最新-整式的乘除单元测试卷 精品
- 格式:doc
- 大小:44.25 KB
- 文档页数:4
八年级数学上册第12章整式的乘除单元测试卷(华师版2024年秋)一、选择题(每题3分,共24分)题序12345678答案1.下列运算正确的是()A.2a-a=2B.(a2)3=a6C.a3·a3=a9D.(ab)2=ab2 2.下列多项式能用完全平方公式分解因式的是()A.x2-2x-1B.a2-b2C.x2-2xy D.a2-6a+9 3.长方形的长为6x2y,宽为3xy,则它的面积为()A.9x3y2B.18x3y2C.18x2y D.6xy24.小明在做作业的时候,不小心把墨水滴到了作业本上,■×3ab=9ab-18ab3,阴影部分即为被墨水弄污的部分,那么被墨水弄污的部分为()A.(3-6b2)B.(6b-3)C.(3ab-6b2)D.(6b2-3) 5.若(x+9y)2=ax2+bxy+81y2,则a+b的值为()A.19B.18C.17D.166.计算(-5)2026×0.22025的结果为()A.0.2B.1C.5D.-57.若a+2b=7,ab=6,则(a-2b)2的值是()A.3B.2C.1D.08.化简[(324+1)(312+1)(36+1)(36-1)+1]÷330的结果的个位上的数字为() A.1B.3C.7D.9二、填空题(每题3分,共18分)9.计算ab(a2b2-ab)的结果为________.10.计算10.12-9.92的结果为________.11.若a x=3,a y=5,则a3x-y的值为________.12.小明计算(x-2)(x+■)时,已正确得出结果中的一次项系数为-1,但不小心将第二个括号中的常数染黑了,则被染黑的常数为________.13.如图,正方形ABCD的边长为a,正方形EFGC的边长为b,若a+b=10,ab =20,则阴影部分的面积为________.(第13题)14.信息时代确保信息的安全很重要,于是在传输信息的时候需要加密传输,发送方将明文加密为密文传输给接收方,接收方收到密文后解密还原为明文.已知某种加密规则如图所示,若发送方发出a =2,b =4,则mn =________.(第14题)三、解答题(15,16题每题8分,20题12分,其余每题10分,共58分)15.计算:-12a 2·(-4ab 2)2;(2)902-88×92.16.先化简,再求值:(x -y )2-(x +2y )(x -2y )+(x +y )2,且(x -3)2+(1+y )2=0.17.把下列各式因式分解:(1)18a 2b -8b;(2)(x -1)(x -3)+1.18.计算(x-a)(4x+3)-2x时,小奇将“-a”抄成了“+a”,得到的结果为4x2+13x +9.(1)求a的值;(2)请计算出这道题的正确结果.19.数形结合是解决数学问题的一种重要思想方法,借助此方法可将抽象的数学知识变得直观且具有可操作性,从而帮助我们解决问题.初中数学中有一些代数恒等式可以用一些纸片拼成的图形面积来解释.某同学在学习的过程中动手剪了如图①所示的正方形与长方形纸片若干张.(1)他用1张1号、1张2号和2张3号纸片拼出一个新的图形(如图②),根据这个图形的面积写出一个你所熟悉的乘法公式;(2)若要拼成一个长为a+2b,宽为a+b的大长方形(如图③),则需要2号纸片和3号纸片各多少张?(3)当他拼成如图③所示的大长方形,根据6张小纸片的面积和等于大长方形的面积把多项式a2+3ab+2b2分解因式;(4)请你仿照该同学的方法,画出拼图并利用拼图分解因式:a2+5ab+6b2.(第19题)20.【阅读理解】若x满足(7-x)(x-3)=3,求(7-x)2+(x-3)2的值.解:设7-x=a,x-3=b,则(7-x)(x-3)=ab=3,a+b=(7-x)+(x-3)=4,所以(7-x)2+(x-3)2=a2+b2=(a+b)2-2ab=42-2×3=10.【解决问题】(1)若x满足(4-x)(x-3)=-2,则(4-x)2+(x-3)2的值为________;(2)若x满足(2x+3)(2x-1)=92+(2x-1)2的值为________;2,则(2x+3)(3)如图,C是线段AB上的一点,以AC,BC为边向两边作正方形,若AB=5,两正方形的面积和(即S1+S2)为13,求图中阴影部分的面积.(第20题)答案一、1.B 2.D 3.B 4.A 5.A 6.C 7.C8.D 点拨:[(324+1)(312+1)(36+1)(36-1)+1]÷330=[(324+1)(312+1)(312-1)+1]÷330=[(324+1)(324-1)+1]÷330=[(348-1)+1]÷330=348÷330=318.因为31=3,32=9,33=27,34=81,35=243,36=729,37=2187,38=6561,…,所以每4个数的个位上的数字为一组循环.因为18÷4=4……2,所以318的个位上的数字与32的个位上的数字相同,所以为9.故选D.二、9.a 3b 3-a 2b 210.411.27512.113.2014.120点拨:n =(4a 2b -2a 3)÷(-2a )2=(4a 2b -2a 3)÷4a 2=b -12a .因为a =2,b =4,所以m =a 2+ab 2+14b 2=22+2×42+14×42=4+32+4=40,n =b -12a =4-12×2=3,所以mn =40×3=120.三、15.解:(1)原式=-18a 6b 3·16a 2b 4=-2a 8b 7.(2)原式=902-(90-2)×(90+2)=902-902+22=4.16.解:(x -y )2-(x +2y )(x -2y )+(x +y )2=x 2-2xy +y 2-(x 2-4y 2)+x 2+2xy +y 2=x 2-2xy +y 2-x 2+4y 2+x 2+2xy +y 2=x 2+6y 2.因为(x -3)2+(1+y )2=0,所以x -3=0,1+y =0,所以x =3,y =-1.所以原式=32+6×(-1)2=9+6=15.17.解:(1)原式=2b (9a 2-4)=2b (3a +2)(3a -2).(2)原式=x 2-4x +3+1=x 2-4x +4=(x -2)2.18.解:(1)根据题意,得(x +a )(4x +3)-2x =4x 2+(1+4a )x +3a =4x 2+13x +9,所以1+4a =13,所以a =3.(2)(x -3)(4x +3)-2x =4x 2-9x -9-2x=4x 2-11x -9.19.解:(1)(a +b )2=a 2+2ab +b 2.(2)需要2号纸片2张,3号纸片3张.(3)a 2+3ab +2b 2=(a +2b )(a +b ).(4)如图所示.(第19题)a 2+5ab +6b 2=(a +2b )(a +3b ).20.解:(1)5(2)25(3)设AC =m ,BC =n ,则m +n =5,m 2+n 2=13,所以mn =(m +n )2-(m 2+n 2)2=52-132=6,所以图中阴影部分的面积为mn 2=62=3.。
整式乘除单元测试题及答案一、选择题:1. 已知 \( a^2 - 4 \) 可以分解为 \( (a+2)(a-2) \),那么下列哪个表达式不能被 \( a^2 - 4 \) 整除?A. \( a^3 - 4a \)B. \( a^3 - 8 \)C. \( a^3 - 4a + 4 \)D. 提供的选项都是错误的2. 如果 \( x - 1 \) 是多项式 \( x^3 - 2x^2 + x - 2 \) 的一个因子,那么 \( x \) 的值是多少?A. 1B. 2C. 0D. 3二、填空题:1. 计算 \( (3x^2 - 2x + 1) \div (x - 1) \) 的结果为__________。
2. 将多项式 \( 2x^3 - 5x^2 + 3x - 6 \) 除以 \( x - 2 \) 的商是 __________。
三、简答题:1. 证明 \( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \)。
2. 给定多项式 \( P(x) = x^4 - 2x^3 + x^2 - 2x + 1 \),求\( P(1) \) 的值。
四、解答题:1. 已知 \( (x + y)^2 = 9 \) 和 \( (x - y)^2 = 1 \),求 \( x^2 + y^2 \) 的值。
2. 计算 \( \frac{2x^3 - 8x^2 + 6x}{2x - 4} \) 的简化形式。
五、应用题:1. 一个长方形的长是宽的两倍,如果长和宽的乘积是 24,求长方形的长和宽。
2. 某工厂生产一种零件,每个零件的成本是 \( c \) 元,售价是\( 2c \) 元。
如果工厂卖出了 \( n \) 个零件,求工厂的总利润。
答案:一、选择题:1. 答案:D. 提供的选项都是错误的。
2. 答案:A. 1二、填空题:1. 答案:\( 3x - 1 \)2. 答案:\( 2x^2 - 7x + 3 \)三、简答题:1. 证明:\( (x - 1)^3 = x^3 - 3x^2 + 3x - 1 \) 可以通过展开\( (x - 1) \) 的三次幂来验证。
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.954a a a =+B.33333a a a a =⋅⋅C.954632a a a =⨯D.()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2()A.1-B.1C.0D.19979.计算(a -b )(a+b )(a +b )(a -b )的结果是()A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为() A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
12.已知51=+x x ,那么221xx +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.16.若622=-n m ,且3=-n m ,则=+n m .三、解答题(共8题,共66分)17计算:(本题9分)(1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(3)(2266m n m -18、(本题9分)(1)先化简,再求值:(2a 21=,b 19、(本题8分)如图所示,长方形ABCD 是“,且E 为AB 边的中点,CF=BC 坪,求x 2和x 3项,求m 和n 的值21=2007,求ac bc ab c b a ---++222的值。
22]y y y x y +-÷-)2())(的值,与y 的值无关。
整式的乘除练习题(8套)含答案整式的乘除测试题练习一一、精心选一选(每小题3分,共30分) 1、下面的计算正确的是( )A 、1234a a a =⋅B 、222b a )b a (+=+C 、22y 4x )y 2x )(y 2x (-=--+-D 、2573a a a a =÷⋅ 2、在n m 1n x )(x +-=⋅中,括号内应填的代数式是( )A 、1n m x ++B 、2m x +C 、1m x +D 、2n m x ++ 3、下列算式中,不正确的是( )A 、xy 21y x y x 21)xy 21)(1x2x (n 1n 1n n -+-=-+-+-B 、1n 21n n x )x (--= C 、y x x 2x31)y x 2x 31(x n 1n n 2nn --=--+D 、当n 为正整数时,n 4n 22a )a (=- 4、下列运算中,正确的是( )A 、222ac 6c b 10)c 3b 5(ac 2+=+B 、232)a b ()b a ()1b a ()b a (---=+--C 、c b a )c b a (y )a c b (x )1y x )(a c b (-+-----+=++-+D 、2)a b 2(5)b a 3)(b 2a ()a 2b 11)(b 2a (--+-=-- 5、下列各式中,运算结果为422y x xy 21+-的是( )A 、22)xy 1(+-B 、22)xy 1(--C 、222)y x 1(+-D 、222)y x 1(-- 6、已知5x 3x 2++的值为3,则代数式1x 9x 32-+的值为( ) A 、0 B 、-7 C 、-9 D 、3 7、当m=( )时,25x )3m (2x 2+-+是完全平方式 A 、5± B 、8 C 、-2 D 、8或-28、某城市一年漏掉的水,相当于建一个自来水厂,据不完全统计,全市至少有5106⨯个水龙头,5102⨯个抽水马桶漏水。
七年级数学下册第一章《整式的乘除》单元测试卷一、选择题(本大题共15小题,共45.0分) 1. 计算−x 2·x 3的结果是( )A. −x 5B. x 5C. −x 6D. x 62. 下列算式中,计算结果等于a 6的是( )A. a 3+a 3B. a 5⋅aC. (a 4)2D. a 12÷a 23. 下列运算正确的是( )A. a 2+a 3=a 5B. (a 2)3=a 5C. a 6÷a 3=a 2D. (ab 2)3=a 3b 64. 下列计算正确的是( )A. 2x +3y =5xyB. (m +3)2=m 2+9C. (xy 2)3=xy 6D. a 10÷a 5=a 55. 已知x +y =2,xy =−2,则(1−x)(1−y)的值为( )A. −1B. 1C. 5D. −36. 已知a +b =2,ab =−2,则a 2+b 2=( )A. 0B. −4C. 4D. 87. 312是96的( )A. 1倍B. 19倍C. (19)6倍D. 36倍8. a 11÷(−a 2)3⋅a 5的值为( )A. 1B. −1C. −a 10D. a 99. 下列计算:①(−1)0=−1;②(−2)−2=14;③用科学记数法表示−0.0000108=1.08×10−5.其中正确的有( )A. 3个B. 2个C. 1个D. 0个10. 如果a =355,b =444,c =533,那么a 、b 、c 的大小关系是( )A.B. c >b >aC. b >a >cD. b >c >a11. 不论x ,y 为任何实数,x 2+y 2−4x −2y +8的值总是( )A. 正数B. 负数C. 非负数D. 非正数12. 若2x −3y +z −2=0,则16x ÷82y ×4z 的值为( )A. 16B. −16C. 8D. 413.与(a−b)3[(b−a)3]2相等的是()A. (a−b)8B. −(b−a)8C. (a−b)9D. (b−a)914.把0.00091科学记数表示为()A. 91×10−5B. 0.91×10−3C. 9.1×104D. 9.1×10−415.下列运算正确的是()A. 6a−5a=1B. (a2)3=a5C. 3a2+2a3=5a5D. 2a⋅3a2=6a3二、填空题(本大题共5小题,共25.0分)16.一种花瓣的花粉颗粒直径约为0.00065米,0.00065用科学记数法表示为______.17.一个矩形的面积为m2+8m,若一边长为m,则其邻边长为______.18.若a+b=2,a2−b2=6,则a−b=______.19.若x8÷x n=x3,则n=______.20.若x2+2(m−3)x+16是完全平方式,则m的值是_________.三、计算题(本大题共4小题,共32.0分)21.计算:(1)(12a3−6a2+3a)÷3a−1(2)(x+y)2−(x+y)(x−y)22.计算(1)−a6⋅a5÷a3+(−2a2)4−(a2)3⋅(−3a)2;(2)(2x+y)2+(x−y)(x+y)−5x(x−y).23.计算下列各题:(1)−22+(20182−2018)0+(−13)−2−|−3|(2)(−32a2b)2⋅4ab2÷(3a3b)24.计算(1)−14+(−2)÷(−13)−|−9|(2)18×(12−56+23)四、解答题(本大题共5小题,共48.0分)25.已知(x2+mx+n)(x−1)的结果中不含x2项和x项,求m、n的值.26.若x+y=3,且(x−3)(y−3)=2.(1)求xy的值;(2)求x−y的值.27.一位同学在研究多项式除法时,把被除式的二次项系数写成a,而把结果的一次项系数又写成了−b,等式如下:(x3+ax2+1)÷(x+1)=x2−bx+1,现请你帮他求出a,b的值.28.已知x2−x+1=0,求代数式(x+1)2−(x+1)(2x−1)的值.29.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔,纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.比如指数式24=16可以转化为4=log216,对数式2= log525可以转化为52=25.我们根据对数的定义可得到对数的一个性质:log a(M⋅N)=log a M+log a N(a>0,a≠1,M>0,N>0);理由如下:log a M=m,log a N=n,则M=a m,N=a n∴M⋅N=a m⋅a n=a m+n,由对数的定义得m+n=log a(M⋅N)又∵m+n=log a M+log a N∴log a(M⋅N)=log a M+log a N解决以下问题:(1)将指数式53=125转化为对数式______;(2)log24=______,log381=______,log464______.(直接写出结果)=log a M−log a N(a>0,a≠1,M>0,N>0).(写出证明过程(3)证明:证明log a MN)(4)拓展运用:计算计算log34+log312−log316=______.(直接写出结果)答案1.A2.B3.D4.D5.D6.D7.A8.C9.C10.C11.A12.A13.C14.D15.D16.6.5×10−417.m+818.319.520.7或−121.解:(1)原式=4a2−2a+1−1=4a2−2a;(2)原式=x2+2xy+y2−(x2−y2)=x2+2xy+y2−x2+y2=2xy+2y2.22.解:(1)原式=−a11÷a3+16a8−a6⋅9a2=−a8+16a8−9a8 =6a8;(2)原式=4x2+4xy+y2+x2−y2−5x2+5xy=9xy.23.解:(1)−22+(20182−2018)0+(−13)−2−|−3|=−4+1+9−3 =3;(2)(−32a2b)2⋅4ab2÷(3a3b)=94a4b2⋅4ab2⋅13a3b=3a2b3.24.解:(1)原式=−1+6−9 =−4;(2)原式=18×12−18×56+18×23=9−15+12=6.25.解:(x2+mx+n)(x−1)=x3+(m−1)x2+(n−m)x−n.∵结果中不含x2的项和x项,∴m−1=0且n−m=0,解得:m=1,n=1.26.解:(1)由(x−3)(y−3)=2,整理得:xy−3(x+y)+9=2,把x+y=3代入得:xy=2;(2)∵x+y=3,xy=2,∴(x−y)2=(x+y)2−4xy=9−8=1,则x−y=±1.27.解:原除式变形为x3+ax2+1=(x+1)(x2−bx+1),=x3+(1−b)x2+(1−b)x+1,所以a=1−b,1−b=0,解得a=0,b=1.28.解:∵x2−x+1=0,∴x2−x=−1,原式=x2+2x+1−(2x2−x+2x−1)=x2+2x+1−2x2+x−2x+1=−x2+x+2=−(x2−x)+2=−(−1)+2=3.29.3=log5125 2 4 =3 1【解析】解:(1)∵一般地,若a x=N(a>0,a≠1),那么x叫做以a为底N的对数,记作:记作:x=log a N.∴3=log5125,故答案为:3=log5125;(2)∵22=4,34=81,43=64,∴log24=2,log381=4,log464=3,故答案为:2;4;=3;(3)设log a M=m,log a N=n,则M=a m,N=a n,∴MN =a ma n=a m−n,∴由对数的定义得m−n=log a MN,又∵m−n=log a M−log a N,∴log a MN=log a M−log a N;(4)log34+log312−log316=log3(4×12÷16)=log33=1.故答案为:1.(1)根据题意可以把指数式53=125写成对数式;(2)运用对数的定义进行解答便可;(3)先设log a M=m,log a N=n,根据对数的定义可表示为指数式为:M=a m,N=a n,计算MN的结果,同理由所给材料的证明过程可得结论;(4)根据公式:log a(M⋅N)=log a M+log a N和log a MN=log a M−log a N的逆用,将所求式子表示为:log3(4×12÷16),计算可得结论.本题考查整式的混合运算、对数与指数之间的关系与相互转化的关系,解题的关键是明确新定义,明白指数与对数之间的关系与相互转化关系。
七年级数学下册《整式的乘除》单元测试卷(附答案)一.选择题(共8小题,满分40分)1.已知a+b﹣2=0,则3a•3b的值是()A.6 B.9 C.D.﹣92.若8x=21,2y=3,则23x﹣y的值是()A.7 B.18 C.24 D.633.如果2(5﹣a)(6+a)=100,那么a2+a+1的值为()A.19 B.﹣19 C.69 D.﹣694.已知25a•52b=56,4b÷4c=4,则代数式a2+ab+3c值是()A.3 B.6 C.7 D.85.已知4x2+mx+9是完全平方式,则m的值是()A.8 B.±6 C.±12 D.±166.若x+y=3,xy=1,则(1﹣2x)(1﹣2y)的值是()A.1 B.﹣1 C.2 D.﹣27.已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是()A.ab=c B.a+b=cC.a:b:c=1:2:10 D.a2b2=c28.若(mx+3)(x2﹣x﹣n)的运算结果中不含x2项和常数项,则m,n的值分别为()A.m=0,n=0 B.m=0,n=3 C.m=3,n=1 D.m=3,n=0二.填空题(共8小题,满分40分)9.若(x+m)(x﹣3)=x2+nx﹣12,则n=.10.直接写出计算结果:(﹣3x2y3)4(﹣xy2)2=.11.当a=时,多项式x2﹣2(a﹣1)x+25是一个完全平方式.12.已知(x+y)2=2,(x﹣y)2=8,则x2+y2=.13.计算:(﹣)2022×(﹣1)2021=.14.(1)已知x+y=4,xy=3,则x2+y2的值为.(2)已知(x+y)2=25,x2+y2=17,则(x﹣y)2的值为.(3)已知x满足(x﹣2020)2+(2022﹣x)2=12,则(x﹣2021)2的值为.15.已知(x+3)2﹣x=1,则x的值可能是.16.如图,小颖用4张长为a、宽为b(a>b)的长方形纸片,按如图的方式拼成一个边长为(a+b)的正方形,图中空白部分的面积为S1,阴影部分的面积为S2.若a=2b,则S1、S2之间存在的数量关系是.三.解答题(共5小题,满分40分)17.计算:(x﹣2y+3)(x+2y﹣3).18.计算(1)(﹣5x)2﹣(3x+5)(5x﹣3);(2)(2x﹣3y)2﹣(﹣x+3y)(3y+x);(3)先化简,再求值:[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy),其中,y=3.19.规定两数a,b之间的一种运算,记作(a,b):如果a c=b,那么(a,b)=c.例如:因为23=8,所以(2,8)=3.(1)根据上述规定,填空:(4,64)=,(﹣2,4)=,(,﹣8)=;(2)小明在研究这种运算时发现一个现象:(3n,4n)=(3,4);他给出了如下的证明:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n;∴3x=4,即(3,4)=x.∴(3n,4n)=(3,4).请你尝试运用上述这种方法说明下面这个等式成立的理由.(4,5)+(4,6)=(4,30).(3)拓展应用:计算(3,9)×(3,20)﹣(3,5).20.数学活动课上,老师准备了图1中三种不同大小的正方形与长方形,拼成了一个如图2所示的正方形.(1)请用两种不同的方法表示图2中阴影部分的面积和.方法1:;方法2:.(2)请你直接写出三个代数式:(a+b)2,a2+b2,ab之间的等量关系.(3)根据(2)题中的等量关系,解决如下问题:①已知m+n=5,m2+n2=20,求mn和(m﹣n)2的值;②已知(x﹣2021)2+(x﹣2023)2=34,求(x﹣2022)2的值.21.阅读、理解、应用.例:计算:20223﹣2021×2022×2023.解:设2022=x,则原式=x3﹣(x﹣1)•x•(x+1)=x3﹣x(x2﹣1)=x=2022.请你利用上述方法解答下列问题:(1)计算:1232﹣124×122;(2)若M=123456789×123456786,N=123456788×123456787,请比较M,N的大小;(3)计算:.参考答案与解析一.选择题(共8小题,满分40分)1.【答案】解:∵a+b﹣2=0;∴a+b=2;∴3a•3b=3a+b=32=9.故选:B.2.【答案】解:∵8x=21,2y=3;∴23x=21;∴23x﹣y=23x÷2y=21÷3=7.故选:A.3.【答案】解:∵2(5﹣a)(6+a)=100;∴﹣a2+5a﹣6a+30=50;∴a2+a=﹣20;∴a2+a+1=﹣20+1=﹣19.故选:B.4.【答案】解:∵25a•52b=56,4b÷4c=4;∴52a•52b=56,4b﹣c=4;∴2a+2b=6,b﹣c=1;即a+b=3,b﹣1=c;∴a2+ab+3c=a(a+b)+3(b﹣1)=3a+3b﹣3=3(a+b)﹣3=3×3﹣3=9﹣3=6.故选:B.5.【答案】解:∵(2x±3)2=4x2±12x+9;∴m=±12;故选:C.6.【答案】解:原式=1﹣2y﹣2x+4xy =1﹣2(x+y)+4xy;当x+y=3,xy=1时;原式=1﹣2×3+4=1﹣6+4=﹣1;故选:B.7.【答案】解:∵5×10=50;∴2a•2b=2c;∴2a+b=2c;∴a+b=c;故选:B.8.【答案】解:(mx+3)(x2﹣x﹣n)=mx3﹣mx2﹣nmx+3x2﹣3x﹣3n=mx3+(﹣m+3)x2+(﹣nm﹣3)x﹣3n;∵(mx+3)(x2﹣x﹣n)的乘积中不含x2项和常数项;∴﹣m+3=0,﹣3n=0;解得:m=3,n=0;故选:D.二.填空题(共8小题,满分40分)9.【答案】解:(x+m)(x﹣3)=x2﹣3x+mx﹣3m=x2+(m﹣3)x﹣3m;∴m﹣3=n,3m=12;解得:m=4,n=1;故答案为:1.10.【答案】解:原式=81x8y12•x2y4=81x10y16.故答案为:81x10y16.11.【答案】解:因为x2﹣2(a﹣1)x+25=x2﹣2(a﹣1)x+52是完全平方式;属于﹣2(a﹣1)x=±2•x•5;解得:a=﹣4或6.故答案为:﹣4或6.12.【答案】解:∵(x+y)2=2,(x﹣y)2=8;∴x2+2xy+y2=2①,x2﹣2xy+y2=8②;①+②得:2(x2+y2)=10;∴x2+y2=5.故答案为:5.13.【答案】解:原式=[(﹣)×(﹣)]2021×(﹣)=12021×(﹣)=1×(﹣)=﹣;故答案为:﹣.14.【答案】解:(1)∵x+y=4,xy=3;∴x2+y2=(x+y)2﹣2xy=16﹣6=10.故答案为:10;(2)∵(x+y)2=25,x2+y2=17;∴x2+y2+2xy﹣(x2+y2)=8;∴xy=4;∴(x﹣y)2=x2+y2﹣2xy=17﹣8=9.故答案为:9;(3)∵(x﹣2020)2+(x﹣2022)2=12;∴[(x﹣2021)+1]2+[(x﹣2021)﹣1]2=12;∴(x﹣2021)2+2(x﹣2021)+1+(x﹣2021)2﹣2(x﹣2021)+1=12;∴(x﹣2021)2=5.故答案为:5.15.【答案】解:当x+3=1时;解得:x=﹣2;故(x+3)2﹣x=(﹣2+3)2﹣(﹣2)=14=1;当x+3=﹣1时;解得:x=﹣4;故(x+3)2﹣x=(﹣4+3)6=1;当2﹣x=0时;解得:x=2;故(x+3)2﹣x=(2+3)0=1;综上所述,x的值可能是﹣2或﹣4或2.故答案为:﹣2或﹣4或2.16.【答案】解:S1=b(a+b)×2+ab×2+(a﹣b)2=a2+2b2;S2=(a+b)2﹣S1=(a+b)2﹣(a2+2b2)=2ab﹣b2;∵a=2b;∴S1=a2+2b2=6b2,S2=2ab﹣b2=3b2∴S1=2S2.故答案为:S1=2S2.三.解答题(共5小题,满分40分)17.【答案】解:原式=x2﹣(2y﹣3)2=x2﹣(4y2﹣12y+9)=x2﹣4y2+12y﹣9.18.【答案】解:(1)原式=25x2﹣(15x2﹣9x+25x﹣15)=25x2﹣15x2+9x﹣25x+15=10x2﹣16x+15;(2)原式=4x2﹣12xy+9y2﹣(9y2﹣x2)=4x2﹣12xy+9y2﹣9y2+x2=5x2﹣12xy;(3)[(xy﹣2)2﹣2x(xy﹣2y)﹣4]÷(﹣2xy)=(x2y2﹣4xy+4﹣2x2y+4xy﹣4)÷(﹣2xy)=(x2y2﹣2x2y)÷(﹣2xy)=﹣xy+x;把,y=3代入得:﹣xy+x=﹣×(﹣)×3+(﹣)=﹣=.19.【答案】解:(1)∵43=64,(﹣2)2=4,(﹣)﹣3=﹣8;∴(4,64)=3,(﹣2,4)=2,(﹣,﹣8)=﹣3.故答案为:3,2,﹣3.(2)设(4,5)=x,(4,6)=y,(4,30)=z;则4x=5,4y=6,4z=30;∴4x×4y=5×6=30;∴4x×4y=4z;∴x+y=z,即(4,5)+(4,6)=(4,30).(3)设(3,20)=a,(3,5)=b;∴3a=20,3b=5;∵(3,9)=2;∴(3,9)×(3,20)﹣(3,5)=2a﹣b;∵32a﹣b=(3a)2÷3b=202÷5=80;∴2a﹣b=(3,80),即(3,9)×(3,20)﹣(3,5)=(3,80).20.【答案】解:(1)阴影两部分求和为a2+b2,用总面积减去空白部分面积为(a+b)2﹣2ab;故答案为:a2+b2,(a+b)2﹣2ab;(2)由题意得,a2+b2=(a+b)2﹣2ab;(3)①由(2)题结论a2+b2=(a+b)2﹣2ab可得ab=;∴m+n=5,m2+n2=20时;mn===;(m﹣n)2=m2﹣2mn+n2;=20﹣2×=20﹣5=15;②设a=x﹣2021,b=x﹣2023;可得a+b=(x﹣2021)+(x﹣2023)=x﹣2021+x﹣2023=2x﹣4044=2(x﹣2022);由(2)题结论a2+b2=(a+b)2﹣2ab可得;(a+b)2=a2+2ab+b2;又∵(a﹣b)2=[(x﹣2021)﹣(x﹣2023)]2=22=4;且由(a﹣b)2=a2﹣2ab+b2,可得2ab=(a2+b2)﹣(a﹣b)2=(x﹣2021)2+(x﹣2023)2﹣[(x﹣2021)﹣(x﹣2023)]2=34﹣4=30;∴(x﹣2022)2=()2====16.21.【答案】解:(1)设123=x;∴1232﹣124×122=x2﹣(x+1)(x﹣1)=x2﹣x2+1=1;(2)设123456786=x;∴M=123456789×123456786=(x+3)•x=x2+3x;N=123456788×123456787=(x+2)(x+1)=x2+3x+2;∴M<N;(3)设++...+=x;∴=(x+)(1+x)﹣(1+x+)•x=x+x2++x﹣x﹣x2﹣x =.。
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是()A.954a a a =+B.33333a a a a =⋅⋅C.954632a a a =⨯D.()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2()A.1-B.1C.0D.19979.计算(a -b )(a+b )(a +b )(a -b )的结果是()A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为() A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
12.已知51=+x x ,那么221xx +=_______。
13.方程()()()()41812523=-+--+x x x x 的解是_______。
14.已知2=+n m ,2-=mn ,则=--)1)(1(n m _______。
15.已知2a =5,2b =10,2c =50,那么a 、b 、c 之间满足的等量关系是___________.16.若622=-n m ,且3=-n m ,则=+n m .三、解答题(共8题,共66分)17计算:(本题9分)(1)()()02201214.3211π--⎪⎭⎫ ⎝⎛-+--(3)(2266m n m -18、(本题9分)(1)先化简,再求值:(2a 21=,b 19、(本题8分)如图所示,长方形ABCD 是“,且E 为AB 边的中点,CF=BC 坪,求x 2和x 3项,求m 和n 的值21=2007,求ac bc ab c b a ---++222的值。
22]y y y x y +-÷-)2())(的值,与y 的值无关。
整式的乘除过关测试A一、(时间: 40分钟, 总分: 80分) 选择题(共12小题, 每小题3分, 共36分) )可写成(13.1+m a()()a a D aa C aa a B aa A m m m m ⋅++⋅+3333....()6223124355126663)5(;1243)4(;)3(;)2(;2)1(.2y x xy b b b c c c a a a a a a n n n ==⋅=⋅=+=⋅下列计算:中正确的个数为( )A.0B.1C.2D.3 )(324,0352.3=⋅=-+y x y x 则若A.32B.16C.8D.4())的结果为(计算200920088125.0.4⨯-A.8B.-8C.-1D.无法计算)的是(下列等式中运算不正确.5()()2223243322232442.51025.842.63)2(3.y xy x y x D xy x y x x C b a ab b a B y x y x xy x xy A ++=--=-=⋅-=-()()()()的值为、,则若a a M 10M 102105108.626⨯=⨯⨯⨯ 105M 108M 92M 88M ========a D a C a B a A ,、,、,、,、()()()等于则若m n n x x mx x -++=-+,315.72 251.251.25.25.--D C B A()()()的关系是与的一次项,则展开后不含要使多项式q p x q x px x -++2.822.1.0..===+=pq D pq C q p B q p A()的值是,那么已知ab b a b a 2,3.922=-=+A.-0.5B.0.5C.-2D.2 10.计算: 得( )A.0B.1C.8.8804D.3.960111.现有纸片: 4张边长为a 的正方形, 3张边长为b 的正方形, 8张宽为a 、长为b 的长方形, 用这15张纸片重新拼出一个长方形, 那么该长方形的长为( )A.2a+3bB.2a+bC.a+3bD.无法确定()的最小值是则如果多项式p b a b a p ,2008422.1222++++= A.2005 B.2006 C.2007 D.2008 填空题(共6小题, 每小题3分, 共18分)()()=-⋅-322323.13a a 计算 。
整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)1.下列运算正确的是( )A. B. C. D. 954a a a =+33333a a a a =⋅⋅954632a a a =⨯()743aa=- ( ) =⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2 A. B. 1 C. 0 D. 19971- 3.设,则A=( )()()A b a b a +-=+223535 A. 30 B. 60 C. 15 D. 12ab ab ab ab 4.已知则( ) ,3,5=-=+xy y x =+22y x A. 25. B C 19 D 、25-19- 5.已知则( ),5,3==bax x =-ba x 23 A 、B 、C 、D 、522527109536. .如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn ,你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -1,则a²+b 2的值等于( )A 、84B 、78C 、12D 、69.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8 B .a 8-2a 4b 4+b 8 C .a 8+b 8 D .a 8-b 810.已知(m 为任意实数),则P 、Q 的大小关系为( )m m Q m P 158,11572-=-=A 、B 、C 、D 、不能确定Q P >Q P =Q P <二、填空题(共6小题,每小题4分,共24分)11.设是一个完全平方式,则=_______。
第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1.下列运算正确的是()A.x6•x2=x12B.(﹣3x)2=6x2C.x3+x3=x6D.(x5)2=x102.计算的结果为()A.B.﹣1C.﹣2D.23.下列由左到右的变形,属于因式分解的是()A.x2﹣4=(x+2)(x﹣2)B.x(x+1)=x2+xC.x2﹣4+3x=(x+2)(x﹣2)+3xD.x2+4x﹣2=x(x+4)﹣24.多项式4x3yz2﹣8x2yz4+12x4y2z3的公因式是()A.4x3yz2B.﹣8x2yz4C.12x4y2z3D.4x2yz25.若2x+y﹣3=0,则52x•5y=()A.15B.75C.125D.1506.如果(2x﹣m)与(x+6)的乘积中不含x的一次项,那么m的值为()A.12B.﹣12C.0D.67.如果4a2﹣kab+b2是一个完全平方式,那么k的值是()A.4B.﹣4C.±2D.±48.从边长为a的大正方形纸板正中央挖去一个边长为b的小正方形后,将其裁成四个大小和形状完全相同的四边形(如图1),然后拼成一个平行四边形(如图2),那么通过计算两个图形阴影部分的面积,可以验证成立的等式为()A.a2﹣b2=(a﹣b)2B.(a+b)2=a2+2ab+b2C.(a﹣b)2=a2﹣2ab+b2D.a2﹣b2=(a+b)(a﹣b)9.如图所示,两个正方形的边长分别为a和b,如果a+b=12,ab=28,那么阴影部分的面积是()A.40B.44C.32D.5010.已知a,b,c是△ABC的三边长,且a2+2ab=c2+2bc,则△ABC是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形二、填空题(每小题3分,满分18分)11.已知x2﹣2x﹣1=0,代数式(x﹣1)2+2024=.12.若m﹣n=﹣2,且m+n=5,则m2﹣n2=.13.若ab=3,a+b=2,则ab2+a2b﹣3ab=.14.3m=4,3n=5,则33m﹣2n的值为.14.如果(x﹣1)x+4=1成立,那么满足它的所有整数x的值是.16.如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB =9,两正方形的面积和S1+S2=45,则图中阴影部分面积为.第十四章整式的乘除与因式分解单元测试人教版2024—2025学年八年级上册考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________题号12345678910答案11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17.分解因式:(1)3a2﹣6ab+3b2;(2)25(m+n)2﹣(m﹣n)2;18.已知:a﹣b=3,ab=1,试求:(1)a2+3ab+b2的值;(2)(a+b)2的值.19.若关于x的代数式(x2+mx+n)(2x﹣1)的化简结果中不含x2的项和x的项,求m+n的值.20.在计算(2x+a)(x+b)时,甲错把a看成了﹣a,得到结果是:2x2﹣10x+12;乙由于漏抄了第一个多项式中x的系数,得到结果:x2+x﹣12.(1)求出a,b的值;(2)在(1)的条件下,计算(2x+a)(x+b)的结果.21.已知5m=4,5n=6,25p=9.(1)求5m+n的值;(2)求5m﹣2p的值;(3)写出m,n,p之间的数量关系.22.将边长为x的小正方形ABCD和边长为y的大正方形CEFG按如图所示放置,其中点D在边CE上.(1)若x+y=10,y2﹣x2=20,求y﹣x的值;(2)连接AG,EG,若x+y=8,xy=14,求阴影部分的面积.23.对于任意实数m,n,我们规定:F(m,n)=m2+n2,H(m,n)=﹣mn,例如:F(1,2)=12+22=5,H(3,4)=﹣3×4=﹣12.(1)填空:①F(﹣1,3)=;②若H(2,x)=﹣6,则x=;③若F(a,b)=H(a,2b),则a+b0.(填“>”,“<”或“=”)(2)若x+2y=5,且F(2x+3y,2x﹣3y)+H(7,x2+2y2)=13,求xy与(x ﹣2y)2的值;(3)若正整数x,y满足F(x,y)=k2+17,H(x,y)=﹣3k+4,求k的值.24.我们定义:如果两个多项式M与N的和为常数,则称M与N互为“对消多项式”,这个常数称为它们的“对消值”.如MF=2x2﹣x+6与N=﹣2x2+x ﹣1互为“对消多项式”,它们的“对消值”为5.(1)下列各组多项式互为“对消多项式”的是(填序号):①3x2+2x与3x2+2;②x﹣6与﹣x+2;③﹣5x2y3+2xy与5x2y3﹣2xy﹣1.(2)多项式A=(x﹣a)2与多项式B=﹣bx2﹣2x+b(a,b为常数)互为“对消多项式”,求它们的“对消值”;(3)关于x的多项式C=mx2+6x+4与D=﹣m(x+1)(x+n)互为“对消多项式”,“对消值”为t.若a﹣b=m,b﹣c=mn,求代数式a2+b2+c2﹣ab﹣bc ﹣ac+2t的最小值.25.【阅读理解】对一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如,由图1可以得到完全平方公式:(x+y)2=x2+2xy+y2,这样的方法称为“面积法”.【解决问题】(1)如图2,利用上述“面积法”,可以得到数学等式:(a+b+c)2=.(2)利用(1)中所得到的等式,解决下面的问题:①已知a+b+c=8,ab+bc+ac=17.求a2+b2+c2的值.②若m、n满足如下条件:(n﹣2021)2+(2023﹣2n)2+(n+1)2=m2﹣2m﹣20,(n﹣2021)(2023﹣2n)+(n﹣2021)(n+1)+(2023﹣2n)(n+1)=2+m,求m的值.【应用迁移】如图3,△ABC中,AB=AC,点O为底边BC上任意一点,OM ⊥AB,ON⊥AC,CH⊥AB,垂足分别为M,N,H,连接AO.若OM=1.2,ON=2.5,利用上述“面积法”,求CH的长.。
整式的乘除单元测试卷
七( )班 学号_______ 姓名_____________
一、选择题:
1. 下列计算正确的是 ( )
A 、a 2·a 3= a 6
B 、a 3·a 3= 2a 3
C 、a 6÷a 3= a 3
D 、(a 2)5= a 7
2. 用科学记数法表示0.000 45,正确的是 ( )
A 、4.5×118
B 、4.5×10—4
C 、4.5×10—5
D 、4.5×118
3. 下列算式正确的是 ( )
A 、-30=1
B 、(-3)-1=3
1 C 、3-1= —3
1 D 、(π-2)0=1 4. 如果整式x
2 + mx +32 恰好是一个整式的平方,那么常数m 的值是 ( )
A 、6
B 、3
C 、±3
D 、±6
5. 计算(-x -2y)²的结果是 ( )
A.x²-4xy +4y²
B.-x²-4xy -4y²
C .x²+4xy +4y² D.-x²+4xy -4y²
6、下列四个代数式:(1)(x+y)(-x-y);(2)(x-y)(y-x)(3)(2a+3b )(3b-2a)
(4) (2x-3y) (2y+3x).其中能用平方差公式计算的有 ( )
A. 1个
B.2个 C . 3个 D. 4个
7. .如图,甲、乙、丙、丁四位同学给出了四
种表示该长方形面积的多项式:
①(2a +b )(m +n ); ②2a (m +n )+b (m +n );
③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有
A.①②
B.③④
C.①②③
D.①②③④ ( ) 8 .如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( )
A. –3
B. 3
C. 0
D. 1
9.一个正方形的边长增加了cm 2,面积相应增加了232cm ,则这个正方形的边长为 ( )
A 、6cm
B 、5cm
C 、8cm
D 、7cm
10. 已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于 ( )
A. 84
B. 78 C . 12 D.6
n
二、填空题:
11、计算:3a + 2a = ______;3a·2a =______;3a ÷2a =______;
a3·a2 =______;a3÷a2 =______;(—3ab2)2 =______
12、计算:(2x + y)(2x-y)=_______;(2a —1)2= ___________。
13、()·3ab2 = 9ab5;—12a3 bc÷()= 4a2 b;
14、(4x2y—8x 3)÷4x 2 =___________,(a-b)2·(b-a)3=__________
15、(a+4)( )=16-a2(a+___)2=a2+6a+________
16、1纳米=0.000000001米,则3.5纳米=________米.(用科学
计数法表示)
17、有一道计算题:(-a4)2,李老师发现全班有以下四种解法,
①(-a4)2=(-a4)(-a4)=a4·a4=a8;
②(-a4)2=-a4×2=-a8;
③(-a4)2=(-a)4×2=(-a)8=a8;
④(-a4)2=(-1×a4)2=(-1)2·(a4)2=a8;
你认为其中完全正确的是(填序号)___________________;18、地球到太阳的距离约是1.5×118千米,光的速度是3.0×118千米/秒,则太阳光从太阳射到地球的时间是__________秒。
19、已知2a=5,2b=10,2c=50,那么a、b、c之间满足的等量关系是___________.
三、解答题:
20、用简便方法计算:
①501
3×49
2
3②118
2③0.1252018×(-8)2018
21、计算:
①、(-1)2+(-1
2)
-1-5÷(3.14-π)0
②、)1
2
)(
1
2(
)1
2(2-
+
-
+a
a
a
③、[(x-y)2-(x+y)(x-y)]÷(-2y)
22、化简求值
(2x+1)2-9(x+2)(x-2)+5(x+1)(x-3)其中x=-2
23、观察下列算式:
32-12=8×1
52-32=8×2
72-52=8×3
92-72=8×4
……
则(1)152-132=_______________
(2)用只含自然数n的等式表示你所发现的规律:
____________________
(3)试说明你所发现的规律是正确的。
24.我们把如下左图的一个长为2m,宽为2n的长方形,沿图中的虚线剪成四个小长方形,再按如下右图围成较大的正方形.
(1)大正方形的边长是多少?
(2)中间正方形(阴影部分)的边长是多少?
(3)用两种不同的方法求阴影部分的面积;
(4)比较两种方法,你能得到怎样的等量关系?
(5)你能用你得到的等量关系解决下面问题吗?
如果m-n=7,mn=10,求m+n的值。
2m。