第六章《实数》单元同步检测试题(含答案)
- 格式:doc
- 大小:148.00 KB
- 文档页数:8
人教版七年级下册第六章实数单元同步测试一、选择题1、以下说法正确的选项是()A.负数没有立方根B.一个正数的立方根有两个,它们互为相反数C.假如一个数有立方根,则它必有平方根D.不为 0 的任何数的立方根,都与这个数自己的符号同号2、以下语句中正确的选项是()A.-9 的平方根是 -3B.9 的平方根是 3C.9 的算术平方根是3D.9 的算术平方根是 33、以下说法中正确的选项是()A、若 a 为实数,则a0 B 、若 a 为实数,则 a 的倒数为1aC、若 x,y 为实数,且x=y ,则x y D 、若 a 为实数,则a204、估量287 的值在A. 7和8之间B. 6和 7之间C. 3和4之间D. 2和 3之间5、以下各组数中,不可以作为一个三角形的三边长的是()A、 1、 1000、 1000B、 2、 3、5C、32,42,52D、38 , 327 , 3646、以下说法中,正确的个数是()(1)- 64 的立方根是- 4;( 2)49的算术平方根是7 ;(3)1的立方根为1;(4)1是27341的平方根。
16A 、1B 、2C 、3D 、47、一个数的平方根与立方根相等,则这个数是( )A.1B. ±1C.0D. —18、假如 3 2.37 1.333 , 3 23.7 2.872 ,那么 3 0.0237 约等于().A. 13.33B. 28.72C. 0.1333D. 0.28729、若x 1 +( y+2 ) 2=0,则( x+y ) 2017=( )A .﹣ 1B . 1C . 32017D .﹣ 3201710、若 0a 1,则 a, a 2, 1的大小关系是 ()a二、填空题11、 0.0036 的平方根 是,81 的算术平方根是.12、若a 的平方根为 3 ,则 a=.13、假如一个数的平方根是 a+6 和 2a-15 ,则这个数为。
14、比较大小:5 11(填“>”、“<”或“ =”).15、比较大小: 3 10 ________5 ( 填“>”或 “<” ) .16、立方等于它自己的数是。
七年级下册 第六章《实数》单元测试姓名: 班级: 座号:一、单选题(共8题;共32分)1.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为( )A. 1B. -2C. 2D. -12.实 数 1−2a 有平方根,则 a 可以取的值为 ( ) A. 12 B. 1 C. √2 D. π3.下列说法错误的是( ) A. 0的平方根是0 B. 4的平方根是±2 C. ﹣16的平方根是±4 D. 2是4的平方根4.若 √x 3+√y 3=0 ,则x 和y 的关系是( ).A. x =y =0B. x 和y 互为相反数C. x 和y 相等D. 不能确定5.已知正方体的体积为64,则这个正方体的棱长为( )A. 4B. 8C. 4√2D. 2√26.下列语句正确的是( )A. √64 的立方根是2B. -3是27的立方根C. 125216 的立方根是 ±56D. (−1)2 的立方根是-17.在 18 ,-82, √8 ,√83 四个数中,最大的是( ) A. 18 B. -82 C. √8 D. √838.下列四个式子:① √8<√10 ;② √65 <8;③ √5−12 <1;④ √5−12 >0.5. 其中大小关系正确的式子的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共24分)1.若某个正数的平方根是 a −3 和 a +5 ,则这个正数是________.2.3是m 的一个平方根,则m 的另一个平方根是________,m =________.3.已知2b+1的平方根为±3,3a+2b ﹣1的算术平方根为4,则2b ﹣3a 的立方根是________.4.若 √0.0000049133 =0.017, √x 3 =17, √−4.9133 =y ,则x =________,y =________.5.绝对值小于 √41 的整数有________个.6.若a 是小于1的正数,则a, 1a ,-a 的大小关系用“<”连接起来 ________________________________三、计算题(共2题;共20分)1.求x 的值:(1)(x ﹣1)2=25 (2)8x 3﹣125=02.已知a 是一64的立方根,b 的算术平方根为2.(1)写出a ,b 的值;(2)求3b 一a 的平方根,四、综合题(共3题;共19分)1.请将图中数轴上标有字母的各点与下列实数对应起来,并回答下列问题:π , −√3 , √73 , −212(1)A________、B________、C________、D________;(2)把这四个数用“<”连接起来__________________________________;(3)在这四个点中,到1的距离小于2个单位长度的有__________________________________ (填字母). 2仔细观察下列各数,回答问题: −√3 ,0, √0.25 , π , −|−112| , √3(1)在数轴上表示上述各数中的非负数(标在数轴上方,无理数标出大致位置),并把它们用“<”号连接.(2)上述各数中介于−2与−1之间的数有______________个.3.数学活动课上,王老师说:“ √2是无理数,无理数就是无限不循环小数,同学们,你能把√2的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用√2﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为√2的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:√3的整数部分是____________;小数部分是____________.(2)已知8+ √3=x+y,其中x是一个整数,且0<y<1,求出2x+(y- √3)2012的值。
人教版七年级数学下册第六章《实数》同步测试题一、选择题(每小题只有一个正确答案)1,π2,0,227,3.1415926 A. 1 B. 2 C. 3 D. 42的值在( )A. 0和1之间B. 1和2之间C. 2和3之间D. 3和4之间3.如图,数轴上点P 表示的数可能是( ).A. B. C. 3.4- D.4.化简()101612π-⎛⎫-++ ⎪⎝⎭的结果为( )A. B. 2 C. 2 D.5.下列四个数:﹣3,π,﹣1,其中最小的数是( )A. ﹣πB. ﹣3C. ﹣1D. 6.和数轴上的点一一对应的是( )A. 整数B. 无理数C. 实数D. 有理数7.下面说法正确的有( )①有理数与数轴上的点一一对应;②a ,b 互为相反数,则1a b=-;③如果一个数的绝对值是它本身,这个数是正数;④近似数7.30所表示的准确数的范围是大于或等于7.295,而小于7.305.A. 1个B. 2个C. 3个D. 4个8.下列实数中,无理数是( )A. 23B. 0C.D. -3.14 9.下列说法正确的是( )A. 绝对值最小的实数是0B. 带根号的都是无理数C. 无限小数是无理数D. 3π是分数 10.定义符号“*”表示的运算法则为a*b =ab +3a ,若(3*x)+(x*3)=-27,则x =( ) A. 92- B. 92C. 4D. -4二、填空题11(|﹣3|)0=_____.12.比较大小:____13在两个连续整数a 和b 之间,且a <b ,那么a ,b 的值分别是_______.14.规定用符合[]x 表示一个实数的整数部分,例如[]3.693=,1=,按此规定,1⎤=⎦__________. 15.定义一种新运算:a ◎b=3a -2b +1,则当2◎x=5时,x 的值是_______三、解答题16.计算:(1)()()641+--+.(2)212279327⎛⎫--⨯⎪⎝⎭.(3)()13191314⨯-.(4)22-17.(1)()120.6 3.7545---+(2)2227⎛⎫-+- ⎪⎝⎭18.计算:(()020171213+-+--19.把下列各数填在相应的表示集合的大括号内﹣2,π,13 ,﹣|﹣3|,227,﹣0.3,1.70,1.1010010001… 整数{_____ …}负分数{_____…}无理数{_____…}.20.如图1,这是由8个同样大小的立方体组成的魔方,体积为64.(1)求出这个魔方的棱长.(2)图中阴影部分是一个正方形ABCD ,求出阴影部分的面积及其边长.(3)把正方形ABCD 放到数轴上,如图2,使得A 与﹣1重合,那么D 在数轴上表示的数为 .参考答案1.B2.D3.B4.A5.A6.C7.A8.C9.A10.D11.4 312.<13.3,4 14.3 15._1_16.(1)1;(2)-5;(3)125914-;(4)2.17.(1)4.5;(2)-11 18.-2.19.﹣2,﹣|﹣3|,0 …13-,﹣0.3 …π1.1010010001…20.(1)4;(23)1。
第六章《实数》单元检测卷一、单选题1.下列各式中错误的是( )=±0.6B=0.6A.±C.―【答案】D=±0.6,A中式子不符合题意;【解析】【解答】A.±B.=0.6,B中式子不符合题意;C.―D.=1.2,D中式子符合题意.故答案为:D.【分析】利用二次根式的性质求解即可。
2等于( )【答案】A【解析】故答案为:A.【分析】根据算术平方根的定义,即正数正的平方根。
据此求值即可.3.(七下·博白期末)16的平方根是( )A.4B.±4C.-4D.±8【答案】B【解析】【解答】解:16的平方根为±4.故答案为:B【分析】根据正数的平方根有两个,它们互为相反数,就可求出16的平方根。
4.(七下·福建期中)下列式子中,正确的是( )A=―B.――0.6C―3D=±6【答案】A―=−2,A符合题意.【解析】【解答】A.B. 原式=−,B不符合题意.C. 原式=|−3|=3,C不符合题意.D. 原式=6,D不符合题意.故答案为:A.【分析】任何数都有立方根,且都只有一个立方根.正数的立方根是正数,负数的立方根是负数,0的立方根是0.5.(八上·南召期中)下列各式正确的是( )=1B2C―6D=―3A.±【答案】D=±1,故不符合题意;【解析】【解答】A、±B、C、=6,故不符合题意;=-3,故符合题意.D、故答案为:D.【分析】一个正数的平方根有两个,它们互为相反数,一个正数的算数平方根只有一个是一个正数;一个负数的平方的算数平方根等于它的相反数;任何一个数都只有一个立方根,一个负数的立方根是一个负数,根据性质即可一一判断。
6.下列说法正确的是( )A.负数没有立方根B.如果一个数有立方根,那么它一定有平方根C.一个数有两个立方根D.一个数的立方根与被开方数同号【答案】D【解析】【解答】解:A、错误.负数的立方根的负数.B、错误.负数没有平方根.C、错误.一个数只有一个立方根.D、正确.一个数的立方根与被开方数同号.故选D.【分析】根据立方根、平方根的意义以及性质一一判断即可.7.(七下·合肥期中)下列实数中,无理数是( )A .3.1415926BC .―D .―237【答案】B 【解析】【解答】A 、3.1415926是有理数,不符合题意;B 、是无理数,符合题意;C 、 ―=-0.8,是有理数,不符合题意;D 、 ―237是有理数,不符合题意.无理数是:.故答案为:B .【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.8.(2022七上·萧山期中)在227,3.14,π2,0.43,0.3030030003……(每两个3之间依次多一个零)中,无理数的个数有( )A .2个B .3个C .4个D .5个【答案】A【解析】【解答】解:227是分数,是有理数,不是无理数;3.14是有限小数,是有理数,不是无理数;=―3是整数,是有理数,不是无理数;π2是无限不循环小数,是无理数;0.43是循环小数,是有理数;0.3030030003……(每两个3之间依次多一个零)是无限不循环小数,是无理数;∴无理数一共有2个,故答案为:A.【分析】无理数就是无限不循环的小数,常见的无理数有四类:①开方开不尽的数,②与π有关的数,③规律性的数,如0.101001000100001000001…(每两个1之间依次多一个0)这类有规律的数,④锐角三角函数,如sin60°等,根据定义即可一一判断.9.(八上·遂宁期末)在实数―,3,0,0.5中,最小的数是( )A.―【答案】A<0<0.5<3,【解析】【解答】根据题意可得:―所以最小的数是―故答案为:A.【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.10.(九下·云南月考)一个正方形的面积是15,估计它的边长在( ).A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【解析】【解答】∵一个正方形的面积是15,.∴其边长=<<,∴3<故答案为:C.【分析】先求出正方形的边长,再估算出其大小即可.二、填空题11.若|x-3|+ =0,则x2y的平方根是 【答案】±6【解析】【解答】解:由题意得:x-3 =0,x+2y-11=0,解得x=3,y=4,∴x2y=36,∴x2y的平方根是±6.故答案为:±6.【分析】根据非负数之和等于0的条件分别列方程,联立求解,代入原式求值,再根据平方根的定义即可解答.12.(2022七上·滨城期中)若单项式2xy m+1与单项式1x n―2y3是同类项,则m―n= .3【答案】―1【解析】【解答】∵单项式2xy m+1与单项式13x n―2y3是同类项∴n―2=1m+1=3,解得n=3m=2∴m―n=2―3=―1.故答案为:―1.【分析】根据同类项的定义可得n―2=1m+1=3,求出m、n的值,再将m、n的值代入m-n计算即可。
第六章《实数》检测题 一、选择题(每小题只有一个正确答案) 1.4的平方根是( ).A. 2B. 2C. 2±D. 2± 2.下列运算正确的是( ) A. 9=±3 B. |﹣3|=﹣3 C. ﹣9=﹣3 D. ﹣32=93.在实数227, 3-, 32π, 39,3.14中,无理数有A. 2个B. 3个C. 4个D. 5个4.估计131+的值在( )A. 2和3之间B. 3和4之间C. 4和5之间D. 5和6之间5.如果一个实数的平方根与它的立方根相等,则这个数是( ).A. 0和1B. 正实数C. 0D. 16.对于实数a ,b ,给出以下4个判断:①若a b =,则a b =;②若a b <,则a b <; ③若281x =,则9x =;④若5m =-,则225m =,其中正确的判断有( )A. 4个B. 3个C. 2个D. 1个7.64的立方根等于( )A. 8B. 4C. 2D. ﹣28.下列说法不正确的是( )A. 214⎛⎫- ⎪⎝⎭的平方根是±14 B. -5是25的一个平方根 C. 0.9的算术平方根是0.3 D.3273-=- 9.若()225a =-, ()335b =-,则a b +的所有可能值为( ).A. 0B. -10C. 0或-10D. 0或±1010.若将三个数-3,7, 11表示在数轴上,其中能被如图所示的墨迹覆盖的数是( )A. 3B. 7C. 11D. 71111.下列运算中,正确的个数是( )①25114451222-=﹣22﹣2111116442+=+ ()24-=±4;⑤3125-=﹣5.A. 0个B. 1个C. 2个D. 3个12.用计算器探索:已知按一定规律排列的20个数:1,, …, ,.如果从中选出若干个数,使它们的和<1,那么选取的数的个数最多是( ) A. 4个 B. 5个 C. 6个 D. 7个二、填空题13.计算: 101()(5)32π-----= .14.9的平方根是____;___的立方根为﹣2.15.已知a <b ,且a ,b 为两个连续整数,则a+b= __.16.若x ,y 为实数,且|x ﹣2|+(y+1)2=0的值是 __.17.观察下面的规律:0.1414≈0.4472≈,1.414≈ 4.472≈,14.14≈44.72≈≈ ;0.5477≈ 1.732≈,则≈ .三、解答题18.计算: ()201201723π-⎛⎫--- ⎪⎝⎭.19.计算:(1)201232-⎛⎫-+ ⎪⎝⎭ (2)((3)-(4)-(5)32224a ab b⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭(6)2221111a a a aa a a-+⎛⎫÷⋅ ⎪---⎝⎭20.求x的值:(1)(x-1)2=9;(2)8x3-27=021.已知某正数的两个平方根分别是2a﹣7和a+4,b﹣12的立方根为﹣2.( 1)求a、b的值;( 2)求a+b的平方根.22.张华想用一块面积为400cm2的正方形纸片,沿着边的方向剪出一块面积为300cm2的长方形纸片,使它的长宽之比为3:2.他不知能否裁得出来,正在发愁.李明见了说:“别发愁,一定能用一块面积大的纸片裁出一块面积小的纸片.”你同意李明的说法吗?张华能用这块纸片裁出符合要求的纸片吗?参考答案1.C 2.C 3.B 4.C 5.C 6.D 7.C 8.C 9.C 10.B 11.B 12.A13.2-14. ±3 ﹣8.15.91617.141.4;0.1732.18.9.19.解:(1)原式=214+5;(2)原式=((22- =4×3 - 9×2 =12 – 18 =-6;(3)原式=6-1+12(4)原式--=43- (5)原式= -368a b ÷2216a b = - 368a b ×2316b a = - 42a b; (6)原式=()()()111a a a a -+-• 1a a - •()()2211a a +-=()()()2111a a a -+-=11a a +-. 20. ()1 ()219,x -= 13x -=或1 3.x -=-14x =, 2 2.x =-()32827.x =3278x =3.2x == 21.(1)1a =, 4b =;(2)22.不同意李明的说法解:设面积为300平方厘米的长方形的长宽分为3x 厘米,2x 厘米,则3x •2x =300,x 2=50,解得x=400平方厘米的正方形的边长为20厘米,由于>20,所以用一块面积为400平方厘米的正方形纸片,沿着边的方向裁不出一块面积为300平方厘米的长方形纸片,使它的长宽之比为3:2.试题解析:解:不同意李明的说法.设长方形纸片的长为3x(x>0)cm,则宽为2x cm,依题意得:3x•2x=300,6x2=300,x2=50,∵x>0,∴x∴长方形纸片的长为cm,∵50>49,∴7,∴21,即长方形纸片的长大于20cm,由正方形纸片的面积为400 cm2,可知其边长为20cm,∴长方形纸片的长大于正方形纸片的边长.答:李明不能用这块纸片裁出符合要求的长方形纸片.可以编辑的试卷(可以删除)。
《第六章 实数》单元检测试卷一一、选择题 (每题3分,共24分。
每题只有一个正确答案,请将正确答案的代号填在下面的表格中)1. 下列运算正确的是( )A .39±= B .33-=- C .39-=- D .932=- 2. 下列各组数中互为相反数的是( )A.-2 -2 C.-2 与12- D.2与2- 3. 下列实数317,π-,14159.3,21中无理数有( ) A.2个 B.3个 C.4个 D.5个4. 实数a,b 在数轴上的位置如图所示,则下列结论正确的是( ) A. 0a b +> B. 0a b ->C. 0>abD .0>ba5. 有如下命题:①负数没有立方根;②一个实数的立方根不是正数就是负数;③一个正数或负数的立方根与这个数同号;④如果一个数的立方根是这个数本身,那么这个数是1或0。
其中错误的是( )A .①②③B .①②④C .②③④D .①③④ 6. 若a 为实数,则下列式子中一定是负数的是( )A .2a -B .2)1(+-aC .2a -D .)1(+--a 7. a =-,则实数a 在数轴上的对应点一定在( )A .原点左侧B .原点右侧C .原点或原点左侧D .原点或原点右侧 8. 请你观察、思考下列计算过程: 因为112=121,所以121=11 ; 因为1112=12321,所以11112321=;……,由此猜想76543211234567898= ( ) A .111111 B .1111111 C .11111111 D .1111111111-二、填空题(每题3分,共30) 9.81的平方根是 。
10. _________。
11. 化简:332-= 。
12. 写出1到2之间的一个无理数___________。
13. 计算:3201389)1(+-- =____________。
14. 当x ≤0时,化简1x --的结果是 。
9, n x x 2 - 2 2 1 - x (-2)2 a 2 x 2 + 23 y a 2 5 x -1第六章 实数单元同步测试卷二、填空题(每小题3分,共 30 分) 811、(-4)2 的平方根是, 36 的算术平方根是, - 的立方根是.125一、选择题(每小题 3 分,共 30 分)1、下列语句中正确的是( )12、3 - 8 的相反数是, - 的倒数是 .2A.49 的算术平方根是 7B.49 的平方根是-7 13、若一个数的算术平方根与它的立方根相等,那么这个数是 .C.-49 的平方根是 7D.49 的算术平方根是± 714、下列判断:① - 0.3 是0.09 的平方根;② 只有正数才有平方根;③ - 4 是- 16 的平方2、下列实数3,-7 ,0, 2,-3.15, 3中,无理数有( ) 根;④ ( 2)2 的平方根是± 2 .正确的是(写序号). 8 3 5 5A.1 个B.2 个C.3 个D.4 个3、- 8 的立方根与4 的算术平方根的和是 () 15、如果 的平方根是±3 ,则= .A. 0B. 4C. ± 2D. ± 416、比较大小: 3 2 4、下列说法中:(1)无理数就是开方开不尽的数;(2)无理数是无限小数;(3)无理数包括正无理数、零、负无理数;(4)无理数可以用数轴上的点来表示,共有( )个 17、满足- < x < 的整数 x 是. 是正确的。
18、用两个无理数列一个算式,使得它们和为有理数 .A. 1B. 2C. 3D. 4 19、计算: + + x 2 - 2 = .5、下列各组数中互为相反数的是()120、小成编写了一个如下程序:输入 x → x2 →立方根→倒数→算术平方根→1 ,则x 为 。
A. - 2 与B. - 2 与 3 - 8C. - 2 与- 2 6、圆的面积增加为原来的n 倍,则它的半径是原来的D. - 2 与2 2( )三.解答题(共 90 分):A. n 倍;B. n倍 2C. 倍D. 2n 倍.21. 把下列各数填人相应的集合内:(10 分)7、实数在数轴上的位置如图,那么化简 a - b - 的结果是()A. 2a - bB. bC. - bD. - 2a + b8、若一个数的平方根是它本身,则这个数是( )A 、1B 、-1C 、0D 、1 或 09、一个数的算术平方根是 x ,则比这个数大2 的数的算术平方根是 ( )整数集合{ … } 负分数集合{ …} 正数集合{…} 有理数集合{ …} A. x 2 + 2B 、 + 2 C. D. 无理数集合{…}10、若3 x + = 0 ,则 x 和y 的关系是( )22、(10 分)求 x(1) (2x - 1)2 = 4(2) 3(x + 2)3 - 81 = 0A. x = y = 0B. x 和y 互为相反数C. x 和y 相等D. 不能确定3 a - 17 53 3 (-4)34 2 2(-4)2 2a + b 2 7 7 7 2 323、(10 分)计算 27、(10 分)一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积(1) - + 2 (2)(-2)3 ⨯ + ⨯ (- 1)2 - 2为 216 立方厘米,求这本书的高度.24、(10 分)已知 + b 2 - 9 = 0 ,求a + b 的值.28、(10 分)已知 2a ﹣1 的平方根是±3,3a+b ﹣9 的立方根是 2,c 是的整数部分,求a+2b+c 的值.25、(10 分)若 9 的平方根是 a,b 的绝对值是 4,求 a+b 的值?29、(10 分)如图,有高度相同的 A 、B 、C 三只圆柱形杯子,A 、B 两只杯子已经盛满水, 小颖把 A 、B 两只杯子中的水全部倒进 C 杯中,C 杯恰好装满,小颖测量得 A 、B 两只杯子底面圆的半径分别是 3 厘米和 4 厘米,你能求出 C 杯底面的半径是多少吗?26、(10 分)例如∵ < < 9, 即2 < < 3 ,∴ 的整数部分为2 ,小数部分为- 2 ,如果 小数部分为a , 的小数部分为b ,求a + b + 2 的值.ABC3 2772 3 3 3 2 3 a 3 81 - 17 2 2 2 2 2 2 2 3 3 2 3一、选择参考答案26.1.5㎝ 解析:设书的高度为 x ㎝,由题意可得(4x )3 = 216,4x = 6, x = 1.527.5㎝ 解析:设圆柱的高为 h ,C 杯的底面半径为 r ㎝,1.A2.C3.A4.B5. B6.C7.C8.D9.D 10.B二、填空由题意得:⨯ 32 ⨯ h +⨯ 42 ⨯ h = ⨯ r 2 ⨯ h ,可得r = 5 .11. ± 4,13.1,06,- 25 12.2,- 214.①④ 15.4 解 析: = (±3)2 , a = 81; 3a - 17 = = 4 .16.<17.-1,0,1,218. - 1,1- (只要符合题意即可).19.-120. ± 821.⑴ x = 3 或x = - 1⑵x=12 222.⑴ ⑵-36+ 解析:原式= - + 2 2 = 3 + 1 解析:原式=-8×4+(-4)× 4 =-32-1-3=-36 23.- 3 或- 15 解析:由题意知, 2 2-3≥ 0 b 2 - 9 ≥ 0 ,所以2a + b 2 = 0, b 2 - 9 = 0 ,可得b = ±3, a = - 9 ,故①当a = - 9 , b = 3 时, a + b = - 3 ②当a = - 9, b = -3时,2 2 2 2 a + b = - 15.2 24. ± 7 或± 125.+ 解析:因为1 < < 2 ,所以 的整数部分是 1,小数部分为 - 1 ;1 < <2 ,所以 的整数部分为 1,小数部分为 - 1,所以可得 a + b + 2 = - 1 + - 1+2= + .3 22a + b 2“”“”At the end, Xiao Bian gives you a passage. Minand once said, "people who learn to learn are very happy people.". In every wonderful life, learning is an eternal theme. As a professional clerical and teaching position, I understand the importance of continuous learning, "life is diligent, nothing can be gained", only continuous learning can achieve better self. Only by constantly learning and mastering the latest relevant knowledge, can employees from all walks of life keep up with the pace of enterprise development and innovate to meet the needs of the market. This document is also edited by my studio professionals, there may be errors in the document, if there are errors, please correct, thank you!。
第六章《实数》单元同步检测试卷一.选择题(共10小题)1.下列各数3.14,,0.,,2.131 331 333 1…(相邻两个1之间3的个数逐次多1),,,其中无理数的个数为()A.2个B.3个C.4个D.5个2.在如图所示的数轴上表示﹣2的点在()A.点A和点B之间B.点B和点C之间C.点C和点D之间D.点D和点E之间3.若a=,b=﹣|﹣|,c=,则a、b、c的大小关系是()A.a>b>c B.c>a>b C.b>a>c D.c>b>a4.当式子的值取最小值时,a的取值为()A.0B.C.﹣1D.15.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2B.C.D.6.已知,则的平方根为()A.1B.C.±1D.7.,,则1720的平方根为()A.13.11B.±13.11C.41.47D.±41.478.下列说法:①=﹣10;②数轴上的点与实数成一一对应关系;③﹣3是的平方根;④任何实数不是有理数就是无理数;⑤两个无理数的和还是无理数;⑥无理数都是无限小数,正确的个数有()A.2个B.3个C.4个D.5个9.若把﹣写成整数a与正的纯小数x的和,那么整数a的值为()A.﹣3B.﹣4C.﹣5D.﹣610.如图,O为原点,实数a、b、c在数轴上对应的点分别为A、B、C,则下列结论正确的是()A.ac<bc B.c2<ac C.b2<bc D.ab<bc二.填空题(共5小题)11.若一个数x的平方根是m﹣3和m﹣7,那么这个数x是.12.已知2x+1的平方根是±3,则﹣5x﹣7的立方根是.13.若k<<k+1(k是整数),则k=.14.当x取时,代数式2﹣取值最大,并求出这个最大值.15.小亮求的近似值,下面是他的草稿纸上的部分内容:3.52=12.25,3.82=14.44,3.92=15.21,3.852=14.8225,3.872=14.9769,3.882=15.0544,3.8752=15.015625依据以上数据,可以得到的近似值(精确到0.01)是.三.解答题(共6小题)16.把下列各数填在相应的大括号中3.1415926,8,,0.275,0,﹣,﹣6,π,﹣0.25,﹣|﹣2|,2.5353353335…分数:{…}非负整数:{…}无理数:{…}.17.已知2a﹣1的算术平方根是3,3a+b﹣9的立方根是2,c是的整数部分,求7a﹣2b﹣2c的平方根.18.(1)若x,y为实数,且x=+4,求(x﹣y)2的平方根;(2)已知x﹣2的平方根是±2,2x+y+7的立方根是3,求x2+y2的算术平方根.19.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.20.定义:可以表示为两个互质整数的商的形式的数称为有理数,整数可以看作分母为1的有理数;反之为无理数.如不能表示为两个互质的整数的商,所以,是无理数.可以这样证明:设与b是互质的两个整数,且b≠0.则a2=2b2因为b是整数且不为0,所以,a是不为0的偶数,设a=2n,(n是整数),所以b2=2n2,所以b也是偶数,与a,b是互质的正整数矛盾.所以,是无理数.仔细阅读上文,然后,请证明:是无理数.21.阅读下面的文字,解答问题大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用﹣1来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:<<,即2<<3,∴的整数部分为2,小数部分为(﹣2)请解答:(1)的整数部分是,小数部分是.(2)如果的小数部分为a,的整数部分为b,求|a﹣b|+的值.(3)已知:9+=x+y,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案一.选择题(共10小题)1.B.2.C.3.D.4.B.5.C.6.C.7.D.8.C.9.C.10.A.二.填空题(共5小题)11.412.﹣3.13.9.14.5,2.15.3.87.三.解答题(共6小题)16.解:分数:{3.1415926,,0.275,﹣,﹣0.25};非负整数:{8,9,0};无理数:{π,2.5353353335…},故答案为:3.1415926,,0.275,﹣,﹣0.25;8,9,0,;π,2.5353353335…,17.解:∵2a﹣1的算术平方根是3,∴2a﹣1=9,∴a=5,∵3a+b﹣9的立方根是2,∴3a+b﹣9=8,∴b=2,∵c是的整数部分,,∴c=3,∴7a﹣2b﹣2c=35﹣4﹣6=25,∴7a﹣2b﹣2c的平方根是±5.18.解:(1)由题意得:,解得y=3,∴x=4,∴(x﹣y)2=1,∴(x﹣y)2的平方根是±1.(2)由x﹣2的平方根是±2,2x+y+7的立方根是3,得x﹣2=4,2x+y+7=27,解得x=6,y=8.∴x2+y2=100,∴x2+y2的算术平方根是10.19.解:∵<<,∴4<<5,∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a)3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16,∴(﹣a)3+(b+4)2的平方根是:±4.20.解:设与b是互质的两个整数,且b≠0.则,a2=5b2,因为b是整数且不为0,所以a不为0且为5的倍数,设a=5n,(n是整数),所以b2=5n2,所以b也为5的倍数,与a,b是互质的正整数矛盾.所以是无理数.21.解:(1)∵,∴的整数部分是7,小数部分是﹣7.故答案为:7;﹣7.(2)∵,∴,∵,∴b=2,∴|a﹣b|+===5.(3)∵,∴11<9+<12,∵9+=x+y,其中x是整数,且0<y<1,∴x=11,y==,∴x﹣y==,∴x﹣y的相反数是:.。
数学单元测验(实数)一、选择题1、在下列各数 3.1415、0.2060060006…、0、2.0 、π-、35、722、27无理数的个数是 ( )A 、 1 ;B 、2 ;C 、 3 ;D 、 4。
2、一个长方形的长与宽分别时6、3,它的对角线的长可能是 ( ) A 、整数;B 、分数 ;C 、有理数 ;D 、无理数3、下列六种说法正确的个数是 ( )A 、1 ;B 、2;C 、3;D 、4 ○1无限小数都是无理 ○2正数、负数统称有理数 ○3无理数的相反数还是无理数 ○4无理数与无理数的和一定还是无理数 ○5无理数与有理数的和一定是无理数 ○6 无理数与有理数的积一定仍是无理数4、下列语句中正确的是 ( )A 、3-没有意义;B 、负数没有立方根; C 、平方根是它本身的数是0,1;D 、数轴上的点只可以表示有理数。
5、下列运算中,错误的是( ) ①1251144251=,②4)4(2±=-,③22222-=-=-,④2095141251161=+=+ A 、1个 ; B 、2个;C 、3个 ;D 、4个。
6、2)5(-的平方根是( )A 、5± ;B 、5;C 、5-;D 、5±。
7、下列运算正确的是( )A 、3311--=-;B 、 3333=- ;C 、 3311-=- ;D 、3311-=- 。
8、若a 、b 为实数,且471122++-+-=a a a b ,则b a +的值为 ( )A 、1± ;B 、;C 、3或5 ;D 、5。
9、下列说法错误的是( )A 、2是2的平方根;B 、两个无理数的和,差,积,商仍为无理数;C 、—27的立方根是—3;D 、无限不循环小数是无理数。
10、若9,422==b a ,且0<ab ,则b a -的值为 ( )A 、2-;B 、5± ;C 、5;D 、5-。
11、数 032032032.123是 ( )A 、有限小数 ;B 、无限不循环小数 ;C 、无理数 ;D 、有理数 12、下列说法中不正确的是( )A 、1-的立方根是1-,1-的平方是1 ;B 、两个有理之间必定存在着无数个无理数;C 、在1和2之间的有理数有无数个,但无理数却没有;D 、如果62=x ,则x 一定不是有理数。
七年级数学下册《第六章 实数》单元检测卷(附带答案)一、选择题(每题3分,共30分)1.9的平方根是( ) A.3 B.-3C.±3D.不存在 2.38=( )A.2B.-2C.±2D.不存在3.下列说法正确的是( ) A.-0.064的立方根是0.4 B.-9的平方根是±3 C.16316D.0.01的立方根是0.0000014.若a 3=-27,则a 的倒数是( )A .3B .-3C.13D .-135.面积为8的正方形的边长在( )5. ,且,则的值为( )A .B .C .1D .1或6. 已知x ,y ,则y x 的立方根是( )AB .-2C .-8D .±27.下列命题中正确的是( )①0.027的立方根是0.3 不可能是负数 ③如果a 是b 的立方根,那么ab≥0 ④一个数的平方根与其立方根相同,则这个数是1. A .①③ B .②④ C .①④ D .③④8.一个数的算术平方根等于这个数的立方根,那么这个数是( )A.1B.0或1C.0D. ±19.下列实数317 -π 3.14159 8 327 12中无理数有( )A.2个B.3个C.4个D.5个10.如图,数轴上A ,B 两点对应的实数分别是1和3,若AB=BC ,则点C 所对应的实数是( )A.231B.13+C.23D.231二、填空题(每题3分,共24分) 11.4是_____的算术平方根.2316,27a b ==-||a b a b -=-+a b 1-7-7-()2320x y -+=363a12.25的算术平方根是_______.13.若一个正数的两个不同的平方根分别是2a﹣1和﹣a+2,则这个正数是.14.若a<0,化简=.15.已知10+的整数部分是x,小数部分是y,求x﹣y的相反数.16.已知x,y都是实数,且y=x-3+3-x+4,则y x=________.17.点A在数轴上和表示1的点相距6个单位长度,则点A表示的数为________.18.若两个连续整数x,y满足x<5+1<y,则x+y的值是________.三、解答题(满分46分,19题6分,20、21、22、23、24题每题8分)19.(6分)计算:(1)|-2|+3-8-(-1)2017(2)9-(-6)2-3-27.20.(8分)求下列各式中x的值.(1)(x-3)2-4=21 (2)27(x+1)3+8=0.21.(本题8分)已知与互为相反数,求的平方根.22.你能找出规律吗?(1)计算:9×16=________,9×16=________ 25×36=________,25×36=________.(2)请按找到的规律计算:5×125 ②123×935.(3)已知a=2,b=10,用含a,b的式子表示40.23.如图,用两个面积为28cm的小正方形纸片剪拼成一个大的正方形.(1)大正方形的边长是________cm(2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为214cm的长方形纸片,使它的长宽之比为2:1,若能,求出这个长方形纸片的长和宽,若不能,请说明理由.24.已知:31a+的立方根是2-,21b-的算术平方根3,c43(1)求,,a b c的值(2)求922a b c-+的平方根.参考答案一.填空题题号12345678910答案C B C D B C A B A A二.选择题11.【答案】16【解析】试题解析:∵42=16∴4是16的算术平方根12.【答案】513.【解答】解:∵一个正数的两个平方根分别是2a﹣1与﹣a+2∴2a﹣1﹣a+2=0解得:a=﹣1故2a﹣1=﹣3则这个正数是:(﹣3)2=9故答案为:914.【答案】1﹣a15.【答案】16.【答案】6417.【答案】1-6或1+6点拨:数轴上到某个点距离为a(a>0)个单位长度的点有两个.注意运用数形结合思想,利用数轴帮助分析.18.【答案】7点拨:∵2<5<3,∴3<5+1<4.∵x<5+1<y,且x,y为两个连续整数,∴x=3,y=4.∴x+y=3+4=7.三.解答题19.【答案】解:(1)原式=2-2+1=1.(4分)(2)原式=3-6+3=0.(8分)20.【答案】解:(1)移项得(x-3)2=25,∴x-3=5或x-3=-5,∴x=8或-2.(5分)(2)移项整理得(x+1)3=-827,∴x+1=-23,∴x=-53.(10分)21.【答案】解:根据相反数的定义可知:解得:a=-8,b=364的平方根是:22.【答案】解:(1)12 12 30 30(2)①原式=5×125=625=25②原式=53×485=16=4(3)40=2×2×10=2×2×10=a2b.23.【答案】(1)4 (2)不能,理由见解析.【解析】(1)根据已知正方形的面积求出大正方形的边长即可(2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可.解:(1)两个正方形面积之和为:2×8=16(cm2)∴拼成的大正方形的面积=16(cm 2) ∴大正方形的边长是4cm 故答案为:4(2)设长方形纸片的长为2xcm ,宽为xcm 则2x •x =14 解得:7x =2x 7>4∴不存在长宽之比为2:1且面积为214cm 的长方形纸片. 24.【答案】(1)3,5,6a b c =-== (2)其平方根为4± 【解析】(1)根据立方根,算术平方根,无理数的估算即可求出,,a b c 的值 (2)将(1)题求出的值代入922a b c -+,求出值之后再求出平方根. 解:(1)由题得318,219a b +=--= 3,5a b ∴=-= 364349<6437∴<6c ∴=3,5,6a b c ∴=-==(2)当3,5,6a b c =-==时()99223561622a b c -+=⨯--+⨯=∴其平方根为164±±。
第六章《实数》章节复习检测
题号
一
二
三
总分
21
22 23 24 25 26 27 分数
一、选择题(每小题3分,共30分) 1.下列说法正确的是( ) A .16的平方根是4 B .﹣1的立方根是﹣1 C .25是无理数
D .9的算术平方根是3
2.下列四个数中,无理数是( ) A .0.14
B .
117
C .2-
D .327-
3.一个正方形的面积为17,估计它的边长大小在( ) A .5和6之间 B .4和5之间 C .3和4之间 D .2和3之间
4.下列各数中,最小的数是( ) A .|﹣3|
B .﹣3
C .﹣13
D .﹣π
5.实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )
A .a b >
B .0ad >
C .+0a c >
D .0c b -<
6.若将﹣
,
,﹣
,
四个无理数表示在数轴上,其中能被如图所示的
墨迹覆盖的数是( )
A .
B .
C .
D .
7.若a 2=4,b 2=9,且ab <0,则a ﹣b 的值为( ) A .﹣2 B .±5 C .5
D .﹣5
8.已知a=
,b=
,c=
,则下列大小关系正确的是( )
A .a >b >c
B .c >b >a
C .b >a >c
D .a >c >b
9.实数a ,b 在数轴上的位置如图所示,则|a|-|b|可化简为( )
A.a-b
B.b-a
C.a+b
D.-a-b
10.已知:|a|=5,=7,且|a+b|=a+b ,则a-b 的值为( ) A.2或12
B.2或-12
C.-2或12
D.-2或-12
二、填空题(每小题3分,共30分)
11.算术平方根等于本身的实数是 . 12.化简:
()23π-= .
13. 9
4
的平方根是 ;125的立方根是 .
14.一正方形的边长变为原来的m 倍,则面积变为原来的 倍;一个立方体的体积变为原来的n 倍,则棱长变为原来的 倍. 15.估计60的大小约等于 或 .(误差小于1) 16.若()03212
=-+-+-z y x ,则x +y +z = .
17.我们知道
53422=+,黄老师又用计算器求得:55334422=+,
55533344422=+,55553333444422=+,则计算:22333444 +(2001个3,2001个4)= .
18.比较下列实数的大小(填上>、<或=).
215- 2
1
;③53. 19.若实数a 、b 满意足
0=+b b a a ,则ab
ab = . 20.实a 、b 在数轴上的位置如图所示,则化简()2
a b b a -++= .
三、解答题(共60分) 21.(8分)求下列各式中的x : (1)(x ﹣1)2=16 (2)(x ﹣1)3﹣3=38
22.(8分)已知7a -和24a +是某正数的两个平方根,7b -的立方根是1. (1)求a b 、的值; (2)求+a b 的算术平方根.
23.(8分)(1)计算:2100﹣299= (2)发现:2n +1﹣2n =
(3)计算:22019﹣22018﹣22017…﹣22﹣2﹣1
24.(8分)已知=0,求实数a ,b 的值,并求出的整数部分和小数部分.
25.(8分)利用平方根(或立方根)的概念解下列方程:
(1)9(x-3)2=64;
(2)(2x-1)3=-8.
26.(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).
27.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:
依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)
当2m-6=m-2时,解得m=4.(2)
所以这个数为2m-6=2×4-6=2.(3)
当2m-6=-(m-2)时,解得m=.(4)
所以这个数为2m-6=2×-6=-.(5)
综上可得,这个数为2或-.(6)
王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.
答案
一、选择题(每小题3分,共30分) 1.B 2.C 3.B 4.D 5.A 6.B 7.B 8.D 9.C 10.D
二、填空题(每小题3分,共30分)
11.0.1;12. π-3;13. ±32
,5;14. 2m ,3n ;15.7或8;16.6;17.2011个
5;18. <,>,<; 19.-1;20. a 2-; 三、解答题(共60分)
21.(1)x =5或﹣3;(2)x =
52
22.(1)a=1,b=8;(2)a+b 的算数平方根为3 23.(1)299;(2)2n ;(3)1
24.(8分)已知=0,求实数a,b的值,并求出的整数部分和小数部分.解根据题意得3a-b=0,a2-49=0且a+7>0,
解得a=7,b=21.
∵16<21<25,
∴4<<5,
∴的整数部分是4,小数部分是-4.
25.(10分)利用平方根(或立方根)的概念解下列方程:
(1)9(x-3)2=64;
(2)(2x-1)3=-8.
解(1)(x-3)2=,则x-3=±.
∴x=±+3,即x
1=,x
2
=.
(2)2x-1=-2,
∴x=-.
26.导学号14154048(10分)如图是一个体积为25 cm3的长方体工件,其中a,b,c表示的是它的长、宽、高,且a∶b∶c=2∶1∶3,请你求出这个工件的表面积(结果精确到0.1 ).
解由题意设a=2x cm,b=x cm,c=3x cm,
根据题意知2x·x·3x=25,所以x3=,所以x=,
所以工件的表面积=2ab+2ac+2bc=4x2+12x2+6x2=22x2=22×≈57.0(cm2).
答:这个工件的表面积约为57.0 cm2.
27.(10分)王老师给同学们布置了这样一道习题:一个数的算术平方根为2m-6,它的平方根为±(m-2),求这个数.小张的解法如下:
依题意可知,2m-6是(m-2),-(m-2)两数中的一个.(1)
当2m-6=m-2时,解得m=4.(2)
所以这个数为2m-6=2×4-6=2.(3)
当2m-6=-(m-2)时,解得m=.(4)
所以这个数为2m-6=2×-6=-.(5)
综上可得,这个数为2或-.(6)
王老师看后说,小张的解法是错误的.你知道小张错在哪里吗?为什么?请予以改正.
解可以看出小张错在把“某个数的算术平方根”当成“这个数本身”.
当m=4时,这个数的算术平方根为2m-6=2>0,则这个数为22=4,故(3)错误;
当m=时,这个数的算术平方根为2m-6=2×-6=-<0(舍去),故(5)错误;
综上可得,这个数为4,故(6)错误.
所以小张错在(3)(5)(6).。