直线上一动点到两固定点之间距离的最值
- 格式:doc
- 大小:59.00 KB
- 文档页数:6
圆周一动点到两定点的最短距离圆周一动点到两定点的最短距离是一个经典的几何问题,涉及到圆的性质与直线的关系。
在本文中,我们将从不同的角度探讨这个问题,展示出它的深度和魅力。
首先,我们来了解一下这个问题的背景。
假设有一个圆,圆心为O,半径为r;另外有两个定点A和B,我们需要找到一个动点P,使得P到A和B的距离之和最小。
为了解决这个问题,我们可以运用几何分析的方法。
首先,我们将P点与A、B两点分别连线,得到线段PA和PB。
我们可以观察到,P 到A和B的距离之和等于线段PA和线段PB的长度之和。
接下来,我们观察到一个重要的性质:当线段PA和线段PB的长度相等时,P到A和B的距离之和达到最小值。
这是因为,当PA和PB 的长度相等时,P点正好位于线段AB的中垂线上,此时P到A和B 的距离之和等于2倍的线段PA(或PB)的长度。
根据这个性质,我们可以得出结论:圆周上与线段AB的中垂线相交的点P,即为P到A和B的距离之和最小的点。
这个点P的位置并不唯一,因为圆周上有无数个与线段AB的中垂线相交的点,它们的P到A和B的距离之和都是最小的。
这个结论可以通过几何推导得到,但也可以用数学方法进行证明。
我们可以设圆的方程为(x-a)²+(y-b)²=r²,定点A的坐标为(x₁,y₁),定点B的坐标为(x₂,y₂)。
根据求解最短距离的条件,可以列出以下方程组:√((x-x₁)²+(y-y₁)²)+√((x-x₂)²+(y-y₂)²)=k其中,k为常数。
通过求解这个方程组,我们可以得到圆周与线段AB的中垂线相交的点P的坐标。
除了几何和数学的方法,还有其他方法可以求解这个问题。
例如,我们可以利用优化算法来找到P到A和B的距离之和最小的点。
通过将问题转化为一个优化问题,我们可以建立一个目标函数,使得这个函数的取值在P点附近达到最小值。
通过迭代求解,我们可以找到使得目标函数取值最小的P点。
关于定直线上的动点到两定点间距离和(差)的极值问题专题学习目标:1、领会和最小与差的绝对值最大问题的内涵,能正确求解二次函数综合问题中的相关问题;2、能够正确的分析问题、转化问题,合理利用条件解决问题。
学情分析:关于在一条直线上的动点到两定点间距离的和(或差)的极值问题,学生的得分率不高,大约为50﹪左右。
本着数学归类、归纳的理念,在这里把同一类问题作一整理、归纳、延展。
重点:能够正确的分析和最小与差的绝对值最大问题、转化问题 难点:理解和最小与差的绝对值最大问题的内涵 一、问题引入:问题1:大家记得这样一个常识吗?“牵牛从点A 出发,到河边l 喝水,再到点B 处吃草,走哪条路径最短?”即在l 上找一点P ,使得PA+PB 和最小。
(1)A ,B 两点在直线异侧时(2)A ,B 两点在直线同侧时方法是:小结1:在直线l 上找一点P 使PA+PB 和最小,常把两点转化到直线的 ,即作B 点关于 (也可以作A点关于l 的对称点A′),连接AB′交l 于点P,即为所要找的P点。
(3)变式讨论:在l 上找一P 点,使得△PAB 周长最小问题2:在l 上找一点P ,使得∣PA -P B ∣最大 (1)A ,B 两点在直线同侧时l A · B · l A · B · l A · B ·l B · A ·(2)A ,B 两点在直线异侧时小结2:在直线l 上找一点P 使∣PA -P B ∣最大,常把两点转化到直线的 ,即作A 点关于 (也可以作B 点关于l 的对称点B ′),连接A ′B 交l 于点P,即为所要找的P点。
基础知识梳理:分清题目类型,若是和最小,则把两点转化到直线的异侧;若是差的绝对值最大,则把两点转化到直线的同侧;可以简记为“ ”。
二、例题讲解 和的最小值问题例1、在直角坐标系中,点A 、B 的坐标分别为(-4,-1)和(-2,-5);点P 是y 轴上的一个动点,求点P 在何处时,PA +PB 的和为最小?并求最小值。
例谈两动点间距离的最值问题的几种解题途径(中学教研2017/3)杨伟达(广州市花都区第二中学 510800)众所周知,距离问题本是一个古老的话题.但在每一年的高考中,它常常成为专家命题的第一视觉,也常常是许多学生解题的绊脚石.因此,在解题中若能处理好距离的最值问题,对快速解题起到事半功倍的效果.下面是笔者对两动点间距离的最值问题从不同角度进行析疑解惑,突显“动”的魅力,焕发出新的活力.一、借助特殊曲线,寻求等价替换有这样的一类题,它们的两动点分别在常见的特殊曲线上,且这特殊曲线具有特殊的性质.此时可以通过观察图形,利用图形的特殊性质即可求得最值.例1 已知圆C :034222=+-++y x y x(1)略;(2)从圆C 外一点),(y x P 向圆引一条切线,M 为切点,O 为坐标原点,且有PO PM =,求使PM 最小的P 点的坐标.分析:此题的一个动点在圆外,另一个在圆上,且这两个动点的连线是圆的切线(特殊).解决此题关键在于利用圆的特殊性质,找出切线长等价替换,问题即可解决.解:已知圆C 方程:034222=+-++y x y x所以圆心坐标为)2,1(-,半径为2,又因为PO PM =,设),(11y x P , 且PM 是圆C 的切线,所以)(222为圆的半径R PC R PM =+ 所以212121212)2()1(y x y x +=--++化简为:034211=+-y x 这是点P 满足的轨迹方程. 因为PO PM =,所以PM 的最小值就是PO 的最小值.PO 的最小值转化为点O 到直线034211=+-y x 的距离.即1053203min ==PO联立方程组有⎪⎩⎪⎨⎧=+-=+0342209112121y x y x ,解得:⎪⎩⎪⎨⎧=-=5310311y x 因此,点P 的坐标为)53,103(-.例2 分别在椭圆19422=+y x 与抛物线222m y x -=上的两动点M 、N 间的距离最小值是5,则m 的值是( )(A )1± (B )2± (C )2±(D )22±分析:如图1,通过草图,不难发现两曲线相离,且位置比较特殊.观察可知,曲线上两动点的最短距离转化为两顶点(定点)间的距离.此时问题就变得简单了.解:因为M 、N 间的距离最小值是5 所以椭圆与抛物线不相交如图1,观察,此时抛物线的顶点N 与椭圆上顶点M 的距离 就是两动点M 、N 间的距离最小值抛物线的顶点)2,0(2m 与椭圆上顶点)3,0(的距离最小值为5 所以5322=-m 解得:2±=m 故选B.二、借助三角函数,寻求合二为一有这样的一类题,它们的两动点分别在常见的特殊曲线上,且动点也可以用含参坐标表示.此时可以直接运用距离公式,把它转化为三角函数的形式即可求得最值.比如:圆222R y x =+上一动点可表示为))(sin ,cos (为参数θθθR R ;椭圆12222=+by a x 上一动点可表示为))(sin ,cos (为参数θθθb a .例3 (2016·广州二测理数23)选修4-4坐标系与参数方程 在直角坐标系xOy 中,曲线C的参数方程为,(sin x y θθθ⎧=⎪⎨=⎪⎩为参数).以点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin(ρθ+)4π=(1) 略;(2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最大值.分析:此类型题每年在全国卷选做题中常常出现.比较快捷的解决方法是利用参数方程表示曲线上的某一动点坐标,再根据条件转化为求三角函数的最值问题即可将问题解决.解:(1)略.所求曲线C 的直角坐标方程为2213x y +=;直线l 的直角坐标方程为2x y +=.(2)因为点Q 是曲线C 上的点,所以可设点Q的坐标为),sin θθ所以点Q 到直线l的距离为d==. 当cos 16πθ⎛⎫-=- ⎪⎝⎭时,max d ==所以点Q 到直线l的距离的最大值为三、借助数形结合,突显形象直观有这样的一类题,它们的一个动点在某区域内,另一个动点在某特殊曲线上.此时两动点间距离问题可转化为某一定点到区域内的距离最值即可将问题解决.例4 设D 为不等式组⎪⎩⎪⎨⎧≤-+≤-≥03200y x y x x 表示的平面区域,圆C:1)5(22=+-y x 上的点与区域D 上的点之间的距离的取值范围是 A.⎪⎪⎭⎫⎢⎣⎡+-134,1225 B.[)134,117+- C.[)34,17 D.[)134,117--分析:此题涉及线性规划问题.先将不等式组表示出平面区域,再根据圆的特殊性质通过数形结合可将问题解决.解:如图2,不等式组⎪⎩⎪⎨⎧≤-+≤-≥03200y x y x x 表示的平面区域如下图中三角形ABO 内(含边缘)的阴影部分。
关于平面内动点到两定点距离之和、差的最值问题摘要:本文通过几道例题,探求了直线或圆锥曲线上一动点到平面内两定点(或一定点一定线)的距离和、差的最值问题,揭示了这一难点问题的本质及其共同解法。
关键词:动点;距离;最值在高三复习过程中经常碰到有关求某曲线上的一个动点到两定点的距离之和(差)的最值。
许多学生在面对此类问题时常常感到束手无策。
本文就此类最值问题及其常见题型作一初步探索。
一、动点在直线上时:即为动点P(x,0)到两定点A(1,1)、B(3,-2)的距离之和。
可知:该值域为总结反思:一般地,求距离之和的最小值应让两点处于直线的异侧,如在同侧则作其中一点关于直线的对称点,异侧两点的距离即为所求的最小值,两点连线与直线的交点即为取最小值时的动点,其依据是:三角形两边之和大于第三边;求距离之差的最大值应让两点处于直线的同侧,如在异侧则作其中一点关于直线的对称点,同侧两点的距离即为所求的最大值,两点连线的延长线与直线的交点即为取最大值时的动点,其依据是:三角形两边之差小于第三边二、动点在圆锥曲线上时1.动点在抛物线上时2.动点在双曲线上时反思感悟:一般地,动点在圆锥曲线上求这两种距离时,定点给的要相对特殊一些。
求距离之和的最小值仍然应让两点处于圆锥曲线的异侧,如在同侧则利用圆锥曲线的定义转化为异侧,异侧两点的距离即为所求的最小值,两点连线与圆锥曲线的交点即为取最小值时的动点,其依据是:三角形两边之和大于第三边;求距离之差的最大值应让两点处于圆锥曲线的同侧,如在异侧则利用圆锥曲线的定义转化为同侧,同侧两点的距离即为所求的最大值,两点连线的延长线与圆锥曲线的交点即为取最大值时的动点,其依据是:三角形两边之差小于第三边。
由此进一步体会圆锥曲线的定义在解题中的重要应用。
参考文献:[1]王朝银.创新设计[M].西安:陕西人民出版社,2009.作者单位:陕西省延安中学邮政编码:716000。
直线上一动点到两定点距离之和最小问题.如何求直线上一动点p到(同侧)两定点距离之和的最小值所在直线的对称点与另一定p二、其中一定点关于动点点连结成的线段长即所求。
例题讲解)两点,3(3,),、平面直角坐标系内有A(2,-1B1 轴上一动点,求:是yP点B 距离之和最小时的坐标;P)到A、(1 距离之和的最小值;、BA2()P到的周长的最小值。
PAB(3)三角形2,DM=2在CD上且MABCD例2、正方形的边长为8,点DN+MN的最小值是多少?在对角线动点NAC上,则3的A2009,深圳)如图,在直角坐标系中,点3例.(顺OOA绕原点0),连结OA,将线段,坐标为(-2 OB.时针旋转120°,得到线段B的坐标;(1)求点、、O三点的抛物线的解析式;A(2)求经过B,使△C2)中抛物线的对称轴上是否存在点3()在(C的周长最小?若存在,求出点的坐标和BOC.的最小周长;若不存在,请说明理由△BOCyBOA x4巩固提高边的BC中,点Q为、在边长为12㎝的正方形ABCD PQAC上一动点,连接PB、,中点,点P为对角线周长的最小值为____________㎝。
则△PBQ是等边三12,2、如图所示,正方形的面积为ABCDABE △AD内,在对角线角形,点在正方形P ACABCDE E 的和最小,则这个最小值为,使上有一点PE PDP CB().B.AD.C 3 .662325,⊥BCABCD中,AD∥BC,AB3、已知直角梯形PD取P=2,BC=DC=5,点在BC上移动,则当PA+AD)APD最小值时,△中边AP上的高为(3D A、BC、、、482171717171717的两条对角线分别,荆门)如图,菱形ABCD4、(2008 分别P是对角线AC上的一个动点,点M、N8长6和,点值,则PM+PN的最小BC 是边AB、的中点是。
O在,点AMN=25、(2009,南通)如图,MN是O的直径,0上的一BAMN=30,为弧AN的中点,P是直径MN上,∠个动点,则PA+PB的最小值是。
解析几何中求距离最值问题的方法与策略作者:洪其强来源:《广东教育·高中》2013年第10期关于解析几何中的距离的最值问题,是我们在高考复习中经常遇到的一种题型,它有时以函数最值的形式出现,有时直接以解析几何题的形式出现,对于这种题型的处理方法,如果得当,就会达到事半功倍的效果.本文以几个例题来谈谈有关这种题型的最佳解决方法.一、直线上一点到两已知点的距离的最值问题1. 同侧求差取最大,直接连接找交点.例1. 设有两点P(3,x)、Q(2,y),其中x+y=2,且x、 y∈R+,求P、Q到原点O的距离之差的最大值,并求取得最大值时的x和y 的值.分析:由题意可知=|OP|-|OQ|= - = - ,即在x轴上求一点M(x,0),使它到点A(0,3)和点B(2,2)距离的差取得最大值 .又A、B两点都在x轴的同侧,为此,连接AB并延长使之交x轴于一点,易证该点即是所求的点M,从而AB的长就是所求的最大值.解析:由分析易得|OP|-|OQ|的最大值为|AB|= ,此时直线AB的方程为y=- x+3.令y=0得x=6即所求的x=6,y=-4.2. 异侧求差取最大,找出对称直接连.例2. 在直线l∶3x-y-1=0上求一点M使它到点A(4,1)和点B(0,4)的距离的差最大.分析:由题意可知A、B两点分别在直线l的两侧,故设B(0,4)点关于直线l∶3x-y-1=0的对称点为B′,易求得B′(3,3),连接AB′并延长交于l一点,易证该点即是所求的点M.解析:由分析易得|MA|-|MB|的最大值为|AB′|= ,此时直线AB′的方程为y=-2x+9.由3x-y-1=0,y=-2x+9?圯x=2,y=5,故所求M点为(2,5).3. 异侧求和取最小,直接连接找交点.例3. 求函数f(x)= + 的最小值.分析: f(x)= += + 表示动点P(x,0)到定点A(-3,3),B(5,-1)的距离之和,而A、B两点分别位于x轴的上下两侧,由此连接AB交x轴于一点,易证该点即是所求的P点.解析:由题意及分析易得直线AB的方程为y=- x+ ,令y=0得x=3即所求的P点为(3,0).4. 同侧求和取最小,找出对称直接连.例4. 在直线l∶x-y+9=0上任取一点P,又知M(-3,0),N(3,0),试问P点在何处时|PM|+|PN|取得最小值?解析:由题意可知M(-3,0),N(3,0)在直线l同侧,要使|PM|+|PN|取得最小值.设M(-3,0)点关于直线l∶x-y+9=0的对称点为M′,易求得M′(-9,6),连接M′N并延长交l于一点,易证该点即是所求的点P. 又直线M′N的方程为y=- x+ ,即x+2y-3=0.由x-y+9=0,x+2y-3=0,得x=-5,y=4,即所求P点位置为(-5,4).点评:由上可知,上述问题可用如下口诀给予解决:同侧求差取最大,直接连接找交点;异侧求差取最大,找出对称直接连;异侧求和取最小,直接连接找交点;同侧求和取最小,找出对称直接连.二、利用数形结合求距离的最值问题例5. 设m≥1,求坐标平面上两点A(m+ ,m-),B(1,0)之间距离的最小值.分析:此题若直接用距离公式求解,比较麻烦. 如果从轨迹图形入手,最简捷.先将动点的轨迹求出来,将动点与定点的距离最值问题转化为定点与轨迹上的点的距离的最值问题.解析:A不是动点吗?那么A的轨迹是什么?这是十分自然的联想,由x=m+ ,y=m- 可知,A点的轨迹方程为x2-y2=4,绘出如上图所示的双曲线的一支,立即可以看出,|AB|的最小值为1 .三、将两个动点转化为只有一个动点例6. 如图,设P为圆(x-3)2+y2=1上的动点,Q为抛物线y2=x上的动点,求|PQ|的最小值.分析:利用圆上动点到圆心的距离等于常数的特点,将圆的动点转化为圆心定点,从而两个动点的距离最值问题,就转化为一个动点到一个定点的距离的最值问题.本题P,Q两点都是动点,如果设这两个点的坐标来求,显然非常困难. 这就需要把这两个变量转化为一个变量来处理. P点在圆上运动,但P点到圆心M(3,0)的距离是定值,利用这个定值来解决.解析:设Q(y2,y),则|QM|2=(y2-3)2+y2=y4-5y2+9=(y2- )2+ ≥ .取等号当且仅当y=± .故|PQ|的最小值为 -1.四、利用圆锥曲线的定义将折线段转化为直线段来求距离的最值问题例7. 已知椭圆 + =1内有一点P(1,-1),F为椭圆的右焦点,在椭圆上求一点M,使得|MP|+2|MF|取得最小值.分析:利用圆锥曲线的定义将折线段转化为直线段来求最值.解析:a2=4,b2=3,c2=1即F(1,0). 由M向右准线作垂线,垂足为N,则 = = .即|MN|=2|MF|.故|MP|+2|MF|=|MP|+|MN|.显然当M,P,N共线时,|MP|+|MN|最小,由 + =1,得x=±,因为x>0,所以M(,-1).(作者单位:贵州省龙里中学)责任编校徐国坚。
动点求最值方法总结一、引言动点求最值是一类经典数学问题,在各个学科领域中都有广泛的应用。
它可以通过将问题转化为数学模型,通过解析方法或数值计算方法求解。
本文将对动点求最值的方法进行总结和探讨,深入探究这类问题的解决思路和技巧。
二、常见的动点求最值问题2.1 直线上的动点问题在一条直线上,给定两个固定点A和B,求动点P到A点和B点的距离之和的最小值或最大值。
这类问题可以通过求解P点的坐标来实现。
2.2 平面内的动点问题在平面内,给定固定点A、B和C,求动点P到点A、B、C的距离之和的最小值或最大值。
这类问题涉及到平面几何和三角函数的运用。
2.3 空间内的动点问题在三维空间中,给定固定点A、B和C,求动点P到点A、B、C的距离之和的最小值或最大值。
这类问题需要运用空间几何和向量的知识。
三、解决动点求最值问题的方法3.1 几何解法几何解法是通过绘制几何图形,利用几何性质和定理来解决问题。
在直线上的动点问题中,可以通过绘制线段和圆等图形来分析,确定最值点的位置。
在平面内和空间内的动点问题中,可以借助几何图形的相似性和对称性来求解。
3.2 代数解法代数解法是通过建立方程或运用代数方法来求解问题。
在直线上的动点问题中,可以通过设定P点的坐标,利用距离公式建立相应的方程,并通过求导或配方法求解。
在平面内和空间内的动点问题中,可以利用向量运算和三角函数关系建立方程,然后通过求解方程组来得到最值点的坐标。
3.3 数值计算方法如果问题比较复杂,无法通过几何或代数的方法得到解析解,可以使用数值计算方法进行近似求解。
常用的数值计算方法包括最优化算法、数值优化算法和遗传算法等。
这些方法通过迭代计算,逐步逼近最值点的位置。
四、案例分析4.1 直线上的动点问题案例假设直线上有两个点A(1, 2)和B(3, 4),求动点P到A点和B点的距离之和的最小值。
通过建立P点的坐标(x, y),利用距离公式可得:d=√(x−1)2+(y−2)2+√(x−3)2+(y−4)2通过求导可以得到最小值点的坐标:∂d=0∂x∂d=0∂y解得最小值点为P(2, 3)。
直线上一动点到两固定点之间距离的最值
【题型】P点为直线L上一动点,A点、B点不在直线上,且固定。
当P点移动到什么位置时,P点到A点的距离与P点到B点的距离之差的绝对值最大。
【引申】当P点移动到什么位置时,P点到A点的距离与P点到B 点的距离之和最小。
【思路】下面3条原理是解决此类问题的基础:
1、所有此类问题都应纳入“三角形”中求解;(定理1)
2、运用“在同一平面之中,两点之间,线段最短。
”(定理2)
3、运用“在同一平面中,三角形的两边之和大于第三边,两边之差小于第三边。
”(定理3)【几种不同情况的详细解答及相应证明】
1、求直线上动点到直线外两固定点距离之差的绝对值的最大值(1)当两固定点在直线同侧时,如图1
图 1
假设直线上任意一点P’点,连接P’点与B点,P’点与A点,形成△P’BA,根据“定理3”,得知|P’A-P’B|<AB;
当P’点移动到P”点时,分别连接A、B两点,形成△P”BA,根据“定理3”,得知|P”A –P”B|<AB;
只有移动到P点,即BA连线的延长线与直线L的交点时,|PA-PB|=AB。
结论:当直线上一动点,与直线一侧的两固定点之间距离之差的绝对值最大时,P点位于两点连线的延长线与直线的交点处。
计算:P点的位置(或坐标)以及最大值。
如图1,过A点做直线垂直与直线L,垂足为M,过B点做直线垂直于直线L,垂足为M’
这样,AM∥BM’
因此,在直角△PBM’中,AM/BM’=PM/PM’
所以,PM’=PM+MM’
最终得出:PM=(AM×MM’)÷|BM’-AM|,以此确定P点的位置(或坐标)。
同样道理,PM/MM’=PA/AB
所以,最大值AB=MM’/PM×PA,根据勾股定理计算出PA后,就计算出了AB的长度。
(2)当两固定点在直线异侧时,如图2
图2
对于处于直线异侧的两点,先通过其中一点A做一条垂直与直线L 的直线,垂足为M,且使AM=A’M(即做A点对于直线L的对称点),将异侧问题转化为同侧问题。
然后,连接A’和B点,并延长交于直线于P点,则P点就是到A、B 两点距离之差的绝对值最大时的点。
同样,在直线上任意一点P’,并连接P’A,P’B,P’A’,可以看出,在△P’A’B中,|P’A’-P’B|<A’B,由于P’A’=P’A,所以,|P’A-P’B|=|P’A’-P’B|<A’B。
将P’点移动到P”点,并构成△P”A’B,同样道理可以得出|P”A-P”B|=|P”A’-P”B|<A’B。
所以,只有将P点移动到A’B的延长线与直线L的交点处时,才能得到|PA-PB|=|PA’-PB|=A’B。
结论:当直线上一动点,与直线异侧的两固定点之间距离之差的绝对值最大时,P点位于一点与另外一点对于直线的对称点的连线的延长线与直线的交点处。
计算:P点的位置(或坐标)以及最大值。
如图2,过B点做直线垂直于直线L,垂足为M’
所以在直角△PM’B中,A’M/BM’=PM/PM’,由于PM’=PM+MM’
所以,PM=(A’M×MM’)÷|A’M –BM’|,以此确定P点的位置(或坐标)。
同样道理,PA’/A’B=PM/MM’,所以,P点到A、B两点距离之差的绝对值最大值为A’B=PA’×MM’÷PM,根据勾股定理计算出PA’后,就计算出了A’B的长度。
【本节结论】直线上移动点到直线外两固定点之间的距离之差的绝对值,只存在最大值,不存在最小值。
当两点在直线同侧时,最大值为两点连线长度;当两点在直线异侧时,最大值为一点与另一点对于直线的对称点的连线长度。
推导出:当两固定点在直线上时,动点与两定点之间的距离之差的绝对值,有且只有一个值(即常量),即两点之间的线段长。
2、求直线上动点到直线外两固定点的距离之和绝对值的最小值(1)当两固定点在直线同侧时,如图3
图 3
首先,过A点做直线垂直于直线L,垂足M,并使AM=MA’
连接A’B,AB,AB与直线L交于P点,连接AP
在直线L上任意取一点P’,连接P’B,P’A,P’A’
从图上可以直观得出,P’A=P’A’,所以,P’点到A、B点的距离之和与P’点到A’点、B点的距离之和相等,即|P’A+P’B|=|P’A’+P’B|
根据“定理3”,在△P’A’B中,P’B+P’A’>A’B,所以,P’B + P’A >A’B
同样道理,如果P’点移动到P”点,与A’、B点构成△P”A’B,P”B+P”A’>A’B,而P”A’=P”A
所以,P”B+P”A>A’B
只有当P点移动到A’、B点连线与直线L的交点处时,即P点即处于直线L上,又处于线段A’B上时,|PA’+PB|=A’B,而PA’=PA,所以,|PA+PB|=A’B
这时,P点到两定点的距离之和的绝对值才是其他所有点到两定点距离之和的绝对值中最小的。
结论:当直线上一动点到直线同侧两固定点之距离之和的绝对值最小时,P点位于固定点与另一固定点对于直线的对称点的连线与直线的
交点处。
计算:P点的位置(或坐标)以及最小值
如图3,过B点做直线垂直于直线L,垂足为M’
由于直角三角形MPA’与直角三角形BPM’,三角相等,所以,这两个三角形为相似三角形
所以,MP/PM’=MA’/BM’,且PM’=MM’-MP
所以,MP=MA’×MM’÷(MA+BM’),以此确定P点位置(或坐标)。
又因为,|PA+PB|=|PA’+PB|=A’B,且MP,PM’=MM’-MP均已计算出,运用勾股定理,分别计算出PA’、PB长度,即可确定A’B的长度,即P点到两固定点距离之和绝对值的最小值。
(2)当两固定点在直线L异侧时,如图4
图4
根据上述同侧问题,我们可以看出,直接连接A、B两点与直线L的交点就是符合要求的P点,在此不再累述。
【本节结论】直线上一动点到直线外两固定点的距离之和的绝对值只存在最小值,没有最大值。
当两固定点在直线同侧时,动点位于固定点与另一固定点对于直线的对称点的连线与直线的交点处;当两固定点在直线异侧时,动点位于两固定点连线与直线的交点处。
推导出:
(1)当两固定点在直线上时,动点到两固定点的距离之和的绝对值的最小值,有且只有一个,就是两固定点之间的线段长。
(2)当两固定点在直线上时,直线上的动点到两固定点的距离之差的绝对值的最大值和距离之和的绝对值的最小值相等,即两固定点之间的线段长。