚上用时只亮三盏灯,且任意两盏亮灯不相邻,则不同的开灯方案有( )A .60种B .20种C .10种D .8种解析:选C.四盏熄灭的灯产生的5个空档中放入3盏亮灯,即C 35=10.2.某中学要从4名男生和3名女生中选4人参加公益劳动,若男生甲和女生乙不能同时参加,则不同的选派方案共有( )A .25种B .35种C .820种D .840种解析:选A.分3类完成:男生甲参加,女生乙不参加,有C 35种选法;男生甲不参加,女生乙参加,有C 35种选法;两人都不参加,有C 45种选法.所以共有2C 35+C 45=25(种)不同的选派方案.3.(2010年高考大纲全国卷Ⅰ)某校开设A 类选修课3门,B 类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有( )A .30种B .35种C .42种D .48种解析:选A.法一:可分两种互斥情况:A 类选1门,B 类选2门或A 类选2门,B 类选1门,共有C 13C 24+C 23C 14=18+12=30种选法.法二:总共有C 37=35种选法,减去只选A 类的C 33=1(种),再减去只选B 类的C 34=4(种),故有30种选法.4.(2011年高考江苏卷)从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是________.解析:从1,2,3,4中任取两个数的组合个数为C 24=6,满足一个数是另一个数两倍的组合为{1,2},{2,4},故P =26=13.答案:13一、选择题1.9名会员分成三组讨论问题,每组3人,共有不同的分组方法种数为( )A .C 39C 36B .A 39A 36C.C 39C 36A 33 D .A 39A 36A 33 解析:选C.此为平均分组问题,要在分组后除以三组的排列数A 33.2.5本不同的书全部分给4个学生,每个学生至少1本,不同的分法种数有( ) A .480 B .240 C .120 D .96 解析:选B.先把5本书中两本捆起来,再分成4份即可,∴分法数为C 25A 44=240.3.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( )A .14B .24C .28D .48解析:选A.6人中选4人的方案有C 46=15(种),没有女生的方案只有一种,所以满足要求的方案总数有14种.4.已知圆上9个点,每两点连一线段,所有线段在圆内的交点有( ) A .36个 B .72个 C .63个 D .126个解析:选D.此题可化归为:圆上9个点可组成多少个四边形,每个四边形的对角线的交点即为所求,所以,交点有C 49=126(个).5.(2010年高考大纲全国卷Ⅱ)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中,若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有( )A .12种B .18种C .36种D .54种解析:选B.先将1,2捆绑后放入信封中,有C 13种方法,再将剩余的4张卡片放入另外两个信封中,有C 24C 22种方法,所以共有C 13C 24C 22=18种方法.6.如图所示的四棱锥中,顶点为P ,从其他的顶点和各棱中点中取3个,使它们和点P 在同一平面内,不同的取法种数为( )A .40B .48C .56D .62解析:选C.满足要求的点的取法可分为3类:第1类,在四棱锥的每个侧面上除点P 外任取3点,有4C 35种取法; 第2类,在两个对角面上除点P 外任取3点,有2C 34种取法;第3类,过点P 的四条棱中,每一条棱上的两点和与这条棱异面的两条棱的中点也共面,有4C 12种取法.所以,满足题意的不同取法共有4C 35+2C 34+4C 12=56(种). 二、填空题7.在50件产品中有4件是次品,从中任意抽出5件,至少有三件是次品的抽法共有________种.解析:分两类,有4件次品的抽法为C 44C 146(种);有三件次品的抽法有C 34C 246(种),所以共有C 44C 146+C 34C 246=4186种不同的抽法.答案:41868.某运动队有5对老搭档运动员,现抽派4个运动员参加比赛,则这4人都不是老搭档的抽派方法数为________.解析:先抽取4对老搭档运动员,再从每对老搭档运动员中各抽1人,故有C 45C 12C 12C 12C 12=80(种). 答案:809.2011年3月10日是第六届世界肾脏日,某社区服务站将5位志愿者分成3组,其中两组各2人,另一组1人,分别去三个不同的社区宣传这届肾脏日的主题:“保护肾脏,拯救心脏”,不同的分配方案有________种.(用数字作答)解析:分配方案有C 25C 23C 11A 22×A 33=10×3×62=90(种). 答案:90三、解答题 10.四个不同的小球放入编号为1,2,3,4的四个盒子中,恰有一个空盒的放法有多少种? 解:恰有一个空盒,则另外三个盒子中小球数分别为1,1,2,实际上可转化为先将四个不同的小球分为三组,两组各1个,另一组2个,分组方法有C 14C 13C 22A 22(种),然后将这三组再加上一个空盒进行全排列,即共有C 14C 13C 22A 22·A 44=144(种). 11.要从7个班中选10人参加数学竞赛,每班至少1人,共有多少种不同的选法?解:法一:共分三类:第一类:一个班出4人,其余6个班各出1人,有C 17种;第二类:有2个班分别出2人,3人,其余5个班各出1人,有A 27种;第三类:有3个班各出2人,其余4个班各出1人,有C 37种,故共有C 17+A 27+C 37=84(种).法二:将10人看成10个元素,这样元素之间共有9个空(两端不计),从这9个空中任选6个(即这6个位置放入隔板,将其分为七部分),有C 69=84种放法.故共有84种不同的选法.12.如图,在以AB 为直径的半圆周上,有异于A 、B 的六个点C 1、C 2、C 3、C 4、C 5、C 6,直径AB 上有异于A 、B 的四个点D 1、D 2、D 3、D 4.(1)以这10个点中的3个点为顶点作三角形可作出多少个?其中含C 1点的有多少个? (2)以图中的12个点(包括A 、B )中的4个点为顶点,可作出多少个四边形?解:(1)可分三种情况处理:①C 1、C 2、…、C 6这六个点任取三点可构成一个三角形;②C 1、C 2、…、C 6中任取一点,D 1、D 2、D 3、D 4中任取两点可构成一个三角形; ③C 1、C 2、…、C 6中任取两点,D 1、D 2、D 3、D 4中任取一点可构成一个三角形.∴C 36+C 16C 24+C 26C 14=116(个).其中含C 1点的三角形有C 25+C 15·C 14+C 24=36(个). (2)构成一个四边形,需要四个点,且无三点共线,∴共有C 46+C 36C 16+C 26C 26=360(个).1.计算C 28+C 38+C 29等于() A .120 B .240C .60D .480解析:选A.原式=C 39+C 29=C 310=120.2.若C 7n +1-C 7n =C 8n ,则n 等于( ) A .12 B .13 C .14 D .15解析:选C.C 7n +1-C 7n =C 8n ,即C 7n +1=C 8n +C 7n =C 8n +1,所以n +1=7+8,即n =14. 3.某校一年级有5个班,二年级有8个班,三年级有3个班,分年级举行班与班之间的篮球单循环赛,总共需进行比赛的场数是( )A .C 25+C 28+C 23B .C 25C 28C 23C .A 25+A 28+A 23 D .C 216解析:选A.分三类:一年级比赛的场数是C 25,二年级比赛的场数是C 28,三年级比赛的场数是C 23,再由分类加法计数原理可求.4.把8名同学分成两组,一组5人学习电脑,一组3人做生物实验,则不同的安排方法有________种.解析:C 38=56. 答案:56一、选择题1.下面几个问题中属于组合问题的是( )①由1,2,3,4构成的双元素集合;②5个队进行单循环足球比赛的分组情况;③由1,2,3构成两位数的方法;④由1,2,3组成无重复数字的两位数的方法.A .①③B .②④C .①②D .①②④ 答案:C2.已知平面内A 、B 、C 、D 这4个点中任何3点均不共线,则由其中任意3个点为顶点的所有三角形的个数为( )A .3B .4C .12D .24解析:选B.C 34=4.3.C 03+C 14+C 25+C 36+…+C 1720的值为( ) A .C 321 B .C 320C .C 420 D .C 421 解析:选D.原式=()C 04+C 14+C 25+C 36+…+C 1720 =()C 15+C 25+C 36+…+C 1720=(C 26+C 36)+…+C 1720=C 1721=C 21-1721=C 421. 4.若A 3n =12C 2n ,则n 等于( ) A .8 B .5或6 C .3或4 D .4解析:选A.A 3n =n (n -1)(n -2),C 2n =12n (n -1),∴n (n -1)(n -2)=6n (n -1),又n ∈N *,且n ≥3.解得n =8.5.从6位同学中选出4位参加一个座谈会,要求张、王两人中至多有一个人参加,则不同选法的种数为( )A .9B .14C .12D .15解析:选A.法一:直接法:分两类,第一类张、王两人都不参加,有C 44=1种选法;第二类张、王两人只有1人参加,有C 12C 34=8种选法.故共有C 44+C 12×C 34=9种选法.法二:间接法:C 46-C 24=9(种).6.把三张游园票分给10个人中的3人,分法有( ) A .A 310种 B .C 310种C .C 310A 310种D .30种 解析:选B.三张票没区别,从10人中选3人即可,即C 310. 二、填空题7.若C 13n =C 7n ,则C 18n =________.解析:∵C 13n =C 7n ,∴13=n -7,∴n =20, ∴C 1820=C 220=190. 答案:1908.C 22+C 23+C 24+…+C 210=________. 解析:原式=C 33+C 23+C 24+…+C 210=C 34+C 24+…+C 210=C 35+C 25+…+C 210=C 311=165. 答案:1659.从4名男生和3名女生中选出4人担任奥运志愿者,若选出的4人中既有男生又有女生,则不同的选法共有________________________________________________________________________种.解析:(间接法)共有C 47-C 44=34种不同的选法. 答案:34 三、解答题10.若C 4n >C 6n ,求n 的取值集合. 解:∵C 4n >C 6n ,∴⎩⎪⎨⎪⎧C 4n >C 6n n ≥6⇒⎩⎨⎧n !4!(n -4)!>n !6!(n -6)!n ≥6⇒⎩⎨⎧ n 2-9n -10<0n ≥6⇒⎩⎨⎧-1<n <10,n ≥6.∵n ∈N *,∴n =6、7、8、9,∴n 的集合为{6,7,8,9}.11.要从6男4女中选出5人参加一项活动,按下列要求,各有多少种不同的选法? (1)甲当选且乙不当选;(2)至少有1女且至多有3男当选.解:(1)甲当选且乙不当选,∴只需从余下的8人中任选4人,有C 48=70种选法.(2)至少有1女且至多有3男时,应分三类:第一类是3男2女,有C 36C 24种选法; 第二类是2男3女,有C 26C 34种选法; 第三类是1男4女,有C 16C 44种选法.由分类计数原理知,共有C 36C 24+C 26C 34+C 16C 44=186种选法. 12.现有10件产品,其中有2件次品,任意抽出3件检查. (1)正品A 被抽到有多少种不同的抽法? (2)恰有一件是次品的抽法有多少种? (3)至少一件是次品的抽法有多少种?解:(1)C 29=9×82=36(种).(2)从2件次品中任取1件有C 12种方法,从8件正品中取2件有C 28种方法,由分步乘法计数原理,不同的抽法共有C 12×C 28=2×8×72=56(种). (3)法一:含1件次品的抽法有C 12C 28种,含2件次品的抽法有C 22×C 18种,由分类加法计数原理,不同的抽法共有C 12×C 28+C 22×C 18=56+8=64(种).法二:从10件产品中任取3件的抽法为C 310种,不含次品的抽法有C 38种,所以至少1件次品的抽法为C 310-C 38=64(种).1.(x +2)6的展开式中x 3的系数是( ) A .20 B .40 C .80 D .160解析:选D.法一:设含x 3的为第r +1项,则T r +1=C r n x6-r ·2r,令6-r =3,得r =3,故展开式中x 3的系数为C 36×23=160.法二:根据二项展开式的通项公式的特点:二项展开式每一项中所含的x 与2分得的次数和为6,则根据条件满足条件x 3的项按3与3分配即可,则展开式中x 3的系数为C 36×23=160.2.(2x -12x)6的展开式的常数项是( )A .20B .-20C .40D .-40解析:选B.由题知(2x -12x )6的通项为T r +1=(-1)r C r 626-2r x 6-2r,令6-2r =0得r =3,故常数项为(-1)3C 36=-20.3.1.056的计算结果精确到0.01的近似值是( ) A .1.23 B .1.24 C .1.33 D .1.34解析:选 D.1.056=(1+0.05)6=C 06+C 16×0.05+C 26×0.052+C 36×0.053+…=1+0.3+0.0375+0.0025+…≈1.34.4.(2011年高考浙江卷)设二项式⎝⎛⎭⎫x -a x 6(a >0)的展开式中x 3的系数是A ,常数项为B ,若B =4A ,则a 的值是________.解析:A =C 26(-a )2,B =C 46(-a )4, 由B =4A 知,4C 26(-a )2=C 46(-a )4,解得a =±2. 又∵a >0,∴a =2. 答案:2一、选择题1.在(1-x )5-(1-x )6的展开式中,含x 3的项的系数是( ) A .-5 B .5 C .-10 D .10解析:选D.(1-x )5中x 3的系数-C 35=-10,-(1-x )6中x 3的系数为-C 36·(-1)3=20,故(1-x )5-(1-x )6的展开式中x 3的系数为10.2.(x -2y )10的展开式中x 6y 4项的系数是( ) A .840 B .-840 C .210 D .-210解析:选A.在通项公式T r +1=C r 10(-2y )r x10-r 中,令r =4,即得(x -2y )10的展开式中x 6y 4项的系数为C 410·(-2)4=840.3.(2010年高考陕西卷)⎝⎛⎭⎫x +ax 5(x ∈R )展开式中x 3的系数为10,则实数a 等于( ) A .-1 B.12 C .1D .2解析:选D.由二项式定理,得T r +1=C r 5x 5-r ·⎝⎛⎭⎫a x r =C r 5·x 5-2r ·a r ,∴5-2r =3,∴r =1,∴C 15·a =10,∴a =2.4.若C 1n x +C 2n x 2+…+C n n x n能被7整除,则x ,n 的值可能为( ) A .x =4,n =3 B .x =4,n =4 C .x =5,n =4 D .x =6,n =5解析:选C.由C 1n x +C 2n x 2+…+C n n x n =(1+x )n-1,分别将选项A 、B 、C 、D 代入检验知,仅有C 适合.5.⎝⎛⎭⎫x -13x 10的展开式中含x 的正整数指数幂的项数是( ) A .0 B .2 C .4 D .6解析:选B.T r +1=C r 10x 10-r 2·⎝⎛⎭⎫-13r ·x -r =C r 10⎝⎛⎭⎫-13r ·x 10-3r2.若是正整数指数幂,则有10-3r2为正整数,∴r 可以取0,2,∴项数为2.6.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4解析:选C.(1+2x )3(1-3x )5=(1+6x 12+12x +8x 32)·(1-5x 13+10x 23-10x +5x 43-x 53),x的系数是-10+12=2.二、填空题 7.⎝⎛⎭⎪⎫2-13x 6的展开式中的第四项是________.解析:T 4=C 3623⎝⎛⎭⎪⎫-13x 3=-160x .答案:-160x8.若(x +a )5的展开式中的第四项是10a 2(a 为大于0的常数),则x =________.解析:∵T 4=C 35(x )2·a 3=10x ·a 3. ∴10xa 3=10a 2(a >0),∴x =1a.答案:1a9.(2010年高考辽宁卷)(1+x +x 2)⎝⎛⎭⎫x -1x 6的展开式中的常数项为__________. 解析:(1+x +x 2)⎝⎛⎭⎫x -1x 6=(1+x +x 2)[ C 06x 6⎝⎛⎭⎫-1x 0+C 16x 5⎝⎛⎭⎫-1x 1+C 26x 4⎝⎛⎭⎫-1x 2+C 36x 3⎝⎛⎭⎫-1x 3。
[课时达标检测]一、选择题1.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有() A.20种B.30种C.40种D.60种解析:选A分类完成,甲排周一,乙、丙只能从周二至周五这4天中选2天排,有A24种安排方法;甲排周二,乙、丙只能从周三至周五这3天中选2天排,有A23种安排方法;甲排周三,乙、丙只能排周四和周五,有A22种安排方法.由分类加法计数原理可知,共有A24+A23+A22=20种不同的安排方法.2.高三(1)班需要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1 800 B.3 600C.4 320 D.5 040解析:选B利用插空法,先将4个音乐节目和1个曲艺节目全排列,有A55种,然后从6个空中选出2个空将舞蹈节目插入,有A26种排法,所以共有A55·A26=3 600种排法.3.用0到9这10个数字,可以组成没有重复数字的三位偶数的个数为()A.324 B.328C.360 D.648解析:选B若个位数是0,从其余9个数中取出两个数排在前两位,有A29种排法;若个位数不是0, 先从2,4,6,8中取一个放在个位,在其余的8的个数(不包括0)中取出1个数排在百位,再从其余8的个数(包括0)中取出一个数排在十位,有4×8×8=256种排法,所以满足条件的三位偶数的个数共有A29+4×8×8=328.4.直线Ax+By=0的系数A,B可以在0,1,2,3,5,7这六个数字中选取,则这些方程所表示的不同直线有()A.30条B.23条C.22条D.14条解析:选B当A=B≠0时,表示同一直线x+y=0;当A=0,B≠0时,表示直线y=0;当A≠0,B=0,表示直线x=0;当A≠0,B≠0,A≠B时有A25条直线,故共有1+1+1+A25=23条直线.5.(韶关检测)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20 000大的五位偶数共有()A.288个B.240个C.144个D.126个解析:选B第1类,个位数字是2,首位可排3,4,5之一,有A13种排法,排其余数字有A34种排法,所以有A13A34个数;第2类,个位数字是4,有A13A34个数;第3类,个位数字是0,首位可排2,3,4,5之一,有A14种排法,排其余数字有A34种排法,所以有A14A34个数.由分类加法计数原理,可得共有2A13A34+A14A34=240个数.二、填空题6.8次投篮中,投中3次,其中恰有2次连续命中的情形有________种.解析:将2次连续命中当作一个整体,和另一次命中插入另外5次不命中留下的6个空里进行排列,有A26=30种情形.答案:307.要排出某班一天中语文、数学、政治、英语、体育、艺术6门课各一节的课程表.要求数学课排在前3节,英语课不排在第6节,则不同的排法种数为__________(用数字作答).解析:先在前3节课中选一节安排数学,有A13种安排方法;在除了数学课与第6节课外的4节课中选一节安排英语课,有A14种安排方法;其余4节课无约束条件,有A44种安排方法.根据分步乘法计数原理,不同的排法种数为A13·A14·A44=288.答案:2888.用1,2,3,4,5,6,7,8组成没有重复数字的八位数,要求1与2相邻,3与4相邻,5与6相邻,这样的八位数共有________个(用数字作答).解析:把相邻的两个数捆绑(看成一个整体),三捆组内部都有A22种排列方法,它们与另外2个数之间又有A55种排列方法.根据分步乘法计数原理知,共有A22A22A22A55=8×120=960个八位数.答案:960三、解答题9.用0,1,2,…,9十个数可组成多少个满足以下条件的且没有重复数字的排列:(1)五位奇数?(2)大于30 000的五位偶数?解:(1)要得到五位奇数,末位应从1,3,5,7,9五个数字中取,有5种取法,取定末位数字后,首位就有除这个数字和0之外的8种不同取法.首末两位取定后,十个数字还有八个数字可供中间的十位、百位与千位三个数位选取,共有A38种不同的排列方法.因此由分步乘法计数原理共有5×8×A38=13 440个没有重复数字的五位奇数.(2)要得偶数,末位应从0,2,4,6,8中选取,而要比30 000大的五位偶数,可分两类:①末位数字从0,2中选取,则首位可取3,4,5,6,7,8,9中任一个,共7种选取方法,其余三个数位就有除首尾两个数位上的数字之外的八个数字可以选取,共A38种取法.所以共有2×7×A38种不同情况.②末位数字从4,6,8中选取,则首位应从3,4,5,6,7,8,9中除去末位数字的六位数字中选取,其余三个数位仍有A38种选法,所以共有3×6×A38种不同情况.由分类加法计数原理,比30 000大的无重复数字的五位偶数的个数共有2×7×A38+3×6×A38=10 752.10.有语文、数学、外语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种安排方法?解:法一:(分类法)分两类:第1类,化学被选上,有A13·A35种排法;第2类,化学不被选上,有A45种排法.故共有A13·A35+A45=300种不同的安排方法.法二:(分步法)第1步,第四节有A15种排法;第2步,其余三节有A35种排法,故共有A15·A35=300种不同的安排方法.法三:(间接法)从6门课中选4门课有A46种排法,而化学排第四节有A35种排法,故共有A46-A35=300种不同的安排方法.。
导入新课由数字1,2,3,4可以组成多少个没有重复数字的三位数?你能用树形图列出所有结果吗?先看下面的问题234112 13 14 1231 2 4 1 3 2 1 3 41 42 14 3 3 43 2 3 13 1 2 3 14 3 4 23 2 132 434 1 2 1 2 3 2 4 2 1 3 21 423 1 2 3 424 1 2 4 3 4 1 4 24 34 1 2 4 1 34 2 1 4 2 3 4 3 1 4 3 2下题又如何呢?假如由数字1~9这几个数字可以组成多少个没有重复数字的三位数?上节课,我们一起学习了两个基本原理及基本原理的简单应用,这一节,我们将继续应用基本原理研究排列问题.1.2.1排列教学目标知识目标(1)基本概念:元素、排列、排列数、全排列、阶乘;(2)基本公式:排列数公式.能力目标(1) 理解排列的意义;(2) 熟悉阶乘运算;(3) 掌握排列数的计算公式;(4) 注意体会由特殊到一般的研究问题的方法;(5) 掌握运用科学计算器进行阶乘运算;(6) 能够应用排列数公式解决一些简单的问题.情感目标在排列的概念理解上,在排列数公式的推导过程中,要求学生学会透过现象抓本质,通过对事物现象本质的进一步分析,得出一般的规律.教学重难点重点理解排列的概念,能用列举法、树形图列出排列,从简单排列问题的计数过程中体会排列数公式 .难点对排列要完成的“一件事”的理解;对“一定顺序”的理解 .某学校计划在元旦安排一场师生联欢会,需要从甲、乙、丙三名候选人选2名作主持人,其中1名作正式主持人,一名作候补主持人,有多少种不同的方法?解答解决上述问题,可以应用分步计数原理进行,可分两步:第1步,确定正式主持人,从3人中任选1人,有3种不同选法;第2步,确定候补主持人,从余下的2人中选取,有2种不同的方法.根据分步计数原理,在3名同学中选2名,按照参加正式主持人在前,候补主持人在后的不同顺序排列方法有3×2=6种.我们把上面问题中被取的对象叫做元素.于是,所提出问题就是从3个不同的元素a、b、c中任取2个,然后按一定的顺序排成一列,求一共有多少种不同的排列方法.所有不同排列为ab,ac,ba,bc,ca,cb,所有排列的种数为3×2=6.如果我们把上述问题再推广到更为一般的情形,就得到排列及排列数的概念.知识要点1 排列一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素取出m个元素的排列.你能归纳一下排列的特征吗?根据排列的定义,两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同.知识要点2 排列数从n 个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n 个不同元素中取出m 个元素的排列数,用符号 表示.m n A上面的问题,是求从3个不同元素中取出2个元素的排列数,记为 ,已经算得23A 23=3*2=6A 注 :A 是英文arrangement(排列)的第一个字母知识要点3 排列数公式这里,n ,m ∈N*,并且m≤n . m n=n(n-1)(n-2)...(n-m-1).A4 全排列 n 个不同元素全部取出的一个排列,叫做n 个不同元素的一个全排列.这是公式中m=n,即有也就是说,n 个元素全部取出的排列数,等于1到n 的连乘积.即n 的阶乘,用n!表示. m n =n*(n -1)*(n -2)*...*3*2*1.A 0!=1例题16!=6×5×4×3×2×1=72012111098765=51211109876⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯ 161514=3360⨯⨯.81271266316(1) ; A A(2)A (3) A ;例题2求下列各式中n 值:432n+1n (1) A =140A ;n n-189(2) 3A =4A . 解析:该题是对排列数公式的考察解:(1)由排列数公式得(2n +1)·(2n )·(2n -1)·(2n -2)=140·n (n -1)(n -2) 整理得: ∴ (4n -23)·(n -3)=0∴ n =3或n =(舍去)∴ n =3.24n -35n +69=0(2)由排列数公式得3*8!4*9!=(8-n)!(10-n)!化简得:解得n =6或n =13∵ n ≤8,∴ n =62n -19n +78=0继续解答例题3某段铁路上有12个车站,共需要准备多少种普通客票?1321112A 212=⨯=解:例题4用 0 到 9 这十个数字,可以组成多少个没有重复数字的三位数?解法一:对排列方法分步思考.百位十位 个位 648899A A A 181919=⨯⨯=⋅⋅648899A A 2919=⨯⨯=⋅解法二:对排列方法分类思考.符合条件的三位数可分为两类:百位十位个位A39百位十位个位A29百位十位个位A296482AA2939=+根据加法原理解法三:间接法.从0到9这十个数字中任取三个数字的排列数为 , A 310∴ 所求的三位数的个数是其中以0为排头的排列数为 . A 2910A 32109A -A =10*9*8-9*8=648课堂小结1. 知识要求:(1)要求大家在理解排列的意义的基础上,掌握排列数的运算;(2)了解科学计算器的阶乘运算功能,为进一步学习排列的应用打好基础.2.重点掌握排列的两个公式: mn =n(n-1)(n-2)...(n-m-1).A m n=n*(n-1)*(n-2)*...*3*2*1.A1 (1995年全国·理文)用1,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有______个. A 24 B 30 C 40 D 60高考链接A 先分类,再分步2(2001年高考•文理)如图,小圆圈表示网络的结点,节点之间的连线表示它们有网络相连. 连线标注的数字表示该段网线单位时间内可以通过的最大信息量. 现从结点A向结点B传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为_____.DA 26B 24C 20D 193.(2009年湖北卷理)将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为 ______. A 18 B 24 C 30 D 36C解析:用间接法解答:四名学生中有两名学生分在一个班的种数是 ,顺序有种,而甲乙被分在同一个班的有 种,所以种数是 24C 33A 33A 233433C A -A =30课堂练习1.填空(1)从7盆不同的盆花中选出5盆摆放在主席台前,其中有两盆花不宜摆放在正中间,则一共有_____种不同的摆放方法(用数字作答).(2) 5人成一排,要求甲、已相邻,有_____种排法. 1800 482.选择(1)将5列车停在5条不同的轨道上,其中a 列车不停在第一轨道上,b 列车不停在第二轨道上,那么不同的停放方法有( ).A 120种B 96种C 78种D 72种(2)七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法( )种.A 960种B 840种C 720种D 600种 √√3.解答题(1)有棋盘型街道如图,某人由 A 点到 B 点取捷径① 共有几种走法?②若不过 D 点,取捷径的走法共有几种? 解: 7!(1)=35.4!3!种4!3(2)35-*=172!2!21!!!(2)用0、1、2、3、4、5六个数字,若数字可以重复,则可以构成几个三位数?其中奇数共几个?解:由于0不能排在百位,所以百位有5种方法,而十位与个位皆有6种方法,故共可排成 5 × 6 × 6 = 180 个三位数.若所排成的三位数为奇數,则个位可以排1、3、5共3种方法,而百位有5种,十位有6种排法,故共可排成 5 × 6 × 3 = 90 个奇数.(3) 计划展出不同的画10幅,其中一幅水彩画、4幅油画、5幅国画,排成一行陈列,要求同一品种的画必须连在一起,并且水彩画不能放在两端,那么不同的陈列方式有多少种? 解:245245A A A 依题意,不同的陈列方式有 种.习题解答1.(1)ab,ac,ad,ba,bc,bd,ca,cb,cd,da,db,dc(2)ab,ac,ad,ae,ba,bc,bd,be,ca,cb,cd,ce,da,db,dc,de,ea,eb,ec,ed415(1) A =15*14*13*12=32760;77(2) A =7!=5040;4288(3) A -2A =8*7*6*5-2*8*7=1568;871212771212A 5A (4)==5.A A 2.3.N 2 3 4 5 6 7 8 N! 2 6 24 120 720 5040 40320 .4.(1)证明:左=n•(n -1)•(n -2)•…•(n -m +1)右=n•(n -1)(n-2)•…•[(n-1)-(m-1)+1] =n•(n -1)(n-2)•…•(n -m +1)=左m m-1n n-1A =nA .∴(2)证明: 87677778767777A -8A +7A =8A -8A +A =A.346. A=24().种355. A =60().种。
⼈教A版⾼中数学选修2-3全册同步练习及单元检测含答案⼈教版⾼中数学选修2~3 全册章节同步检测试题⽬录第1章《计数原理》同步练习 1.1测试1第1章《计数原理》同步练习 1.1测试2第1章《计数原理》同步练习 1.1测试3第1章《计数原理》同步练习 1.2排列与组合第1章《计数原理》同步练习 1.3⼆项式定理第1章《计数原理》测试(1)第1章《计数原理》测试(2)第2章同步练习 2.1离散型随机变量及其分布列第2章同步练习 2.2⼆项分布及其应⽤第2章测试(1)第2章测试(2)第2章测试(3)第3章练习 3.1回归分析的基本思想及其初步应⽤第3章练习 3.2独⽴性检验的基本思想及其初步应⽤第3章《统计案例》测试(1)第3章《统计案例》测试(2)第3章《统计案例》测试(3)1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题1.⼀件⼯作可以⽤2种⽅法完成,有3⼈会⽤第1种⽅法完成,另外5⼈会⽤第2种⽅法完成,从中选出1⼈来完成这件⼯作,不同选法的种数是()A.8 B.15C.16 D.30答案:A2.从甲地去⼄地有3班⽕车,从⼄地去丙地有2班轮船,则从甲地去丙地可选择的旅⾏⽅式有()A.5种B.6种C.7种D.8种答案:B3.如图所⽰为⼀电路图,从A 到B 共有()条不同的线路可通电()A.1 B.2 C.3 D.4答案:D4.由数字0,1,2,3,4可组成⽆重复数字的两位数的个数是()A.25 B.20 C.16 D.12答案:C5.李芳有4件不同颜⾊的衬⾐,3件不同花样的裙⼦,另有两套不同样式的连⾐裙.“五⼀”节需选择⼀套服装参加歌舞演出,则李芳有()种不同的选择⽅式()A.24 B.14 C.10 D.9答案:B 6.设A ,B 是两个⾮空集合,定义{}()A B a b a A b B *=∈∈,,|,若{}{}0121234P Q ==,,,,,,,则P *Q 中元素的个数是()A.4 B.7 C.12 D.16答案:C⼆、填空题7.商店⾥有15种上⾐,18种裤⼦,某⼈要买⼀件上⾐或⼀条裤⼦,共有种不同的选法;要买上⾐,裤⼦各⼀件,共有种不同的选法.答案:33,2708.⼗字路⼝来往的车辆,如果不允许回头,共有种⾏车路线.答案:129.已知{}{}0341278a b ∈∈,,,,,,,则⽅程22()()25x a y b -+-=表⽰不同的圆的个数是.答案:1210.多项式123124534()()()()a a a b b a a b b ++++++··展开后共有项.答案:1011.如图,从A →C ,有种不同⾛法.答案:612.将三封信投⼊4个邮箱,不同的投法有种.答案:34三、解答题 13.⼀个⼝袋内装有5个⼩球,另⼀个⼝袋内装有4个⼩球,所有这些⼩球的颜⾊互不相同.(1)从两个⼝袋内任取⼀个⼩球,有多少种不同的取法?(2)从两个⼝袋内各取⼀个⼩球,有多少种不同的取法?解:(1)549N =+=种;(2)5420N =?=种.14.某校学⽣会由⾼⼀年级5⼈,⾼⼆年级6⼈,⾼三年级4⼈组成.(1)选其中1⼈为学⽣会主席,有多少种不同的选法?(2)若每年级选1⼈为校学⽣会常委,有多少种不同的选法?(3)若要选出不同年级的两⼈参加市⾥组织的活动,有多少种不同的选法?解:(1)56415N =++=种;(2)564120N =??=种;(3)56644574N =?+?+?=种15.已知集合{}321012()M P a b =---,,,,,,,是平⾯上的点,a b M ∈,.(1)()P a b ,可表⽰平⾯上多少个不同的点?(2)()P a b ,可表⽰多少个坐标轴上的点?解:(1)完成这件事分为两个步骤:a 的取法有6种,b 的取法也有6种,∴P 点个数为N =6×6=36(个);(2)根据分类加法计数原理,分为三类:①x 轴上(不含原点)有5个点;②y 轴上(不含原点)有5个点;③既在x 轴,⼜在y 轴上的点,即原点也适合,∴共有N =5+5+1=11(个).1. 1分类加法计数原理与分步乘法计数原理测试题⼀、选择题 1.从集合{ 0,1,2,3,4,5,6}中任取两个互不相等的数a ,b 组成复数a bi +,其中虚数有() A .30个 B .42个 C .36个 D .35个答案:C2.把10个苹果分成三堆,要求每堆⾄少1个,⾄多5个,则不同的分法共有() A .4种 B .5种 C .6种 D .7种答案:A3.如图,⽤4种不同的颜⾊涂⼊图中的矩形A ,B ,C ,D 中,要求相邻的矩形涂⾊不同,则不同的涂法有() A .72种 B .48种 C .24种 D .12种答案:A4.教学⼤楼共有五层,每层均有两个楼梯,由⼀层到五层的⾛法有() A .10种 B .52种C.25种D.42种答案:D5.已知集合{}{}023A B x x ab a b A ===∈,,,,,|,则B 的⼦集的个数是()A.4 B.8 C.16 D.15答案:C6.三边长均为正整数,且最⼤边长为11的三⾓形的个数为()A.25 B.26 C.36 D.37答案:C⼆、填空题7.平⾯内有7个点,其中有5个点在⼀条直线上,此外⽆三点共线,经过这7个点可连成不同直线的条数是.答案:128.圆周上有2n 个等分点(1n >),以其中三个点为顶点的直⾓三⾓形的个数为.答案:2(1)n n -9.电⼦计算机的输⼊纸带每排有8个穿孔位置,每个穿孔位置可穿孔或不穿孔,则每排可产⽣种不同的信息.答案:25610.椭圆221x y m n+=的焦点在y 轴上,且{}{}123451234567m n ∈∈,,,,,,,,,,,,则这样的椭圆的个数为.答案:20 11.已知集合{}123A ,,ü,且A 中⾄少有⼀个奇数,则满⾜条件的集合A 分别是.答案:{}{}{}{}{}13122313,,,,,,,12.整数630的正约数(包括1和630)共有个.答案:24三、解答题 13.⽤0,1,2,3,4,5六个数字组成⽆重复数字的四位数,⽐3410⼤的四位数有多少个?解:本题可以从⾼位到低位进⾏分类.(1)千位数字⽐3⼤.(2)千位数字为3:①百位数字⽐4⼤;②百位数字为4: 1°⼗位数字⽐1⼤;2°⼗位数字为1→个位数字⽐0⼤.所以⽐3410⼤的四位数共有2×5×4×3+4×3+2×3+2=140(个).14.有红、黄、蓝三种颜⾊旗⼦各(3)n n >⾯,任取其中三⾯,升上旗杆组成纵列信号,可以有多少种不同的信号?若所升旗⼦中不允许有三⾯相同颜⾊的旗⼦,可以有多少种不同的信号?若所升旗⼦颜⾊各不相同,有多少种不同的信号?解: 1N =3×3×3=27种; 227324N =-=种; 33216N =??= 种.15.某出版社的7名⼯⼈中,有3⼈只会排版,2⼈只会印刷,还有2⼈既会排版⼜会印刷,现从7⼈中安排2⼈排版,2⼈印刷,有⼏种不同的安排⽅法.解:⾸先分类的标准要正确,可以选择“只会排版”、“只会印刷”、“既会排版⼜会印刷”中的⼀个作为分类的标准.下⾯选择“既会排版⼜会印刷”作为分类的标准,按照被选出的⼈数,可将问题分为三类:第⼀类:2⼈全不被选出,即从只会排版的3⼈中选2⼈,有3种选法;只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有3×1=3种选法.第⼆类:2⼈中被选出⼀⼈,有2种选法.若此⼈去排版,则再从会排版的3⼈中选1⼈,有3种选法,只会印刷的2⼈全被选出,有1种选法,由分步计数原理知共有2×3×1=6种选法;若此⼈去印刷,则再从会印刷的2⼈中选1⼈,有2种选法,从会排版的3⼈中选2⼈,有3种选法,由分步计数原理知共有2×3×2=12种选法;再由分类计数原理知共有6+12=18种选法.第三类:2⼈全被选出,同理共有16种选法.所以共有3+18+16=37种选法.1. 1 分类加法计数原理与分步乘法计数原理综合卷⼀.选择题:1.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种2.⼀个三层书架,分别放置语⽂书12本,数学书14本,英语书11本,从中取出语⽂、数学、英语各⼀本,则不同的取法共有()(A ) 37种(B ) 1848种(C ) 3种(D ) 6种3.某商业⼤厦有东南西3个⼤门,楼内东西两侧各有2个楼梯,从楼外到⼆楼的不同⾛法种数是()(A ) 5 (B )7 (C )10 (D )124.⽤1、2、3、4四个数字可以排成不含重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个5.⽤1、2、3、4四个数字可排成必须含有重复数字的四位数有()(A )265个(B )232个(C )128个(D )24个6.3科⽼师都布置了作业,在同⼀时刻4名学⽣都做作业的可能情况有()(A )43种(B )34种(C )4×3×2种(D ) 1×2×3种7.把4张同样的参观券分给5个代表,每⼈最多分⼀张,参观券全部分完,则不同的分法共有()(A )120种(B )1024种(C )625种(D )5种8.已知集合M={l ,-2,3},N={-4,5,6,7},从两个集合中各取⼀个元素作为点的坐标,则这样的坐标在直⾓坐标系中可表⽰第⼀、⼆象限内不同的点的个数是()(A )18 (B )17 (C )16 (D )109.三边长均为整数,且最⼤边为11的三⾓形的个数为()(A )25 (B )36 (C )26 (D )3710.如图,某城市中,M 、N 两地有整齐的道路⽹,若规定只能向东或向北两个⽅向沿途中路线前进,则从M 到N 不同的⾛法共有()(A )25 (B )15 (C)13 (D )10 ⼆.填空题:11.某书店有不同年级的语⽂、数学、英语练习册各10本,买其中⼀种有种⽅法;买其中两种有种⽅法.12.⼤⼩不等的两个正⽅形玩具,分别在各⾯上标有数字1,2,3,4,5,6,则向上的⾯标着的两个数字之积不少于20的情形有种.13.从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,可得到个不同的对数值.14.在连结正⼋边形的三个顶点组成的三⾓形中,与正⼋边形有公共边的有个.15.某班宣传⼩组要出⼀期向英雄学习的专刊,现有红、黄、⽩、绿、蓝五种颜⾊的粉笔供选⽤,要求在⿊板中A 、B 、C 、D 每⼀部分只写⼀种颜⾊,如图所⽰,相邻两块颜⾊不同,则不同颜⾊的书写⽅法共有种.三.解答题:16.现由某校⾼⼀年级四个班学⽣34⼈,其中⼀、⼆、三、四班分别为7⼈、8⼈、9⼈、10⼈,他们⾃愿组成数学课外⼩组.(1)选其中⼀⼈为负责⼈,有多少种不同的选法?(2)每班选⼀名组长,有多少种不同的选法?(3)推选⼆⼈做中⼼发⾔,这⼆⼈需来⾃不同的班级,有多少种不同的选法?17.4名同学分别报名参加⾜球队,蓝球队、乒乓球队,每⼈限报其中⼀个运动队,不同的报名⽅法有⼏种?[探究与提⾼]1.甲、⼄两个正整数的最⼤公约数为60,求甲、⼄两数的公约数共有多个?2.从{-3,-2,-1,0,l,2,3}中,任取3个不同的数作为抛物线⽅程y=ax2+bx+c(a≠0)的系数,如果抛物线过原点,且顶点在第⼀象限,这样的抛物线共有多少条?3.电视台在“欢乐今宵”节⽬中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的群众来信,甲信箱中有30封,⼄信箱中有20封.现由主持⼈抽奖确定幸运观众,若先确定⼀名幸运之星,再从两信箱中各确定⼀名幸运伙伴,有多少种不同的结果?综合卷1.A 2.B 3.D 4.D 5.B 6.B 7.D 8.B 9.B 10.B11.30;300 12.513.17 14.40 15.1801. 2排列与组合1、排列综合卷1.90×9l ×92×……×100=()(A )10100A (B )11100A (C )12100A (D )11101A 2.下列各式中与排列数mn A 相等的是()(A )!(1)!-+n n m (B )n(n -1)(n -2)……(n -m) (C )11m n nA n m --+ (D )111m n n A A --3.若 n ∈N 且 n<20,则(27-n )(28-n)……(34-n)等于()(A )827n A - (B )2734nn A -- (C )734n A - (D )834n A -4.若S=123100123100A A A A ++++,则S 的个位数字是()(A )0 (B )3 (C )5 (D )85.⽤1,2,3,4,5这五个数字组成没有重复数字的三位数,其中偶数共有()(A )24个(B )30个(C )40个(D )60个6.从0,l ,3,5,7,9中任取两个数做除法,可得到不同的商共有()(A )20个(B )19个(C )25个(D )30个7.甲、⼄、丙、丁四种不同的种⼦,在三块不同⼟地上试种,其中种⼦甲必须试种,那么不同的试种⽅法共有()(A )12种(B )18种(C )24种(D )96种8.某天上午要排语⽂、数学、体育、计算机四节课,其中体育不排在第⼀节,那么这天上午课程表的不同排法共有()(A )6种(B )9种(C )18种(D )24种9.有四位司机、四个售票员组成四个⼩组,每组有⼀位司机和⼀位售票员,则不同的分组⽅案共有()(A )88A 种(B )48A 种(C )44A ·44A 种(D )44A 种10.有4位学⽣和3位⽼师站在⼀排拍照,任何两位⽼师不站在⼀起的不同排法共有()(A )(4!)2种(B )4!·3!种(C )34A ·4!种(D )3 5A ·4!种11.把5件不同的商品在货架上排成⼀排,其中a ,b 两种必须排在⼀起,⽽c ,d 两种不能排在⼀起,则不同排法共有()(A )12种(B )20种(C )24种(D )48种⼆.填空题::12.6个⼈站⼀排,甲不在排头,共有种不同排法.13.6个⼈站⼀排,甲不在排头,⼄不在排尾,共有种不同排法.14.五男⼆⼥排成⼀排,若男⽣甲必须排在排头或排尾,⼆⼥必须排在⼀起,不同的排法共有种.15.将红、黄、蓝、⽩、⿊5种颜⾊的⼩球,分别放⼊红、黄、蓝、⽩、⿊5种颜⾊的⼝袋中,但红⼝袋不能装⼊红球,则有种不同的放法.16.(1)有5本不同的书,从中选3本送给3名同学,每⼈各⼀本,共有种不同的送法;(2)有5种不同的书,要买3本送给3名同学,每⼈各⼀本,共有种不同的送法.三、解答题:17.⼀场晚会有5个唱歌节⽬和3个舞蹈节⽬,要求排出⼀个节⽬单(1)前4个节⽬中要有舞蹈,有多少种排法?(2)3个舞蹈节⽬要排在⼀起,有多少种排法?(3)3个舞蹈节⽬彼此要隔开,有多少种排法?18.三个⼥⽣和五个男⽣排成⼀排.(1)如果⼥⽣必须全排在⼀起,有多少种不同的排法?(2)如果⼥⽣必须全分开,有多少种不同的排法?(3)如果两端都不能排⼥⽣,有多少种不同的排法?(4)如果两端不能都排⼥⽣,有多少种不同的排法?(5)如果三个⼥⽣站在前排,五个男⽣站在后排,有多少种不同的排法?综合卷1.B 2.D 3.D 4.C 5.A 6.B 7.B 8.C 9.D 10.D 11.C12.600 13.504 14.480 15.9616.(1) 60;(2) 12517.(1) 37440;(2) 4320;(3) 1440018.(1) 4320;(2) 14400;(3) 14400;(4) 36000;(5) 7202、组合综合卷⼀、选择题:1.下列等式不正确的是()(A )!!()!mn n C m n m =- (B )11mm n n m C C n m++=- (C )1111m m n n m C C n +++=+ (D )11m m n n C C ++= 2.下列等式不正确的是()(A )m n m n n C C -= (B )11m m mm m m C C C -++=(C )123455555552C C C C C ++++= (D )11 111m m m m n n n n C C C C --+--=++3.⽅程2551616x x x C C --=的解共有()(A )1个(B )2个(C )3个(D )4个4.若372345n n n C A ---=,则n 的值是()(A )11 (B )12 (C )13 (D )145.已知7781n n n C C C +-=,那么n 的值是()(A )12 (B )13 (C )14 (D )15 6.从5名男⽣中挑选3⼈,4名⼥⽣中挑选2⼈,组成⼀个⼩组,不同的挑选⽅法共有()(A )3254C C 种(B ) 3254C C 55A 种(C ) 3254A A 种(D ) 3254A A 55A 种7.从4个男⽣,3个⼥⽣中挑选4⼈参加智⼒竞赛,要求⾄少有⼀个⼥⽣参加的选法共有()(A )12种(B )34种(C )35种(D )340种8.平⾯上有7个点,除某三点在⼀直线上外,再⽆其它三点共线,若过其中两点作⼀直线,则可作成不同的直线()(A )18条(B )19条(C )20条(D )21条9.在9件产品中,有⼀级品4件,⼆级品3件,三级品2件,现抽取4个检查,⾄少有两件⼀级品的抽法共有()(A )60种(B )81种(C )100种(D )126种10.某电⼦元件电路有⼀个由三节电阻串联组成的回路,共有6个焊点,若其中某⼀焊点脱落,电路就不通.现今回路不通,焊点脱落情况的可能有()(A )5种(B )6种(C )63种(D )64种⼆.填空题:11.若11m m n n C xC --=,则x= .12.三名教师教六个班的课,每⼈教两个班,分配⽅案共有种。
1.2 排列与组合1.2.1排列第1课时排列与排列数公式[目标] 1.理解排列和排列数的特征.2.正确运用排列数公式进行计算.[重点] 理解排列的概念,会用排列数公式进行计算.[难点] 对排列的有序性的正确理解,排列数公式的逆用.知识点一排列的概念[填一填]1.排列的定义一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m个元素的一个排列.2.相同排列两个排列相同,当且仅当两个排列的元素完全相同,且元素的排列顺序也相同.[答一答]1.排列的定义中包括哪两个基本内容?提示:排列定义包括两个基本内容:一是“取出的元素不能重复”;二是“按照一定的顺序排列”.2.两个排列若为相同的排列需具备哪些条件?提示:需要具备两个条件:一是元素完全相同,二是元素的排列顺序完全相同.3.判断一个具体问题是否为排列问题的关键是什么?提示:判断一个具体问题是不是排列问题,关键看在安排取出的元素时是有序还是无序,有序就是排列,无序就不是排列.知识点二排列数公式[填一填][答一答]4.“排列数”与“一个排列”是否为同一个概念?提示:不是同一概念.“一个排列”是指“从n个不同元素中取出m个元素,按照一定的顺序排成一列”,它不是一个数;“排列数”是指“从n个不同元素中取出m个元素的所有排列的个数”.例如,从a,b,c中任取2个元素的排列有ab,ba,ac,ca,bc,cb,共6个,6就是从a,b,c中任取2个元素的排列数.5.对于排列数A m n中,m,n有什么要求?提示:m、n∈N+,且m≤n.6.在A m n=n(n-1)…(n-m+1)中右边共多少项的乘积.提示:从n,(n-1),…,(n-m+1)以上m个数相乘,可得共m项.7.为什么规定0!=1?提示:为了使公式A m n=n!(n-m)!在m=n时也能成立,规定0!=1,这种规定说明:若一个元素都不取,则构成排列的情形只有1种.1.对排列定义的四点说明(1)定义的两个要素:一是“从n个不同元素中取出m(m≤n)个元素”,要求取出的元素不能重复;二是“按照一定的顺序排列”.(2)定义中“一定顺序”就是说与位置有关,选取的元素相同但顺序不同是不同的排列,在实际问题中,要由具体问题的性质和条件决定.(3)对于两个排列,只有各元素完全相同,并且元素的排列顺序也完全相同时,才是相同排列.(4)在定义中规定m≤n,如果m<n,这样的排列只是取一部分元素进行排列,称选排列;如果m=n,这样的排列是取出所有元素进行排列,称全排列.2.准确理解排列数公式(1)公式中的n,m应该满足n,m∈N*,m≤n,当m>n时不成立.(2)排列数有两个公式,第一个公式右边是若干数的连乘积,其特点是:第一个因数是n(下标),后面的每一个因数都比它前面的因数少1,最后一个因数为n-m+1(下标-上标+1),共有m(上标)个连续自然数相乘.(3)排列数的第二个公式是阶乘的形式,所以又叫排列数的阶乘式,它是一个分式的形式,分子是下标n的阶乘,分母是下标减上标的阶乘,即(n-m)的阶乘,(4)特别地,规定0!=1.这只是一种规定,不能按阶乘的含义作解释.类型一排列的概念【例1】判断下列问题是否是排列问题:(1)某班共有50名同学,现要投票选举正、副班长各一人,共有多少种可能的选举结果?(2)从2,3,5,7,9中任取两数分别作对数的底数和真数,有多少不同对数值?(3)从1到10十个自然数中任取两个数组成点的坐标,可得多少个不同的点的坐标?(4)从集合M={1,2,…,9}中,任取相异的两个元素作为a,b,可以得到多少个焦点在x轴上的椭圆方程x2a2+y2b2=1?【分析】由题目可获取以下主要信息:对于(1),两人当班长,有正副之分;对于(2),对数的底数与真数交换,其值也不同;对于(3),点的坐标有横坐标与纵坐标之分;对于(4),焦点在x轴上的椭圆方程,必须a>b.解答本题,其关键是看问题的结果与选出的元素排列时跟顺序是否有关,有关即是排列问题,否则不是.【解】(1)是.选出的2人分别担任正、副班长,与顺序有关,所以该问题是排列问题;(2)是.显然对数值与底数和真数的取值的不同有关系,与顺序有关.(3)是.道理同上.(4)不是.焦点在x轴上的椭圆,方程中的a、b必有a>b,a、b的大小一定.排列的特点是“先取后排”,即先从n个不同的元素中取出m个元素,再按一定顺序把这m个元素排成一列.因此,判断一个问题是否为排列问题,只需考察与顺序是否有关,有关则是排列问题,无关则不是排列问题.将语文、数学、英语书各一本分给甲、乙、丙三人,每人一本,共有多少种不同的分法?请将它们列出来.解:按分步乘法计数原理的步骤:第一步,分给甲,有3种分法;第二步,分给乙,有2种分法;第三步,分给丙,有1种分法.故共有3×2×1=6(种)不同的分法.列出树形图:如下所以,按甲乙丙的顺序分的分法为:语数英,语英数,数语英,数英语,英语数,英数语.类型二排列数的计算问题【例2】(1)乘积m(m+1)(m+2)(m+3)…(m+20)可表示为()A .A 2mB .A 21mC .A 20m +20D .A 21m +20(2)计算:①A 315;②A 59+A 49A 610-A 510. 【分析】 按排列数公式计算.【解析】 (1)因为m ,m +1,m +2,…,m +20中最大的数为m +20,且共有m +20-m +1=21个因式.所以m (m +1)·(m +2)…(m +20)=A 21m +20.(2)解:①A 315=15×14×13=2 730.②方法1:A 59+A 49A 610-A 510=9×8×7×6×5+9×8×7×610×9×8×7×6×5-10×9×8×7×6=9×8×7×6×(5+1)10×9×8×7×6×(5-1)=320. 方法2:A 59+A 49A 610-A 510=5A 49+A 4950A 49-10A 49=6A 4940A 49=320. 【答案】 (1)D (2)①2 730 ②3201.排列数的计算主要是利用排列数的乘积公式进行,应用时注意:连续正整数的积可以写成某个排列数,其中最大的是排列元素的总个数,而正整数(因式)的个数是选取元素的个数,这是排列数公式的逆用.2.应用排列数公式的阶乘形式时,一般写出它们的式子后,再提取公因式,然后计算,这样往往会减少运算量.(1)设x ∈N *,且x <23,则(23-x )(24-x )(25-x )·…·(30-x )可化简为( D ) A .A 723-xB .A 23-x30-xC .A 730-xD .A 830-x解析:本题考查排列数公式的应用.先确定最大数,即n ,再确定因式的个数,即m .因为n =30-x ,m =(30-x )-(23-x )+1=8,所以原式=A 830-x .故选D.(2)计算A 55A 25的值.解:A 55A 25=5×4×3×2×15×4=6.类型三 列举法解决排列问题【例3】 (1)从1,2,3,4四个数字中任取两个数字组成两位数,共有多少个不同的两位数?(2)写出从4个元素a,b,c,d中任取3个元素的所有排列.【解】(1)由题意作树形图,如图.故所有两位数为12,13,14,21,23,24,31,32,34,41,42,43,共有12个.(2)由题意作树形图,如图.故所有的排列为:abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cdb,dab,dac,dba,dbc,dca,dcb,共有24个.“树形图”在解决个数不多的排列问题时,是一种比较有效的表示方式.在操作中先将元素按一定顺序排出,然后以先安排哪个元素为分类标准,进行分类,在每一类中再按余下的元素在前面元素不变的情况下确定第二位元素,再按此元素分类,依次进行,直到完成一个排列,这样能做到不重不漏,然后再按树形图写出排列.将A,B,C,D四名同学按一定顺序排成一行,要求自左向右,且A不排在第一,B不排在第二,C不排在第三,D不排在第四,试用树形图列出所有可能的排法.解:树形图为(如图):由树形图知,所有排法为BADC,BCDA,BDAC,CADB,CDAB,CDBA,DABC,DCAB,DCBA,共有9种排法.忽视排列问题中的限制条件致误【例4】在1,2,3,4的排列a1a2a3a4中,满足a1>a2,a3>a2,a3>a4的排列个数是________.【错解】排列的个数是12个或8个.【错因分析】3个限制只注意1个限制条件或2个限制条件.【正解】首先注意a1位置的数比a2位置的数大,可以借助树形图进行筛选.满足a1>a2的树形图是:其次满足a3>a2的树形图是:再满足a3>a4的排列:2 143,3 142,3 241,4 132,4 231,共5个.【答案】 5由1,2,3,4这四个数字组成的首位数字是1,且恰有三个相同数字的四位数的个数是12. 解析:本题要求首位数字是1,且恰有三个相同的数字,用树形图表示为:由此可知共有12个.1.下列问题中不属于排列问题的是(B)A.从六名学生中选三名学生参加数学、物理、化学竞赛,共有多少种选法B.有十二名学生参加植树活动,要求三人一组,共有多少种分组方案C.从3,5,7,9中任取两个数做指数运算,可以得到多少个幂D.从1,2,3,4中任取两个数作为点的坐标,可以得到多少个点解析:12名学生分为4组,3人一组无先后顺序,不属于排列问题.2.已知A2n=132,则n=(B)A.11 B.12C.13 D.14解析:n(n-1)=132,n=12.3.某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了1_560条毕业留言.(用数字作答)解析:由题意知两两彼此给对方写一条毕业留言相当于从40人中任选两人的排列数,所以全班共写了A240=40×39=1 560条毕业留言.4.计算:(2A412+A512)÷(A513-A512)=2.5.如果A32n=10A3n,求n的值.解:因为A32n=2n(2n-1)(2n-2),10A3n=10n(n-1)(n-2),从而2n(2n-1)(2n-2)=10n(n -1)(n-2).化简得,n2-9n+8=0.解得,n=8或n=1(因为n≥3,所以n=1舍去),所以n的值为8.。
[课时达标检测]
一、选择题
1.已知下列问题:
①从甲、乙、丙三名同学中选出两名分别参加数学和物理学习小组;
②从甲、乙、丙三名同学中选出两名同学参加一项活动;
③从a ,b ,c ,d 四个字母中取出2个字母;
④从1,2,3,4四个数字中取出2个数字组成一个两位数.
其中是排列问题的有( )
A .1个
B .2个
C .3个
D .4个
解析:选B ①是排列问题,因为两名同学参加的活动与顺序有关;②不是排列问题,因为两名同学参加的活动与顺序无关;③不是排列问题,因为取出的两个字母与顺序无关;④是排列问题,因为取出的两个数字还需要按顺序排成一列.
2.已知A 2n +1-A 2n =10,则n 的值为( )
A .4
B .5
C .6
D .7
解析:选B 由A 2n +1-A 2n =10,得(n +1)n -n(n -1)=10,解得n =5.
3.A 67-A 56A 45
=( ) A .12
B .24
C .30
D .36 解析:选D A 67=7×6×A 45,A 56=6×A 45,所以原式=36A 45A 45
=36. 4.若n ∈N *,n<20,则(20-n)(21-n)(22-n)…(29-n)·(30-n)等于( )
A .A 1020-n
B .A 1120-n
C .A 1030-n
D .A 1130-n
解析:选D 从(20-n)到(30-n)共有11个数,其中最大的数为30-n.
5.(兰州模拟)要从a ,b ,c ,d ,e 5个人中选出1名组长和1名副组长,但a 不能当副组长,则不同的选法种数是( )
A .20
B .16
C .10
D .6
解析:选B 不考虑限制条件有A 25种选法,若a 当副组长,有A 14种选法,故a 不当副
组长,有A 25-A 14=16种不同的选法.
二、填空题
6.从a ,b ,c ,d ,e 五个元素中每次取出三个元素,可组成______________个以b 为首的不同的排列,它们分别是
________________________________________________________________________. 解析:画出树形图如下:
可知共12个,它们分别是bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed.
答案:12 bac ,bad ,bae ,bca ,bcd ,bce ,bda ,bdc ,bde ,bea ,bec ,bed
7.集合P ={x|x =A m 4,m ∈N *},则集合P 中共有________个元素.
解析:因为m ∈N *,且m≤4,所以P 中的元素为A 14=4,A 24=12,A 34=A 44
=24,即集合P 中有3个元素.
答案:3
8.从集合{0,1,2,5,7,9,11}中任取3个元素分别作为直线方程Ax +By +C =0中的系数A ,B ,C ,所得直线经过坐标原点的有________条.
解析:易知过原点的直线方程的常数项为0,则c =0,再从集合中任取两个非零元素作
为系数A 、B ,有A 26种,而且其中没有相同的直线,所以符合条件的直线有A 26
=30条. 答案:30
三、解答题
9.解不等式:A 42x +1>140A 3x .
解:根据原方程,x ∈N *,且应满足:
⎩⎪⎨⎪⎧
2x +1≥4,x≥3,解得x≥3. 根据排列数公式,原不等式可化为
(2x +1)·2x·(2x -1)·(2x -2)<140x·(x -1)·(x -2).
∵x≥3,∴两边同除以4x(x -1),得(2x +1)·(2x -1)<35(x -2),
即4x 2-35x +69<0,解得
3<x<534
. ∵x ∈N *,∴x =4或x =5.
10.写出下列问题的所有排列.
(1)甲、乙、丙、丁四名同学站成一排;
(2)从编号为1,2,3,4,5的五名同学中选出两名同学任正、副班长.
解:(1)四名同学站成一排,共有A44=24个不同的排列,它们是:
甲乙丙丁,甲丙乙丁,甲丁乙丙,甲乙丁丙,甲丙丁乙,甲丁丙乙;
乙甲丙丁,乙甲丁丙,乙丙甲丁,乙丙丁甲,乙丁甲丙,乙丁丙甲;
丙甲乙丁,丙甲丁乙,丙乙甲丁,丙乙丁甲,丙丁甲乙,丙丁乙甲;
丁甲乙丙,丁甲丙乙,丁乙甲丙,丁乙丙甲,丁丙甲乙,丁丙乙甲.
(2)从五名同学中选出两名同学任正、副班长,共有A25=20种选法,形成的排列是:12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54.。