2015年四川省资阳市高中阶段教育学校招生统一考试标准数学说明
- 格式:doc
- 大小:474.00 KB
- 文档页数:9
资阳市高中2015级第二次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分。
1.C2.A3.B4.D5.A6.B7.C8.B9.D 10.C 11.D 12.C 二、填空题:本大题共5小题,每小题4分,共20分。
13. 20;14. -5;15. 12;12. 2或3. 三、解答题:共70分。
(一)必考题:共60分。
17.(12分)(1)当1n =时,1122a a =-,解得12a =, 当2n ≥时,22n n S a =-,1122n n S a --=-. 所以122n n n a a a -=-,则12n n a a -=,所以{}n a 是以2为首项,2为公比的等比数列.故112n n n a a q -==. ··············································································· 4分 (2)22log 22n n n n b n ==⋅,则231222322n n T n =⨯+⨯+⨯++⨯ ①23412122232(1)22n n n T n n +=⨯+⨯+⨯++-⨯+⨯ ②①-②得:23122222nn n T n +-=++++-⨯= 12(12)212n n n +--⨯-11222n n n ++=-⋅-.所以1(1)22n n T n +=-⋅+. ······································································· 12分18.(12分)(1)由题, 3.56t 1+2+3+4+5+6==,76y 6.6+6.7+7+7.1+7.2+7.4==,61()()ii i tt y y =--∑(2.5)(0.4)(1.5)(0.3)00.50.1 1.50.2 2.50.4 2.8=-⨯-+-⨯-++⨯+⨯+⨯=, 621()ii tt =-∑222222( 2.5)( 1.5)(0.5)0.5 1.5 2.517.5=-+-+-+++=.所以 2.80.1617.5b== ,又 ay bt =- ,得 70.16 3.5 6.44a =-⨯=,所以y 关于t 的线性回归方程为0.16 6.44y t =+. ········································ 8分 (2)由(1)知0.16 6.44y t =+, 当7t =时,0.167 6.447.56y =⨯+=, 即该地区2018年该农产品的产量估计值为7.56万吨. ································· 12分 19.(12分)(1)取11AC 的中点G ,连接EG ,FG , 由于E ,F 分别为AC ,11B C 的中点,所以FG ∥11A B .又11A B ⊂平面11ABB A ,FG ⊄平面11ABB A , 所以FG ∥平面11ABB A .又AE ∥1A G 且AE =1A G ,所以四边形1AEGA 是平行四边形.则EG ∥1AA .又1AA ⊂平面11ABB A ,EG ⊄平面11ABB A , 所以EG ∥平面11ABB A .所以平面EFG ∥平面11ABB A .又EF ⊂平面EFG ,所以直线EF ∥平面11ABB A . ········································································ 6分(2)四边形APQC 是梯形,其面积1()sin602S AP CQ AC =+⋅︒122sin 602=⨯⨯⨯︒=.由于BC AB =,E 分别为AC 的中点.所以BE AC ⊥.因为侧面11ACC A ⊥底面ABC , 所以BE ⊥平面11ACC A .即BE 是四棱锥APQC B -的高,可得1BE =.所以四棱锥APQC B -的体积为1113V ==棱柱111C B A ABC -的体积1212V =⨯⨯所以平面BPQ 分棱柱所成两部分的体积比为1:2(或者2:1). ······················ 12分20.(12分)(1)由12e =,设椭圆的半焦距为c ,所以2a c =,因为C 过点3(1)2P ,,所以221914a b +=,又222c b a +=,解得2a b ==,所以椭圆方程为22143x y +=. ······················································································ 4分 (2) 显然两直线12l l ,的斜率存在,设为12k k ,,()()1122,,M x y N x y ,,由于直线12l l ,与圆2223(1)(0)2x y r r -+=<<相切,则有12k k =-,直线1l 的方程为()1312y k x -=-,联立方程组112232143y k x k x y ⎧=-+⎪⎪⎨⎪+=⎪⎩,,消去y 得()()()22211114312832120x k k k x k ++-+--=, 因为P M ,为直线与椭圆的交点,所以()11121812143k k x k -+=+,同理,当2l 与椭圆相交时()11221812143k k x k ++=+,所以112212443k x x k --=+,而()1121212112243k y y k x x k k --=--=+, 所以直线MN 的斜率121212y y k x x -==-. ······················································· 12分 21.(12分)(1)由题知()222[e (3)e ](3)e (33)e (0)x x x x x x x a x x af x x x x -+-----+--'==>. 方法1:由于233304x x -+-≤-<,e 10x -<-<,23(33)e 4xx x -+-<-,又34a >-,所以2(33)e 0x x x a -+--<,从而()0f x '<,于是()f x 为(0,+∞)上的减函数.方法2:令2()(33)e x h x x x a =-+--,则2()()e x h x x x '=-+,当01x <<时,()0h x '>,()h x 为增函数;当1x >时,()0h x '<,()h x 为减函数. 则max ()(1)e h x h a ==--.由于34a >-,所以max ()(1)e 0h x h a ==--<,于是()f x 为(0,+∞)上的减函数.····························································· 4分 (2)令2()(33)e x h x x x a =-+--,则2()()e x h x x x '=-+,当01x <<时,()0h x '>,()h x 为增函数;当1x >时,()0h x '<,()h x 为减函数. 当x 趋近于+∞时, ()h x 趋近于-∞,由于()f x 有两个极值点,所以()0f x '=有两不等实根,即()0h x =有两不等实数根12x x ,(12x x <).则有(0)0,(1)0,h h <⎧⎨>⎩解得3e a -<<-.可知1(0,1)x ∈,又3322333(1)e 0()e e +30244h a h a =-->=--<-<,,则2(1)2,3x ∈,当10x x << 时,()0f x '<,()f x 单调递减;当12x x x << 时,()0f x '>,()f x 单调递增;当2x x > 时,()0f x '<,()f x 单调递减.则函数()f x 在1x x =时取极小值,()f x 在2x x =时取极大值. 即()2222(3)e ()x x af x f x x -+==极大值,而()2222222(33)e 0x x x af x x -+--'==,即2222(33)e x a x x =-+-,所以极大值()222(2)e xf x x =-.当23(1,)2x ∈时,()222(1)e 0xf x x '=-<恒成立,故()222(2)e x f x x =-为3(1,)2上的减函数,所以()32231()e 222f x f >=>. ········· 12分 (二)选考题:共10分。
四川省资阳市高中阶段学校招生统一考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1.–3的绝对值是()A.3 B.–3 C.±3 D.92.下列计算正确的是()A.a+2a2=3a3B.a2·a3=a6C.32()a=a9D.a3÷a4=1a-(a≠0)3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A.正三角形B.正方形C.正六边形D.正八边形4.若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A.k<0 B.k>0 C.b<0 D.b>05的结果是()A.2x B.±2x C.D.±6.在数轴上表示不等式组11,21xx⎧≥-⎪⎨⎪->-⎩的解集,正确的是()7.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°8.按下图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A.分析1、分析2、分析3 B.分析1、分析2C.分析1 D.分析210.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P 第一次回到它的初始位置时所经过路径的长度是()A.563B.25 C.1123D.56第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11.甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).12.方程组25,4x yx y-=⎧⎨+=⎩的解是_____________.13.若两个互补的角的度数之比为1∶2,则这两个角中较小..角的度数是_____________.14.如图,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).15.若点A(–2,a)、B(–1,b)、C(1,c)都在反比例函数y=kx(k<0)的图象上,则用“<”连接a 、b 、c 的大小关系为___________________. 16.若n 为整数,且n ≤x <n +1,则称n 为x 的整数部分.通过计算301111198019801980+++个和301111200920092009+++个的值,可以确定x =11111119801981198220082009+++++的整数部分是______.三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)解方程:2103x x --=.18.(本小题满分7分)如图,已知□ABCD 的对角线AC 、BD 相交于点O ,AC =12,BD =18,且△AOB 的周长l =23,求AB 的长.19.(本小题满分8分)已知Z 市某种生活必需品的年需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)在一定范围内分别近似满足下列函数关系式:y 1= –4x +190,y 2=5x –170.当y 1=y 2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y 1<y 2时,称该商品的供求关系为供过于求;当y 1>y 2时,称该商品的供求关系为供不应求.(1)(4分) 求该商品的稳定价格和稳定需求量;(2)(4分) 当价格为45(元/件)时,该商品的供求关系如何?为什么? 20.(小题满分8分)根据W 市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:W市近3年人均GDP(元)(1)(3分)从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2)(3分)2008年W市GDP分布在第三产业的约是多少亿元?(精确到0.1亿元)(3)(2分)2008年W市的人口总数约为多少万人?(精确到0.1万人)21.(本小题满分8分)某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)22.(本小题满分8分)已知关于x的一元二次方程x2+kx–3=0,(1)(4分)求证:不论k为何实数,方程总有两个不相等的实数根;(2)(4分)当k=2时,用配方法解此一元二次方程.23.(本小题满分8分)如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)(6分)求证:BE=DG,且BE⊥DG;(2)(2分)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB 所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)24.(本小题满分9分)如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)(3分)求证:△ABC∽△ACD;(2)(6分)若P是AY上一点,AP=4,且sin A=35,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).图1 图2 25.(本小题满分9分)如图,已知抛物线y=12x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y 轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1)(3分)求直线l的函数解析式;(2)(3分)求点D的坐标;(3)(3分)抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.。
2015年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.21•世纪*教育网1.(3分)﹣6的绝对值是()A.6 B.﹣6 C.D.2.(3分)如图是一个圆台,它的主视图是()A.B.C.D.3.(3分)下列运算结果为a6的是()A.a2+a3B.a2•a3 C.(﹣a2)3D.a8÷a24.(3分)一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,35.(3分)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°6.(3分)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上7.(3分)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.(3分)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O 的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.9.(3分)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm10.(3分)如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3分)太阳半径大约是696 000千米,用科学记数法表示为米.12.(3分)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是.13.(3分)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人 数 7 10 14 1914.(3分)已知:(a +6)2+=0,则2b 2﹣4b ﹣a 的值为 .15.(3分)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y=(x >0)和y=(x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为 .16.(3分)已知抛物线p :y=ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C ′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC ′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x 2+2x +1和y=2x +2,则这条抛物线的解析式为 .三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(7分)先化简,再求值:(﹣)÷,其中x 满足2x ﹣6=0.18.(8分)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.(8分)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.20.(8分)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)21.(9分)如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.22.(9分)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.23.(11分)如图,E、F分别是正方形ABCD的边DC、CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF;(2)若E是CD的中点,求证:Q为CF的中点;(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.24.(12分)已知直线y=kx+b(k≠0)过点F(0,1),与抛物线y=x2相交于B、C两点.(1)如图1,当点C的横坐标为1时,求直线BC的解析式;(2)在(1)的条件下,点M是直线BC上一动点,过点M作y轴的平行线,与抛物线交于点D,是否存在这样的点M,使得以M、D、O、F为顶点的四边形为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由;(3)如图2,设B(m.n)(m<0),过点E(0.﹣1)的直线l∥x轴,BR⊥l于R,CS ⊥l于S,连接FR、FS.试判断△RFS的形状,并说明理由.2015年四川省资阳市中考数学试卷参考答案与试题解析一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.21•世纪*教育网1.(3分)(2015•资阳)﹣6的绝对值是()A.6 B.﹣6 C.D.【考点】绝对值.【分析】根据负数的绝对值是它的相反数,可得负数的绝对值.【解答】解:|﹣6|=6,故选:A.【点评】本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(2015•资阳)如图是一个圆台,它的主视图是()A.B.C.D.【考点】简单几何体的三视图.【分析】主视图是从物体正面看,所得到的图形.【解答】解:从几何体的正面看可得等腰梯形,故选:B.【点评】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3.(3分)(2015•资阳)下列运算结果为a6的是()A.a2+a3B.a2•a3 C.(﹣a2)3D.a8÷a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项、同底数幂的乘除法以及积的乘方和幂的乘方进行计算即可.【解答】解:A、a3÷a2不能合并,故A错误;B、a2•a3=a5,故B错误;C、(﹣a2•)3=﹣a6,故C错误;D、a8÷a2=a6,故D正确;故选D.【点评】本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.4.(3分)(2015•资阳)一组数据3、5、8、3、4的众数与中位数分别是()A.3,8 B.3,3 C.3,4 D.4,3【考点】众数;中位数.【分析】根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;故选C.【点评】本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5.(3分)(2015•资阳)如图,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为()A.30°B.35°C.40°D.45°【考点】平行线的性质.【专题】计算题.【分析】先根据平行线的性质得∠BEF=∠C=70°,然后根据三角形外角性质计算∠A的度数.【解答】解:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6.(3分)(2015•资阳)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.AO上B.OB上C.BC上D.CD上【考点】估算无理数的大小;实数与数轴.【分析】根据估计无理数的方法得出0<3﹣<1,进而得出答案.【解答】解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段OB上.故选:B.【点评】此题主要考查了估算无理数的大小,得出的取值范围是解题关键.7.(3分)(2015•资阳)若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形 B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形【考点】中点四边形.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.8.(3分)(2015•资阳)如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.【解答】解:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P沿D→O运动时,当点P在点D的位置时,y=45°,当点P在点0的位置时,y=90°,∴y由45°逐渐增加到90°.故选:B.【点评】(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.9.(3分)(2015•资阳)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()A.13cm B.2cm C.cm D.2cm【考点】平面展开-最短路径问题.【分析】将容器侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B 的长度即为所求.【解答】解:如图:∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∴A′D=5cm,BD=12﹣3+AE=12cm,∴将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,A′B===13(Cm).故选:A.【点评】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10.(3分)(2015•资阳)如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB 上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=;②当点E与点B重合时,MH=;③AF+BE=EF;④MG•MH=,其中正确结论为()A.①②③ B.①③④ C.①②④ D.①②③④【考点】相似形综合题.【专题】压轴题.【分析】①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=AE×BF=AE•BF=AC•BC=,依此即可作出判断.【解答】解:①由题意知,△ABC是等腰直角三角形,∴AB==,故①正确;②如图1,当点E与点B重合时,点H与点B重合,∴MB⊥BC,∠MBC=90°,∵MG⊥AC,∴∠MGC=90°=∠C=∠MBC,∴MG∥BC,四边形MGCB是矩形,∴MH=MB=CG,∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,∴CE=AF=BF,∴FG是△ACB的中位线,∴GC=AC=MH,故②正确;③如图2所示,∵AC=BC,∠ACB=90°,∴∠A=∠5=45°.将△ACF顺时针旋转90°至△BCD,则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF和△ECD中,,∴△ECF≌△ECD(SAS),∴EF=DE.∵∠5=45°,∴∠DBE=90°,∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,∵∠A=∠5=45°,∴△ACE∽△BFC,∴=,∴AE•BF=AC•BC=1,由题意知四边形CHMG是矩形,∴MG∥BC,MH=CG,MG∥BC,MH∥AC,∴=;=,即=;=,∴MG=AE;MH=BF,∴MG•MH=AE×BF=AE•BF=AC•BC=,故④正确.故选:C.【点评】考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.二、填空题:(本大题共6个小题,每小题3分,共18分)11.(3分)(2015•资阳)太阳半径大约是696 000千米,用科学记数法表示为 6.96×108米.【考点】科学记数法—表示较大的数.【专题】应用题.【分析】先把696 000千米转化成696 000 000米,然后再用科学记数法记数记为6.96×108米.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:696 000千米=696 000 000米=6.96×108米.【点评】用科学记数法表示一个数的方法是:(1)确定a:a是只有一位整数的数;(2)确定n:当原数的绝对值≥10时,n为正整数,n等于原数的整数位数减1;当原数的绝对值<1时,n为负整数,n的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).12.(3分)(2015•资阳)若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是8.【考点】多边形内角与外角.【分析】任何多边形的外角和是360°,即这个多边形的内角和是3×360°.n边形的内角和是(n﹣2)•180°,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设多边形的边数为n,根据题意,得(n﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.【点评】已知多边形的内角和求边数,可以转化为方程的问题来解决.13.(3分)(2015•资阳)某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有240人.每周课外阅读时间(小时)0~11~2(不含1)2~3(不含2)超过3人数7 10 14 19【考点】用样本估计总体.【分析】先求出每周课外阅读时间在1~2(不含1)小时的学生所占的百分比,再乘以全校的人数,即可得出答案.【解答】解:根据题意得:1200×=240(人),答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.【点评】本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.14.(3分)(2015•资阳)已知:(a+6)2+=0,则2b2﹣4b﹣a的值为12.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】首先根据非负数的性质可求出a的值,和2b2﹣2b=6,进而可求出2b2﹣4b﹣a的值.【解答】解:∵(a+6)2+=0,∴a+6=0,b2﹣2b﹣3=0,解得,a=﹣6,b2﹣2b=3,可得2b2﹣4b=6,则2b2﹣4b﹣a=6﹣(﹣6)=12,故答案为:12.【点评】本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.15.(3分)(2015•资阳)如图,在平面直角坐标系中,点M为x轴正半轴上一点,过点M 的直线l∥y轴,且直线l分别与反比例函数y=(x>0)和y=(x>0)的图象交于P、Q两点,若S△POQ=14,则k的值为﹣20.【考点】反比例函数与一次函数的交点问题;反比例函数系数k的几何意义.【分析】由于S△POQ=S△OMQ+S△OMP,根据反比例函数比例系数k的几何意义得到|k|+×|8|=14,然后结合函数y=的图象所在的象限解方程得到满足条件的k的值.【解答】解:∵S△POQ=S△OMQ+S△OMP,∴|k|+×|8|=14,∴|k|=20,而k<0,∴k=﹣20.故答案为﹣20.【点评】本题考查了反比例函数比例系数k的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.16.(3分)(2015•资阳)已知抛物线p:y=ax2+bx+c的顶点为C,与x轴相交于A、B两点(点A在点B左侧),点C关于x轴的对称点为C′,我们称以A为顶点且过点C′,对称轴与y轴平行的抛物线为抛物线p的“梦之星”抛物线,直线AC′为抛物线p的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x2+2x+1和y=2x+2,则这条抛物线的解析式为y=x2﹣2x﹣3.【考点】抛物线与x轴的交点;二次函数的性质.【专题】压轴题;新定义.【分析】先求出y=x2+2x+1和y=2x+2的交点C′的坐标为(1,4),再求出“梦之星”抛物线y=x2+2x+1的顶点A坐标(﹣1,0),接着利用点C和点C′关于x轴对称得到C(1,﹣4),则可设顶点式y=a(x﹣1)2﹣4,然后把A点坐标代入求出a的值即可得到原抛物线解析式.【解答】解:∵y=x2+2x+1=(x+1)2,∴A点坐标为(﹣1,0),解方程组得或,∴点C′的坐标为(1,4),∵点C和点C′关于x轴对称,∴C(1,﹣4),设原抛物线解析式为y=a(x﹣1)2﹣4,把A(﹣1,0)代入得4a﹣4=0,解得a=1,∴原抛物线解析式为y=(x﹣1)2﹣4=x2﹣2x﹣3.故答案为y=x2﹣2x﹣3.【点评】本题考查了二次函数与x轴的交点:求二次函数y=ax2+bx+c(a,b,c是常数,a ≠0)与x轴的交点坐标,令y=0,即ax2+bx+c=0,解关于x的一元二次方程即可求得交点横坐标.△=b2﹣4ac决定抛物线与x轴的交点个数,△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(7分)(2015•资阳)先化简,再求值:(﹣)÷,其中x满足2x﹣6=0.【考点】分式的化简求值.【分析】根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可【解答】解:原式=÷=•=.∵2x﹣6=0,∴x=3,当x=3时,原式=.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18.(8分)(2015•资阳)学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1 男A2 …(7分)女A男D 男A1男D 男A2男D 女A男D女D 男A1女D 男A2女D 女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.【点评】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.19.(8分)(2015•资阳)学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案?(3)若购买篮球x个,学校购买这批篮球和足球的总费用为y(元),在(2)的条件下,求哪种方案能使y最小,并求出y的最小值.【考点】一次函数的应用;一元一次方程的应用;一元一次不等式组的应用.【分析】(1)设一个篮球x元,则一个足球(x﹣30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x个,足球(100﹣x)个,根据“篮球购买的数量不少于足球数量的,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x的取值范围,由x为正整数,即可解答;(3)表示出总费用y,利用一次函数的性质,即可确定x的取值,即可确定最小值.【解答】解:(1)设一个篮球x元,则一个足球(x﹣30)元,由题意得:2x+3(x﹣30)=510,解得:x=120,∴一个篮球120元,一个足球90元.(2)设购买篮球x个,足球(100﹣x)个,由题意可得:,解得:40≤x≤50,∵x为正整数,∴x=40,41,42,43,44,45,46,47,48,49,50,∴共有11种购买方案.(3)由题意可得y=120x+90(100﹣x)=30x+9000(40≤x≤50)∵k=30>0,∴y随x的增大而增大,∴当x=40时,y有最小值,y最小=30×40+9000=10200(元),所以当x=40时,y最小值为10200元.【点评】本题考查了一次函数的应用,解决本题的关键是根据已知条件,列出一元一次方程和一元一次不等式组,应用一次函数的性质解决问题.20.(8分)(2015•资阳)北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A、B两处均探测出建筑物下方C处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,≈1.7)【考点】解直角三角形的应用.【分析】过C点作AB的垂线交AB的延长线于点D,通过解Rt△ADC得到AD=2CD=2x,在Rt△BDC中利用锐角三角函数的定义即可求出CD的值.【解答】解:作CD⊥AB交AB延长线于D,设CD=x 米.Rt△ADC中,∠DAC=25°,所以tan25°==0.5,所以AD==2x.Rt△BDC中,∠DBC=60°,由tan 60°==,解得:x≈3米.所以生命迹象所在位置C的深度约为3米.【点评】本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21.(9分)(2015•资阳)如图,直线y=ax+1与x轴、y轴分别相交于A、B两点,与双曲线y=(x>0)相交于点P,PC⊥x轴于点C,且PC=2,点A的坐标为(﹣2,0).(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.【考点】反比例函数综合题.【专题】综合题.【分析】(1)把A坐标代入直线解析式求出a的值,确定出直线解析式,把y=2代入直线解析式求出x的值,确定出P坐标,代入反比例解析式求出k的值,即可确定出双曲线解析式;(2)设Q(a,b),代入反比例解析式得到b=,分两种情况考虑:当△QCH∽△BAO时;当△QCH∽△ABO时,由相似得比例求出a的值,进而确定出b的值,即可得出Q坐标.【解答】解:(1)把A(﹣2,0)代入y=ax+1中,求得a=,∴y=x+1,由PC=2,把y=2代入y=x+1中,得x=2,即P(2,2),把P代入y=得:k=4,则双曲线解析式为y=;(2)设Q(a,b),∵Q(a,b)在y=上,∴b=,当△QCH∽△BAO时,可得=,即=,∴a﹣2=2b,即a﹣2=,解得:a=4或a=﹣2(舍去),∴Q(4,1);当△QCH∽△ABO时,可得=,即=,整理得:2a﹣4=,解得:a=1+或a=1﹣(舍),∴Q(1+,2﹣2).综上,Q(4,1)或Q(1+,2﹣2).【点评】此题属于反比例函数综合题,涉及的知识有:相似三角形的性质,待定系数法确定直线解析式,待定系数法确定反比例函数解析式,熟练掌握待定系数法是解本题的关键.22.(9分)(2015•资阳)如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.【考点】切线的判定;勾股定理;解直角三角形.【分析】(1)连接DO,DB,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E为BC的中点可以得出DE=BE,就有∠EDB=∠EBD,OD=OB可以得出∠ODB=∠OBD,由等式的性质就可以得出∠ODE=90°就可以得出结论.(2)作EF⊥CD于F,设EF=x,由∠C=45°,得出△CEF、△ABC都是等腰直角三角形,根据等腰直角三角形的性质和勾股定理求得BE=CE=x,AB=BC=2x,AE=x,进而就可求得sin∠CAE的值.【解答】解:(1)连接OD,BD,∴OD=OB∴∠ODB=∠OBD.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°.∵E为BC的中点,∴DE=BE,∴∠EDB=∠EBD,∴∠ODB+∠EDB=∠OBD+∠EBD,即∠EDO=∠EBO.∵BC是以AB为直径的⊙O的切线,∴AB⊥BC,∴∠EBO=90°,。
资阳市2015年高中阶段教育学校招生统一考试数学试题参考答案及评分意见说 明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数。
2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分。
3. 考生的解答可以根据具体问题合理省略非关键步骤。
4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分。
5. 给分和扣分都以1分为基本单位。
6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同。
一、选择题(每小题3分,共10个小题,满分30分)1-5.ABDCC ; 6-10.BDBAC二、填空题(每小题3分,共6个小题,满分18分)11.6.96⨯105; 12.8 ; 13.240; 14.12; 15.20-; 16.223y x x =--三、解答题(共8个小题,满分72分)17.原式2112(1)(1)(1)(1)1x x x x x x x x ⎡⎤+-+=-÷⎢⎥-++--⎣⎦………………………………………………2分 22(1)(1)(1)(1)x x x x x +=÷-++-…………………………………………………………3分 (1)(1)2(1)(1)2x x x x x +-=⨯-++…………………………………………………………4分 2=2x +…………………………………………………………………………………5分 2603x x -=∴=…………………………………………………………………6分 当3x =时,原式2=5…………………………………………………………………………7分(2)如图………………………………………………………………………………………4分(3)列表如下:A 类中的两名男生分别记为A 1和A 2男A 1 男A 2 女A 男D男A 1男D 男A 2男D 女A 男D 女D 男A 1女D 男A 2女D 女A 女D 共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:2163 …………………………………………………………………………………8分 (若画树状图按此标准相应评分)19.(1)设一个篮球x 元,则一个足球(30)x -元,由题意得:23(30)510x x +-=………………………………………………………………………1分解得:120x =……………………………………………………………………………2分所以一个篮球120元,一个足球90元.…………………………………………………3分(2)设购买篮球x 个,足球(100)x -个,由题意可得:2(100)312090(100)10500x x x x ⎧≥-⎪⎨⎪+-≤⎩………………………………………………………………4分解得:4050x ≤≤ ……………………………………………………………………5分因为x 为正整数,所以共有11种购买方案。
四川省资阳市高中阶段学校招生一致考试数学试卷全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至 2页,第Ⅱ卷 3 至 8 页.全卷满分120 分,考试时间共120 分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题共 30分)注意事项:每题选出的答案不可以答在试卷上,须用2B 铅笔在答题卡上把对应题目的答案标号涂....黑.如需变动,用橡皮擦擦净后,再选涂其余答案.一、选择题:(本大题共10 个小题,每题 3 分,共 30 分)在每题给出的四个选项中,只有一个选项切合题意.1.–3 的绝对值是()A. 3B.–3C.±3D.92.以下计算正确的选项是()A. a+2a2=3 a3B. a2·a3=a6C. (a 3 ) 2 =a9D. a3÷a4= a 1( a≠0)3.吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不可以是()A.正三角形 B .正方形C.正六边形 D .正八边形4.若一次函数 y=kx+b( k≠ 0)的函数值y 随 x 的增大而增大,则()A. k<0 B . k>0 C.b< 0 D . b>05.化简 4x 的结果是()A. 2x B .±2x C.2 x D .±2 x6.在数轴上表示不等式组1 x 1, 的解集,正确的选项是()2x 17.如图,在矩形ABCD 中,若 AC=2AB,则∠ AOB 的大小是()A. 30° B . 45°C.60° D . 90°8.按以下图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()9.用 a、 b、c、d 四把钥匙去开X、Y 两把锁,此中仅有 a 钥匙能够翻开 X 锁,仅有 b 钥匙能翻开 Y 锁.在求“随意拿出一把钥匙能够一次翻开此中一把锁”的概率时,以下剖析正确的是()A.剖析 1、剖析 2、剖析 3B.剖析 1、剖析 2C.剖析 1D.剖析 210.如图,已知R t△ABC 的直角边AC=24,斜边 AB =25,一个以点P 为圆心、半径为 1 的圆在△ ABC 内部沿顺时针方向转动,且运动过程中⊙P 向来保持与△ ABC 的边相切,当点 P 第一次回到它的初始地点时所经过路径的长度是()A.56B.25 C. 112 D.56 3 3第Ⅱ卷(非选择题共90分)二、填空题:(本大题共 6 个小题 ,每题 3 分,共 18 分)把答案直接填在题中横线上.11.甲、乙两人进行跳远训练时,在同样条件下各跳10 次的均匀成绩同样,若甲的方差为 0.3,乙的方差为0. 4,则甲、乙两人跳远成绩较为稳固的是_________(填“甲”或“乙”).12.方程组2x y 5 ,的解是 _____________.x y 413.若两个互补的角的度数之比为1∶2,则这两个角中较小角的度数是_____________...14.如图,已知直线 AD、BC 交于点 E,且 AE=BE,欲证明△ AEC≌△ BED ,需增添的条件能够是 __________________(只填一个即可).15.若点 A(–2,a)、 B(–1,b)、 C( 1, c)都在反比率函数y= k( k<0)的图象上,则x用“<”连结 a、 b、 c 的大小关系为 ___________________ .16.若 n 为整数,且 n≤x<n+1,则称 n 为 x 的整数部分.经过计算 1 和1 1 11980 1980 198030个1 的值,能够确立x= 1 的整数部分是1 1 1 1 11 1 12009 2009 2009 1980 1981 1982 2008 200930个______ .三、解答题:(本大题共9 个小题,共72 分)解答应写出必需的文字说明、证明过程或演算步骤.17.(本小题满分7 分)解方程:x210 .x 318.(本小题满分 7 分)如图,已知□ABCD 的对角线 AC、BD 订交于点O,AC =12, BD=18 ,且△ AOB 的周长 l=23 ,求 AB 的长.19.(本小题满分8 分)已知Z 市某种生活必需品的年需求量y1(万件)、供给量y2(万件)与价钱x(元 /件)在必定范围内分别近似知足以下函数关系式:y1= –4x+ 190, y2=5x–170.当y1=y2时,称该商品的价钱为稳订价钱,需求量为稳固需求量;当y1<y2时,称该商品的供求关系为供过于求;当 y1>y2时,称该商品的供求关系为求过于供.(1)( 4 分)求该商品的稳订价钱和稳固需求量;(2)( 4 分)当价钱为 45(元 /件)时,该商品的供求关系怎样?为何?20.(小题满分8 分)依据 W 市统计局宣布的数据,能够获得以下统计图表.请利用此中供给的信息回答以下问题:W 市近 3 年人均GDP (元)年份2006 年2007 年2008 年人均GDP 7900 10600 12000(1)( 3 分)(2)( 3 分)从 20062008 年年到W 市2008GDP年, W 市的 GDP 哪一年比上一年的增添量最大?散布在第三家产的约是多少亿元?(精准到0.1 亿元)( 3)( 2 分)2008 年 W 市的人口总数约为多少万人?(精准到0. 1 万人)21.(本小题满分8 分)某市在举行“ 5.12 汶川大地震” 周年龄念活动时,依据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为 a 元的木板.已知 AB=12 米,AD=16 米,∠ B=60°,∠ C=45°,计算购置铺设台面的木板所用资本是多少元.(不计铺设消耗,结果不取近似值)22.(本小题满分8 分)已知对于 x 的一元二次方程x2+kx–3=0 ,(1)( 4 分)求证:无论 k 为何实数,方程总有两个不相等的实数根;(2)( 4 分)当 k=2 时,用配方法解此一元二次方程.23.(本小题满分8 分)如图,已知四边形ABCD 、 AEFG 均为正方形,∠BAG =α( 0°<α<180°).(1)( 6 分)求证: BE=DG,且 BE⊥ DG;( 2)( 2 分)设正方形 ABCD 、AEFG 的边长分别是 3 和 2,线段 BD 、DE、 EG、GB所围成关闭图形的面积为 S.当α变化时,指出 S 的最大值及相应的α值.(直接写出结果,不用说明原因)24.(本小题满分9 分)如图 1,已知 O 是锐角∠ XAY 的边 AX 上的动点,以点O 为圆心、 R 为半径的圆与射线AY 切于点 B,交射线OX 于点 C.连结 BC,作 CD ⊥ BC,交 AY 于点 D .(1)( 3 分)求证:△ ABC∽△ ACD;(2)( 6 分)若 P 是 AY 上一点, AP=4,且 sinA= 3, 5①如图 2,当点 D 与点 P 重合时,求R 的值;②当点 D 与点 P 不重合时,试求PD 的长(用R 表示).1 2 25.(本小题满分9 分)如图,已知抛物线y= 1 x2–2x+ 1 的极点为P,A 为抛物线与y 轴的交点,过 A 与y 轴垂2直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点 B 和P 的直线l 交y轴于点 C,连结 O′C,将△ ACO′沿 O′C 翻折后,点 A 落在点 D 的地点.(1)( 3 分)求直线 l 的函数分析式;(2)(3 分)求点 D 的坐标;(3)( 3 分)抛物线上能否存在点 Q,使得 S△DQC = S△DPB ? 若存在,求出全部切合条件的点 Q 的坐标;若不存在,请说明原因.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:3的绝对值是()A. 3B.-3 C. ±3 D. 9试题2:下列计算正确的是()A. a+2a2=3a3B. a2・a3=a6C.=a9 D. a3÷a4=(a≠0)试题3:吴某打算用同一大小的正多边形地板砖铺设家中的地面,则该地板砖的形状不能是()A. 正三角形B. 正方形C. 正六边形 D. 正八边形试题4:若一次函数y=kx+b(k≠0)的函数值y随x的增大而增大,则()A. k<0B.k>0 C. b<0 D. b>0试题5:化简的结果是()A. 2xB. ±2x C. 2 D. ±2试题6:)在数轴上表示不等式组的解集,正确的是(如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A. 30°B. 45°C.60° D.90°试题8:按图中第一、二两行图形的平移、轴对称及旋转等变换规律,填入第三行“?”处的图形应是()用a、b、c、d四把钥匙去开X、Y两把锁,其中仅有a钥匙能够打开X锁,仅有b钥匙能打开Y锁.在求“任意取出一把钥匙能够一次打开其中一把锁”的概率时,以下分析正确的是()A. 分析1、分析2、分析3B. 分析1、分析2C. 分析1D. 分析2试题10:如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是()A. B. 25 C.D. 56试题11:甲、乙两人进行跳远训练时,在相同条件下各跳10次的平均成绩相同,若甲的方差为0.3,乙的方差为0.4,则甲、乙两人跳远成绩较为稳定的是_________(填“甲”或“乙”).试题12:方程组的解是_____________.试题13:若两个互补的角的度数之比为1∶2,则这两个角中较小角的度数是_____________.试题14:如图,已知直线AD、BC交于点E,且AE=BE,欲证明△AEC≌△BED,需增加的条件可以是__________________(只填一个即可).试题15:若点A(2,a)、B(1,b)、C(1,c)都在反比例函数y=(k<0)的图象上,则用“<”连接a、b、c的大小关系为___________________.试题16:若n为整数,且n≤x<n+1,则称n为x的整数部分.通过计算和的值,可以确定x=的整数部分是______.试题17:解方程:.试题18:如图,已知□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,且△AOB的周长l=23,求AB的长.试题19:已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数关系式:y1= 4x+190,y2=5x170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1) 求该商品的稳定价格和稳定需求量;(2)当价格为45(元/件)时,该商品的供求关系如何?为什么?试题20:根据W市统计局公布的数据,可以得到下列统计图表.请利用其中提供的信息回答下列问题:W市近3年人均GDP(元)年份2006年2007年2008年人均GDP 7900 10600 12000(1) 从2006年到2008年,W市的GDP哪一年比上一年的增长量最大?(2) 2008年W市GDP分布在第三产业的约是多少亿元?(精确到0.1亿元)(3) 2008年W市的人口总数约为多少万人?(精确到0.1万人)试题21:某市在举行“5.12汶川大地震”周年纪念活动时,根据地形搭建了一个台面为梯形(如图所示)的舞台,且台面铺设每平方米售价为a元的木板.已知AB=12米,AD=16米,∠B=60°,∠C=45°,计算购买铺设台面的木板所用资金是多少元.(不计铺设损耗,结果不取近似值)试题22:已知关于的一元二次方程x2+kx3=0,(1)求证:不论k为何实数,方程总有两个不相等的实数根;(2)当k=2时,用配方法解此一元二次方程.试题23:如图,已知四边形ABCD、AEFG均为正方形,∠BAG=α(0°<α<180°).(1)求证:BE=DG,且 BE⊥DG;(2)设正方形ABCD、AEFG的边长分别是3和2,线段BD、DE、EG、GB所围成封闭图形的面积为S.当α变化时,指出S的最大值及相应的α值.(直接写出结果,不必说明理由)试题24:如图1,已知O是锐角∠XAY的边AX上的动点,以点O为圆心、R为半径的圆与射线AY切于点B,交射线OX于点C.连结BC,作CD⊥BC,交AY于点D.(1)求证:△ABC∽△ACD;(2) 若P是AY上一点,AP=4,且sin A=,①如图2,当点D与点P重合时,求R的值;②当点D与点P不重合时,试求PD的长(用R表示).试题25:如图,已知抛物线y=x22x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.(1) 求直线l的函数解析式;(2) 求点D的坐标;(3)抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.试题1答案:A试题2答案:D试题3答案:D试题4答案:B试题5答案:C试题6答案:. D试题7答案:C试题8答案:B试题9答案:A试题10答案:C.试题11答案:甲;试题12答案:x=3,y=1试题13答案:60°;试题14答案:∠A=∠B或∠C=∠D或CE=DE;试题15答案:c<a<b;试题16答案:66.试题17答案:原方程可变形为:3(x2)x=0,整理,得 2x=6,解得x=3.经检验,x=3是原方程的解.试题18答案:∵□ABCD的对角线AC、BD相交于点O,AC =12,BD=18,∴AO=AC=6,BO=BD=9.又∵△AOB的周长l=23,∴AB=l(AO+BO)=23(6+9)=8.试题19答案:(1) 由y1=y2,得:4x+190=5x170,解得x=40.此时的需求量为y1= 4×40+190=30.因此,该商品的稳定价格为40元/件,稳定需求量为30万件.(2) 当x=45时,y1= 4×45+190=10,y2= 5×45170=55,∴y1<y2.∴当价格为45(元/件)时,该商品供过于求.试题20答案:(1) 观察条形统计图可知,W市的GDP2007年比上一年的增长量最大.(2) 2008年W市GDP分布在第三产业的约是:467.6×26%≈121.6(亿元).(3) 2008年W市人口总数约为:467.6×104÷12000≈389.7 (万人).试题21答案:作AE⊥BC于点E,DF⊥BC于点F,易知ADFE为矩形.在Rt△ABE中,AB=12米,∠B=60°,∴BE =12×cos60°=6(米),AE =12×sin60°=6(米) .在矩形ADFE中,AD=16米,∴EF=AD=16米,DF=AE=6米.在Rt△CDF中,∠C=45°,∴CF =DF=6 (米) .∴BC=BE+EF+CF=(22+6) (米),∴S梯形ABCD =(AD+BC)・AE=[16+(22+6)]×6=(54+114) (米2),∴购买木板所用的资金为(54+114)a 元.试题22答案:(1) 方程的判别式为Δ=k2 4×1×(3)= k2 +12,不论k为何实数,k2≥0,k2 +12>0,即Δ>0,因此,不论k为何实数,方程总有两个不相等的实数根.(2) 当k=2时,原一元二次方程即x2+2x3=0,∴x2+2x+1=4,∴ (x+1)2=4,∴x+1=2或x+1= 2,∴此时方程的根为x1=1,x2= 3.试题23答案:(1) 证法一:∵四边形ABCD、AEFG均为正方形,∴∠DAB=∠GAE=90°,AD=AB,AG=AE.∴将AD、AG分别绕点A按顺时针方向旋转90°,它们恰好分别与AB、AE重合,即点D与点B重合,点G与点E重合,∴DG绕点A顺时针旋转90°与BE重合,∴BE=DG,且BE⊥DG.证法二:∵四边形ABCD、AEFG均为正方形,∴∠DAB=∠GAE=90°,AD=AB,AG=AE.∴∠DAB+α=∠GAE+α,∴∠DAG=∠BAE.①当α≠90°时,由前知△DAG≌△BAE (S.A.S.),∴BE=DG,且∠ADG=∠ABE.设直线DG分别与直线BA、BE交于点M、N,又∵∠AMD=∠BMN,∠ADG+∠AMD=90°,∴∠ABE+∠BMN=90°,∴∠BND=90°,∴BE⊥DG.②当α=90°时,点E、点G分别在BA、DA的延长线上,显然BE=DG,且BE⊥DG.(说明:未考虑α=90°的情形不扣分)(2) S的最大值为,试题24答案:(1) 由已知,CD⊥BC,∴∠ADC=90°∠CBD,又∵⊙O切AY于点B,∴OB⊥AB,∴∠OBC=90°∠CBD,∴∠ADC=∠OBC.又在⊙O中,OB=OC=R,∴∠OBC=∠ACB,∴∠ACB=∠ADC.又∠A=∠A,∴△ABC∽△ACD .(2) 由已知,sin A=,又OB=OC=R,OB⊥AB,∴在Rt△AOB中,AO===R,AB==R,∴AC=R+R=R .由(1)已证,△ABC∽△ACD,∴,∴,因此AD=R.①当点D与点P重合时,AD=AP=4,∴R=4,∴R=.②当点D与点P不重合时,有以下两种可能:i) 若点D在线段AP上(即0<R<),PD=APAD=4R;ii) 若点D在射线PY上(即R>),PD=ADAP=R4.综上,当点D在线段AP上(即0<R<)时,PD=4R;当点D在射线PY上(即R>)时,PD=R4.又当点D与点P重合(即R=)时,PD=0,故在题设条件下,总有PD=|R4|(R>0).试题25答案:.(1) 配方,得y=(x2)2 1,∴抛物线的对称轴为直线x=2,顶点为P(2,1) .取x=0代入y=x22x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)与点B关于直线x=2对称,∴点B的坐标是(4,1).设直线l的解析式为y=kx+b(k≠0),将B、P的坐标代入,有解得∴直线l的解析式为y=x3.(2) 连结AD交O′C于点E,∵点D由点A沿O′C翻折后得到,∴O′C垂直平分AD.由(1)知,点C的坐标为(0,3),∴在Rt△AO′C中,O′A=2,AC=4,∴O′C=2.据面积关系,有×O′C×AE=×O′A×CA,∴AE=,AD=2AE=.作DF⊥AB于F,易证Rt△ADF∽Rt△CO′A,∴,∴AF=・AC=,DF=・O′A=,又∵OA=1,∴点D的纵坐标为1= ,∴点D的坐标为(,).(3) 显然,O′P∥AC,且O′为AB的中点,∴点P是线段BC的中点,∴S△DPC= S△DPB .故要使S△DQC= S△DPB,只需S△DQC=S△DPC .过P作直线m与CD平行,则直线m上的任意一点与CD构成的三角形的面积都等于S△DPC,故m与抛物线的交点即符合条件的Q点.容易求得过点C(0,3)、D(,)的直线的解析式为y=x3,据直线m的作法,可以求得直线m的解析式为y=x.令x22x+1=x,解得x1=2,x2=,代入y=x,得y1= 1,y2=,因此,抛物线上存在两点Q1(2,1)(即点P)和Q2(,),使得S△DQC= S△DPB.。
东峰镇初级中学九下第一次月考题数学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
全卷满分120分。
考试时间共120分钟。
注意事项:1.答题前,请考生务必在答题卡上正确填写自己的姓名、准考证号和座位号。
考试结束,将试卷和答题卡一并交回。
2.选择题每小题选出的答案须用2B铅笔在答题卡上把对应题目....的答案标号涂黑。
如需改动,用橡皮擦擦净后,再选涂其它答案。
非选择题须用黑色墨水的钢笔或签字笔在答题卡上对应题号位置作答,在试卷上作答,答案无效。
第Ⅰ卷(选择题共30分)一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意。
1.6-的绝对值是A.6 B.6-C.16D.16-2.如图1是一个圆台,它的主视图是3.下列运算结果为a6的是A.a2+a3B.a2·a3C.(-a2)3D.a8÷a2 4.一组数据3、5、8、3、4的众数与中位数分别是A.3,8 B.3,3 C.3,4 D.4,3 5.如图2,已知AB∥CD,∠C=70°,∠F=30°,则∠A的度数为A.30°B.35°C.40°D.45°6.如图3,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3P应落在线段A.AO上B.OB上C.BC上D.CD上7.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形8.如图4,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动,设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是9.如图5,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3 cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3 cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是A.13cm B.CD.10.如图6,在△ABC中,∠ACB=90º,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①ABE与点B重合时,MH=12;③AF+BE=EF;④MG•MH=12,其中正确结论为A.①②③B.①③④C.①②④D.①②③④第Ⅱ卷(非选择题共90分)二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696000千米,用科学记数法表示为_______千米.12.一个多边形的内角和是外角和的3倍,则这个多边形的边数是_______.13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成右图统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有_________人.14.已知:()260a+,则224b b a--的值为_________.15.如图7,在平面直角坐标系中,点M为x轴正半轴上一点,过点M的直线l∥y轴,且直线l分别与反比例函数8yx=(x>0)和kyx=(x>0)的图象交于P、Q两点,若S△POQ=14,则k的值为__________.图516.已知抛物线p :y =ax 2+bx +c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C ′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y =x 2+2x +1和y =2x +2,则这条抛物线的解析式为_____________________.三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤。
2015年四川省资阳市中考数学试卷一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.21•世纪*教育网1.﹣6的绝对值是( )A.6B.-6C.61D. -61 2.如图是一个圆台,它的主视图是( )A .B .C .D . 下列运算结果为6a 的是( )A .32a a +B .32a a ÷C .32)(a -D . 28a a ÷ 4.一组数据3、5、8、3、4的众数与中位数分别是( )A . 3,8B . 3,3C . 3,4D .4,35.如图,已知AB ∥CD ,∠C=70°,∠F=30°,则∠A 的度数为( )A . 30°B . 35°C . 40°D .45°6.如图,已知数轴上的点A 、B 、C 、D 分别表示数﹣2、1、2、3,则表示数3﹣的点P 应落在线段( )A .AO 上B . OB 上C . BC 上D . CD 上若顺次连接四边形ABCD 四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是A . 矩形B . 菱形C . 对角线相等的四边形D . 对角线互相垂直的四边形( )8.如图,AD 、BC 是⊙O 的两条互相垂直的直径,点P 从点O 出发,沿O→C→D→O 的路线匀速运动.设∠APB=y (单位:度),那么y 与点P 运动的时间x (单位:秒)的关系图是( )A .B .C .D .9.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm 的点A 处,则蚂蚁吃到饭粒需爬行的最短路径是( )A . 13cmB . 261cmC . 61cmD .234cm10.如图,在△ABC 中,∠ACB=90°,AC=BC=1,E 、F 为线段AB 上两动点,且∠ECF=45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①AB=2;②当点E 与点B 重合时,MH=21;③AF+BE=EF ;④MG•MH=21,其中正确结论为( )A ①②③B ①③④C ①②④D ①②③④. . . .二、填空题:(本大题共6个小题,每小题3分,共18分)11.太阳的半径约为696 000千米,用科学记数法表示为 千米.12.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是 .13.某学校为了解本校学生课外阅读的情况,从全体学生中随机抽取了部分学生进行调查,并将调查结果绘制成统计表.已知该校全体学生人数为1200人,由此可以估计每周课外阅读时间在1~2(不含1)小时的学生有 人.每周课外阅读时间(小时) 0~1 1~2 (不含1) 2~3 (不含2)超过3人 数7 10 14 1914.已知:(a+6)2+322--b b =0,则2b 2﹣4b ﹣a 的值为 .15.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y=x 8(x >0)和y=xk (x >0)的图象交于P 、Q 两点,若S △POQ =14,则k 的值为 .16.已知抛物线p :y=ax 2+bx+c 的顶点为C ,与x 轴相交于A 、B 两点(点A 在点B 左侧),点C 关于x 轴的对称点为C′,我们称以A 为顶点且过点C′,对称轴与y 轴平行的抛物线为抛物线p 的“梦之星”抛物线,直线AC′为抛物线p 的“梦之星”直线.若一条抛物线的“梦之星”抛物线和“梦之星”直线分别是y=x 2+2x+1和y=2x+2,则这条抛物线的解析式为 .三、解答题:(本大题共8个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.先化简,再求值: 12)1111(2-+÷+--x x x x ,其中x 满足2x ﹣6=0.18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A :特别好,B :好,C :一般,D :较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了 名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A 类和D 类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.学校需要购买一批篮球和足球,已知一个篮球比一个足球的进价高30元,买两个篮球和三个足球一共需要510元.(1)求篮球和足球的单价;(2)根据实际需要,学校决定购买篮球和足球共100个,其中篮球购买的数量不少于足球数量的32,学校可用于购买这批篮球和足球的资金最多为10500元.请问有几种购买方案? (3)若购买篮球x 个,学校购买这批篮球和足球的总费用为y (元),在(2)的条件下,求哪种方案能使y 最小,并求出y 的最小值.20.北京时间2015年04月25日14时11分,尼泊尔发生8.1级强烈地震,我国积极组织抢险队赴地震灾区参与抢险工作.如图,某探测队在地面A 、B 两处均探测出建筑物下方C 处有生命迹象,已知探测线与地面的夹角分别是25°和60°,且AB=4米,求该生命迹象所在位置C 的深度.(结果精确到1米.参考数据:sin25°≈0.4,cos25°≈0.9,tan25°≈0.5,3≈1.7)21.如图,直线y=ax+1与x 轴、y 轴分别相交于A 、B 两点,与双曲线y=xk (x >0)相交于点P ,PC ⊥x 轴于点C ,且PC=2,点A 的坐标为(﹣2,0).(1)求双曲线的解析式;(2)若点Q为双曲线上点P右侧的一点,且QH⊥x轴于H,当以点Q、C、H为顶点的三角形与△AOB相似时,求点Q的坐标.22.如图,在△ABC中,BC是以AB为直径的⊙O的切线,且⊙O与AC相交于点D,E 为BC的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接AE,若∠C=45°,求sin∠CAE的值.23.如图,E、F分别是正方形ABCD的边DC、CB上的点,且DE=CF,以AE为边作正方形AEHG,HE与BC交于点Q,连接DF.(1)求证:△ADE≌△DCF;(2)若E是CD的中点,求证:Q为CF的中点;(3)连接AQ,设S△CEQ=S1,S△AED=S2,S△EAQ=S3,在(2)的条件下,判断S1+S2=S3是否成立?并说明理由.24.已知直线y=kx+b (k≠0)过点F (0,1),与抛物线y=41x 2相交于B 、C 两点.(1)如图1,当点C 的横坐标为1时,求直线BC 的解析式;(2)在(1)的条件下,点M 是直线BC 上一动点,过点M 作y 轴的平行线,与抛物线交于点D ,是否存在这样的点M ,使得以M 、D 、O 、F 为顶点的四边形为平行四边形?若存在,求出点M 的坐标;若不存在,请说明理由;(3)如图2,设B (m .n )(m <0),过点E (0.﹣1)的直线l ∥x 轴,BR ⊥l 于R ,CS ⊥l 于S ,连接FR 、FS .试判断△RFS 的形状,并说明理由.1. A 解析:|﹣6|=6,故选:A .点评:本题考查了绝对值,负数的绝对值是它的相反数.2.B 解析:从几何体的正面看可得等腰梯形,故选:B .点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.3. D 解析:A 、23a a ÷不能合并,故A 错误;B 、523a a a =∙,故B 错误;C 、632)(a a -=-,故C 错误;D 、628a a a =÷,故D 正确;故选D .点评:本题考查了同底数幂的乘除法、合并同类项以及积的乘方和幂的乘方,是基础知识要熟练掌握.C 解析:把这组数据从小到大排列:3、3、4、5、8,3出现了2次,出现的次数最多,则众数是3.处于中间位置的那个数是4,由中位数的定义可知,这组数据的中位数是4;4. 故选C .点评:本题为统计题,考查中位数与众数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.众数是一组数据中出现次数最多的数据,注意众数可以不止一个.5. C 解析:∵AB∥CD,∴∠BEF=∠C=70°,∵∠BEF=∠A+∠F,∴∠A=70°﹣30°=40°.故选C.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.6. B 解析:∵2<5<3,∴0<3﹣5<1,故表示数3﹣5的点P应落在线段OB上.故选:B.点评:此题主要考查了估算无理数的大小,得出5的取值范围是解题关键.7. D 解析:已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.点评:本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.8.B 解析:(1)当点P沿O→C运动时,当点P在点O的位置时,y=90°,当点P在点C的位置时,∵OA=OC,∴y=45°,∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,根据圆周角定理,可得y≡90°÷2=45°;(3)当点P 沿D→O 运动时,当点P 在点D 的位置时,y=45°,当点P 在点0的位置时,y=90°,∴y 由45°逐渐增加到90°.故选:B .点评:(1)此题主要考查了动点问题的函数图象,解答此类问题的关键是通过看图获取信息,并能解决生活中的实际问题,用图象解决问题时,要理清图象的含义即学会识图.(2)此题还考查了圆周角定理的应用,要熟练掌握,解答此题的关键是要明确:在同圆或等圆中,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧也相等.9. A 解析:解:如图:∵高为12cm ,底面周长为10cm ,在容器内壁离容器底部3cm 的点B 处有一饭粒, 此时蚂蚁正好在容器外壁,离容器上沿3cm 与饭粒相对的点A 处,∴A ′D=5cm ,BD=12﹣3+AE=12cm ,∴将容器侧面展开,作A 关于EF 的对称点A ′,连接A ′B ,则A ′B 即为最短距离,A ′B=2222125+=+'BD D A=13(Cm ).故选:A .点评:本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.10. C 解析:①由题意知,△ABC 是等腰直角三角形,∴AB=222=+BC AC ,故①正确;②如图1,当点E 与点B 重合时,点H 与点B 重合,∴MB ⊥BC ,∠MBC=90°,∵MG ⊥AC ,∴∠MGC=90°=∠C=∠MBC ,∴MG ∥BC ,四边形MGCB 是矩形,∴MH=MB=CG ,∵∠FCE=45°=∠ABC ,∠A=∠ACF=45°,∴CE=AF=BF ,∴FG 是△ACB 的中位线,∴GC=21AC=MH ,故②正确; ③如图2所示,∵AC=BC ,∠ACB=90°,∴∠A=∠5=45°.将△ACF 顺时针旋转90°至△BCD ,则CF=CD ,∠1=∠4,∠A=∠6=45°;BD=AF ;∵∠2=45°,∴∠1+∠3=∠3+∠4=45°,∴∠DCE=∠2.在△ECF 和△ECD 中,,∴△ECF ≌△ECD (SAS ),∴EF=DE .∵∠5=45°,∴∠BDE=90°,∴222222BE +AF =E ,即BE +BD =DE ,故③错误;④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE ,∵∠A=∠5=45°,∴△ACE ∽△BFC , ∴BFAC =BC AF , ∴AF•BF=AC•BC=1,由题意知四边形CHMG 是矩形,∴MG ∥BC ,MH=CG ,MG ∥BC ,MH ∥AC , ∴ABBF AC CG AB AE BC CH ==;, 即21;21BF MH AE MG ==, ∴MG=22AE ;MH=22BF , ∴MG•MH=22AE×22BF=21AE•BF=21AC•BC=21, 故④正确.故选:C .点评:考查了相似形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.11. 6.96×510 解析:将696 000千米用科学记数法表示为6.96×510千米点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.12. 8 解析:设多边形的边数为n ,根据题意,得(n ﹣2)•180=3×360,解得n=8.则这个多边形的边数是8.点评:已知多边形的内角和求边数,可以转化为方程的问题来解决13. 240 解析:根据题意得:1200×191410710+++=240(人), 答:估计每周课外阅读时间在1~2(不含1)小时的学生有240人;故答案为:240.点评: 本题考查从统计表中获取信息的能力,及统计中用样本估计总体的思想.14. 12 解析:∵(a+6)2+322--b b =0,∴a+6=0,b 2﹣2b ﹣3=0,解得,a=﹣6,b 2﹣2b=3,可得2b 2﹣2b=6,则2b 2﹣4b ﹣a=6﹣(﹣6)=12,故答案为12点评: 本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.15. -20 解析:∵O M P △O M Q △PO Q △S +S =S ,∴|k|+×|8|=14,∴|k|=20,而k <0,∴k=﹣20.故答案为﹣20.点评: 本题考查了反比例函数比例系数k 的几何意义:在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.也考查了反比例函数与一次函数的交点问题.16.y=2x ﹣2x ﹣3 解析:∵y=2x +2x+1=2)1(+x ,∴A 点坐标为(﹣1,0), 解方程组得或, ∴点C ′的坐标为(1,4),∵点C 和点C ′关于x 轴对称,∴C (1,﹣4),设原抛物线解析式为y=a 2)1(-x ﹣4,把A (﹣1,0)代入得4a ﹣4=0,解得a=1,∴原抛物线解析式为y=2)1(-x ﹣4=2x ﹣2x ﹣3.故答案为y=2x ﹣2x ﹣3.点评: 本题考查了二次函数与x 轴的交点:求二次函数y=a 2x +bx+c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标,令y=0,即a 2x +bx+c=0,解关于x 的一元二次方程即可求得交点横坐标.△=2b ﹣4ac 决定抛物线与x 轴的交点个数,△=2b ﹣4ac >0时,抛物线与x 轴有2个交点;△=2b ﹣4ac=0时,抛物线与x 轴有1个交点;△=2b ﹣4ac <0时,抛物线与x 轴没有交点.17.解析:根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可 解:原式=222)1)(1()1)(1(212)1)(1(112+=+-+∙+-=-+÷+-+-+x x x x x x x x x x x x ∵2x ﹣6=0,∴x=3,当x=3时,原式=52. 点评: 本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.18. 解析:(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C 类女生:20×25%﹣2=3(名);D 类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C 类女生:20×25%﹣2=3(名);D 类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A 类中的两名男生分别记为A1和A2,男A1 男A2 …(7分) 女A男D 男A1男D 男A2男D 女A 男D女D 男A1女D 男A2女D 女A 女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:2163 . 点评: 此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.19. 解析:(1)设一个篮球x 元,则一个足球(x ﹣30)元,根据“买两个篮球和三个足球一共需要510元”列出方程,即可解答;(2)设购买篮球x 个,足球(100﹣x )个,根据“篮球购买的数量不少于足球数量的32,学校可用于购买这批篮球和足球的资金最多为10500元”,列出不等式组,求出x 的取值范围,由x 为正整数,即可解答;(3)表示出总费用y ,利用一次函数的性质,即可确定x 的取值,即可确定最小值. 解答: 解:(1)设一个篮球x 元,则一个足球(x ﹣30)元,由题意得:2x+3(x ﹣30)=510,解得:x=120,∴一个篮球120元,一个足球90元.(2)设购买篮球x 个,足球(100﹣x )个, 由题意可得:⎪⎩⎪⎨⎧≤-+-≥10500)100(90120)100(32x x x x , 解得:40≤x ≤50,∵x 为正整数,∴x=40,41,42,43,44,45,46,47,48,49,50,∴共有11种购买方案.(3)由题意可得y=120x+90(100﹣x )=30x+9000(40≤x ≤50)∵k=30>0,∴y 随x 的增大而增大,∴当x=40时,y 有最小值,y 最小=30×40+9000=10200(元),所以当x=40时,y 最小值为10200元.点评: 本题考查了一次函数的应用,解决本题的关键是根据已知条件,列出一元一次方程和一元一次不等式组,应用一次函数的性质解决问题.20. 解析:过C 点作AB 的垂线交AB 的延长线于点D ,通过解Rt △ADC 得到AD=2CD=2x ,在Rt △BDC 中利用锐角三角函数的定义即可求出CD 的值.解答: 解:作CD ⊥AB 交AB 延长线于D ,设CD=x 米.Rt △ADC 中,∠DAC=25°,所以tan25°=AD CD =0.5, 所以AD=5.0CD =2x . Rt △BDC 中,∠DBC=60°,由tan 60°=342=-x x , 解得:x ≈3米.所以生命迹象所在位置C 的深度约为3米.点评: 本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.21. 解析:(1)把A 坐标代入直线解析式求出a 的值,确定出直线解析式,把y=2代入直线解析式求出x 的值,确定出P 坐标,代入反比例解析式求出k 的值,即可确定出双曲线解析式;(2)设Q (a ,b ),代入反比例解析式得到b=a4,分两种情况考虑:当△QCH ∽△BAO 时;当△QCH ∽△ABO 时,由相似得比例求出a 的值,进而确定出b 的值,即可得出Q 坐标. 解:(1)把A (﹣2,0)代入y=ax+1中,求得a=21,∴y=21x+1, 由PC=2,把y=2代入y=21x+1中,得x=2,即P (2,2), 把P 代入y=xk 得:k=4, 则双曲线解析式为y=x4; (2)设Q (a ,b ),∵Q (a ,b )在y=x 4上, ∴b=a4, 当△QCH ∽△BAO 时,可得BO QH AO CH =,即122b a =-, ∴a ﹣2=2b ,即a ﹣2=a8, 解得:a=4或a=﹣2(舍去),∴Q (4,1);当△QCH ∽△ABO 时,可得AO QH BO CH =,即212b a =-, 整理得:2a ﹣4=a4, 解得:a=1+3或a=1﹣3(舍),∴Q (1+3,23﹣2).综上,Q (4,1)或Q (1+3,23﹣2).点评: 此题属于反比例函数综合题,涉及的知识有:相似三角形的性质,待定系数法确定直线解析22. 解析:(1)连接DO ,DB ,由圆周角定理就可以得出∠ADB=90°,可以得出∠CDB=90°,根据E 为BC 的中点可以得出DE=BE ,就有∠EDB=∠EBD ,OD=OB 可以得出∠ODB=∠OBD ,由的等式的性质就可以得出∠ODE=90°就可以得出结论.(2)作EF ⊥CD 于F ,设EF=x ,由∠C=45°,得出△CEF 、△ABC 都是等腰直角三角形,根据等腰直角三角形的性质和勾股定理求得BE=CE=2x ,AB=BC=22x ,AE=10x ,进而就可求得sin ∠CAE 的值.解:(1)连接OD ,BD ,∴OD=OB∴∠ODB=∠OBD .∵AB 是直径,∴∠ADB=90°,∴∠CDB=90°.∵E 为BC 的中点,∴DE=BE ,∴∠EDB=∠EBD ,∴∠ODB+∠EDB=∠OBD+∠EBD ,即∠EDO=∠EBO .∵BC 是以AB 为直径的⊙O 的切线,∴AB ⊥BC ,∴∠EBO=90°,∴∠ODE=90°,∴DE 是⊙O 的切线;(2)作EF ⊥CD 于F ,设EF=x∵∠C=45°,∴△CEF 、△ABC 都是等腰直角三角形,∴CF=EF=x ,∴BE=CE=2x ,∴AB=BC=22x ,在RT △ABE 中,AE=x BE AB 1022=+,∴sin ∠CAE=1010=AE EF .点评: 本题考查了圆周角定理的运用,直角三角形的性质的运用,等腰三角形的性质的运用,切线的判定定理的运用,勾股定理的运用,解答时正确添加辅助线是关键.式,待定系数法确定反比例函数解23. 解析:(1)由正方形的性质得出AD=DC ,∠ADE=∠DCF=90°,再由SAS 即可证出△ADE ≌△DCF ;(2)先证出∠DAE=∠CEQ ,再证明△ADE ∽△ECQ ,得出比例式AD CE DE CQ =,证出CQ=21DE ,即可得出结论; (3)先证明△AEQ ∽△ECQ ,得出△AEQ ∽△ECQ ∽△ADE ,得出面积比等于相似比的平方,再由勾股定理即可得出结论.解(1)证明:∵四边形ABCD 是正方形,∴AD=DC ,∠ADE=∠DCF=90°,在△ADE 和△DCF 中,,∴△ADE ≌△DCF (SAS );(2)证明:∵E 是CD 的中点,∴CE=DE=21DC=21AD , ∵四边形AEHG 是正方形,∴∠AEH=90°,∴∠AED+∠CEQ=90°,∵∠AED+∠DAE=90°,∴∠DAE=∠CEQ ,∵∠ADE=∠DCF ,∴△ADE ∽△ECQ , ∴AD CE DE CQ ==21, ∴CQ=21DE , ∵DE=CF ,∴CQ=21CF , 即Q 为CF 的中点;(3)解:321S =S +S 成立;理由如下:如图所示:∵△ADE ∽△ECQ , ∴AEQE DE CQ =, ∵DE=CE , ∴AE QE CE CQ =, ∵∠C=∠AEQ=90°,∴△AEQ ∽△ECQ ,∴△AEQ ∽△ECQ ∽△ADE ,∴232221)(,)(AQAE S S AQ EQ S S ==, ∴222223221)()(AQAE EQ AQ AE AQ EQ S S S S +=+=+ ∵222AQ =AE +EQ , ∴3221S S S S +=1, ∴321S =S +S .点评: 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,难度较大,需要多次证明三角形相似才能得出结论.析式,熟练掌握待定系数法是解本题的关键.24. 解析:(1)首先求出C 的坐标,然后由C 、F 两点用待定系数法求解析式即可;(2)因为DM ∥OF ,要使以M 、D 、O 、F 为顶点的四边形为平行四边形,则DM=OF ,设M (x ,﹣43x+1),则D (x ,241x ),表示出DM ,分类讨论列方程求解; (3)根据勾股定理求出BR=BF ,再由BR ∥EF 得到∠RFE=21∠BFR ,同理可得∠EFS=∠CFS ,所以∠RFS=∠BFC=90°,所以△RFS 是直角三角形.解答: 解:(1)因为点C 在抛物线上,所以C (1,41), 又∵直线BC 过C 、F 两点,故得方程组: ⎪⎩⎪⎨⎧=+=411b k b 解之,得⎪⎩⎪⎨⎧=-=143b k ,所以直线BC 的解析式为:y=﹣43x+1; (2)要使以M 、D 、O 、F 为顶点的四边形为平行四边形,则MD=OF ,如图1所示, 设M (x ,﹣43x+1),则D (x ,241x ), ∵MD ∥y 轴,∴MD=﹣43x+1﹣241x , 由MD=OF ,可得|﹣43x+1﹣241x |=1, ①当﹣43x+1﹣241x =1时, 解得x=0(舍)或x=﹣3,所以M (﹣3,413), ②当﹣43x+1﹣241x =﹣1时, 解得,x=2413±-, 所以M (2413--,841317+)或M (2413+-,841317-), 综上所述,存在这样的点M ,使以M 、D 、O 、F 为顶点的四边形为平行四边形,M 点坐标为M (﹣3,413)或M (2413--,841317+)或M (2413+-,841317-); (3)过点F 作FT ⊥BR 于点T ,如图2所示,∵点B (m ,n )在抛物线上,∴2m =4n ,在Rt △BTF 中, BF=222222)1(4)1()1(+=+-=+-=+n n n m n TF BT ,∵n >0,∴BF=n+1,又∵BR=n+1,∴BF=BR .∴∠BRF=∠BFR ,又∵BR ⊥l ,EF ⊥l ,∴BR ∥EF ,∴∠BRF=∠RFE ,∴∠RFE=∠BFR ,同理可得∠EFS=∠CFS ,∴∠RFS=21∠BFC=90°, ∴△RFS 是直角三角形.点评: 本题主要考查了待定系数法求解析式,平行四边形的判定,平行线的性质,勾股定理以及分类讨论和数形结合等数学思想.。
数学
(一)命题说明
2015年高中阶段学校招生统一考试数学学科的命题指导思想是:全面贯彻贯彻新课程改革精神,体现课改理念,依据义务教育《数学课程标准》(2011年版)七至九年级的课程内容,注重考查七至九年级所涉及的基础知识、基本技能、基本思想和基本活动经验,考查学生发现问题和提出问题的能力、分析问题和解决问题的能力,反映数学教学和考试发展动态。
1.依据义务教育《数学课程标准》(2011年版)命题,重视基础,体现新课程的基本理念。
以学生常见的基本题型为主,注重考查学生对数学知识、技能和数学思想的理解、掌握与运用。
2.适度调控试题难度与题量,保持总体稳定。
根据课程改革精神、数学教学改革的发展趋势及数学考试改革的新动向,以及贯彻减轻学生过重课业负担的精神和适应全面实施素质教育的需要,适当控制试题题量和试题难度,保持总体稳定,发挥考试对数学教学的积极导向作用。
3.根据当前教学实际,合理反映考试性质,考查考生的数学学习潜能,适当强化对数学思维及数学应用意识、创新意识和实践能力的考查,以贴近生产、生活实际中的现实问题为题材,联系社会实践,适度编制一定数量的新颖试题。
(二)考试范围
以教育部2011年出版的义务教育《数学课程标准》所规定的七至九年级的课程内容为基本范围,参照2015届毕业班所用华东师大出版社《义务教育课程标准实验教科书数学》命题,包括数与代数、图形与几何、统计与概率、综合与实践第七、八、九年级的学习内容。
(三)具体考试内容及要求
根据义务教育《数学课程标准》(2011年版)的有关规定和现代考试命题理论,考查目标分为结果性目标和过程性目标,全面评价学生在知识技能、数学思考、问题解决和情感态度等方面的表现。
考试要求与测试水平分为“了解”、“理解”、“掌握”和“运用”四个层次,其含义与义务教育《数学课程标准》(2011年版)的说明一致。
四个层次的要求从低到高互相联系,较高层次测试水平和要求包含较低层次测试水平的要求。
具体内容标准、考查目标及要求如下:数与代数
方
的和、差,以及线段中点的意义
√多边形的定义,
√
标的多边形的对称图形的顶点坐标,并知道
通过列表
综合与实践
1.结合实际情境,经历设计解决具体问题的方案,并加以实施的过程,体验建立模型、解决问题的过程,并在此过程中,尝试发现和提出问题。
2.会反思参与活动的全过程,将研究的过程和结果形成报告或小论文,并能进行交流,进一步获得数学活动经验。
3.通过对有关问题的探讨,了解所学过知识(包括其他学科知识)之间的关联,进一步理解有关知识,发展应用意识和能力。
(四)各部分内容考试比例
数与代数约46%;图形与几何约42%;统计与概率约12%。
七年级约20%;八年级约30%;九年级约50%。
(五)题型结构
选择题10个,每题3分,共30分;填空题6个,每题3分,共18分;解答题8个,共72分。
(六)试题难度比例
容易题约65%;稍难题约25%;中难题约10%。