七桥问题——一笔画
- 格式:doc
- 大小:628.50 KB
- 文档页数:1
七桥问题与一笔画的通解(论文拟稿)在柯尼斯堡的一个公园里,有七座桥将一条河上的两座岛和两岸相连接。
当时有人提出了这么一个问题:如何一次性不重复不遗漏走完七座桥。
后来,数学家欧拉将它变成了一个一笔画问题(如图)。
从欧拉的简化图来看,似乎我们无论如何,也不能一笔画完图形。
但是,这是为什么呢?在这个图中,有ABCD 4个点,有五条线汇聚到A点,三条线汇聚到B,C,D 点,我们可以把这种有奇数条线(3条及以上)汇聚的点称为奇点,作为对应,把有偶数条线(4条及以上)汇聚的点称为偶点。
那么,我们不难发现,在任意封闭图形中,奇点的个数一定是偶数。
因为一条线定连接两个点(或重合),若存在奇数个奇点,则此图形定不符合封闭图形定义。
从一个奇点来看,若要一笔画成,则此奇点定是起笔点或停笔点。
起笔点,停笔点只有两个,所以说,奇点为两个或没有奇点的封闭图形可以一笔画。
回来看七桥问题,图中有四个奇点,以任意两个作为起笔点和落笔点,则还有两个奇点无法连接。
故七桥问题无解。
从上面总结出以下结论:■⒈凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
■⒉凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起点,另一个奇点为终点。
■⒊其他情况的图都不能一笔画出。
(奇点数除以二便可算出此图需几笔画成。
)我们可以把得到的结论推广到所有一笔画解法存在问题,如汉字“田”,我们观察到,它有四个奇点,故不可以一笔画。
而汉字“日”,只有两个奇点,则可以一笔画。
早在1736年,欧拉在交给彼得堡科学院的《哥尼斯堡7座桥》的论文报告中,就阐述了这种方法,也为后来的数学新分支--拓扑学的建立奠定了基础。
从这里我们可以看出,伟大的创造一开始可能并不像我们想象的那么高深莫测,仔细观察生活,我们也会有了不起的发现。
从哥尼斯堡七桥问题谈起Ⅰ(一笔画问题)故事发生在18世纪的哥尼斯堡城.流经那里的一条河中有两个小岛,还有七座桥把这两个小岛与河岸联系起来,那里风景优美,游人众多.在这美丽的地方,人们议论着一个有趣的问题:一个游人怎样才能不重复地一次走遍七座桥,最后又回到出发点呢?/对于这个貌似简单的问题,许多人跃跃欲试,但都没有获得成功.直到1836年,瑞士著名的数学家欧拉才证明了这个问题的不可能性。
欧拉解决这个问题的方法非常巧妙.他认为:人们关心的只是一次不重复地走遍这七座桥,而并不关心桥的长短和岛的大小,因此,岛和岸都可以看作一个点,而桥则可以看成是连接这些点的一条线.这样,一个实际问题就转化为一个几何图形(如下图)能否一笔画出的问题了.那么,什么叫一笔画?什么样的图可以一笔画出?欧拉又是如何彻底证明七桥问题的不可能性呢?①凡是由偶点组成的连通图,一定可以一笔画成;画时可以任一偶点为起点,最后一定能以这个点为终点画完此图。
②凡是只有两个奇点(其余均为偶点)的连通图,一定可以一笔画完;画时必须以一个奇点为起点,另一个奇点为终点。
③其他情况的图,都不能一笔画出。
下面我们就来研究一笔画问题的具体应用:例1观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.分析与解答例2下图是国际奥委会的会标,你能一笔把它画出来吗?分析与解答例3下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?分析与解答例4 下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?分析与解答例5一张纸上画有如下图所示的图,你能否用剪刀一次连续剪下图中的三个正方形和两个三角形?分析与解答例6下图是一个公园的平面图.要使游客走遍每条路而不重复,问出入口应设在哪里?分析与解答练习题1.请一笔画出下列各图2.判断下列各图能否一笔画出,并说明理由.3.下图是一公园的平面图,要使游客走遍每一条路且不重复,问出入口应设在哪里?4.下图是一个商场的平面图,顾客可以从六个门进出商场(阴影部分为各商品部,空白处为通道),请你设计一种能够一次走遍各通道而又不必走重复路线的进出方法.。
一笔画问题
1.瑞士大数学家欧拉在七桥问题的过程中,发现了一笔画原理,这一原理被命名为“欧拉定理”:
(1)能一笔画的图形必须是连通的。
(2)凡是只由偶顶点组成的连通图形,一定可以一笔画出,画时可以由任一偶顶点为起点,最后仍回到这点。
(3)凡是只有两个奇顶点的连通图形一定可以一笔画出,画时必须以一个奇顶点为起点,以另一个奇顶点为终点。
(4)奇顶点个数超过两个的图形不能一笔画出。
2.能一笔画出的图形的奇顶点数目是2或0,如果图形有奇顶点2N(n为正整数)个,那么图形最少要用N笔画出。
世界数学难题——哥尼斯堡七桥问题请你做下面的游戏:一笔画出如图1的图形来。
规则:笔不离开纸面,每根线都只能画一次。
这就是古老的民间游戏——一笔画。
你能画出来吗?如果你画出来了,那么请你再看图2能不能一笔画出来?虽然你动了脑筋,但我相信你肯定不能一笔画出来!为什么我的语气这么肯定?我们来分析一下图2。
我们把图2看成是由点和线组成的一种集合。
图里直线的交点叫做顶点,连结顶点的线叫做边。
这个图是联通的,即任何二个顶点之间都有边。
很显然,图中的顶点有两类:一类是有偶数条边联它的,另一类是有奇数条边联它的。
一个顶点如果有偶数条边联它的,这点就称为偶点;如果有奇数条边联它的,就称它为奇点。
我们知道,能一笔画的图形只有两类:一类是所有的点都是偶点。
另一类是只有二个奇点的图形。
图2有六个奇点,四个偶点,当然不能一笔画出来了。
为什么能一笔画的图形只有上述两类呢?有关这个问题的讨论,要追溯到二百年前的一个著名问题:哥尼斯堡七桥问题。
十八世纪东普鲁士哥尼斯堡城(今俄罗斯加里宁格勒)的普莱格尔河,它有两个支流,在城市中心汇成大河,中间是岛区,河上有7座桥,将河中的两个岛和河岸连结,如图3所示。
由于岛上有古老的哥尼斯堡大学,有教堂,还有哲学家康德的墓地和塑像,因此城中的居民,尤其是大学生们经常沿河过桥散步。
渐渐地,爱动脑筋的人们提出了一个问题:一个散步者能否一次走遍7座桥,而且每座桥只许通过一次,最后仍回到起始地点。
这就是七桥问题,一个著名的图论问题。
图3这个问题看起来似乎很简单,然而许多人作过尝试始终没有能找到答案。
因此,一群大学生就写信给当时年仅20岁的大数学家欧拉。
欧拉从千百人次的失败,以深邃的洞察力猜想,也许根本不可能不重复地一次走遍这七座桥,并很快证明了这样的猜想是正确的。
欧拉是这样解决问题的:既然陆地是桥梁的连接地点,不妨把图中被河隔开的陆地看成4个点,7座桥表示成7条连接这4个点的线,如图4所示。
图4 图5于是“七桥问题”就等价于图5中所画图形的一笔画问题了。