机械振动固有频率与振型共52页
- 格式:ppt
- 大小:4.20 MB
- 文档页数:52
《机械振动》课程实验指导书机械与车辆学院2009年6月编制目录单自由度系统强迫振动的幅频特性、固有频率及阻尼比的测定 (2)单自由度系统自由衰减振动及固有频率、阻尼比的测定 (7)多自由度系统固有频率和振型测试 (11)单自由度系统强迫振动的幅频特性、固有频率及阻尼比的测定实验指导书一、试验目的1.学会测量单自由度系统强迫振动的幅频特性曲线; 2.学会测量单自由度系统强迫振动的幅频特性曲线;二、试验原理有阻尼的强迫振动,当经过一定时间后,只剩下强迫振动部分,有阻尼强迫振动的振幅特性:st st x x Du u A β=+-=22224)1(1动态振幅A 和静态位移st x 之比值称为动力放大系数:stx A D u u =+-=22224)1(1β 加速度响应和位移响应的关系:)sin()sin(4)1(12220ϕωβϕω-=-+-==t t Du u K F x x x e e st)sin()sin(20..ϕωβϕωβ--=--=t t u KF x e a e根据幅频特性曲线:在1<D 时,共振处的动力放大系数Q DD D =≈-=211212max β,峰值两边,2Q =β处的频率1f 、2f 称为半功率点,1f 与2f 之间的频率范围称为系统的半功率带宽。
代入动力放大系数计算公式22124112202,12202,1D Q D f f f f ==⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=β当D 很小时解得:D f f 21202,1 ≈⎪⎪⎭⎫ ⎝⎛ 即2021224Df f f ≈- 0122f f f D -=三、试验系统组成实验用仪器设备见表1。
表1 实验用仪器设备试验系统布置如图1所示:图1 试验系统布置简图四、试验准备1.如图1安装好试验设备,并连线,质量块放到简支梁底部,传感器安装到简支梁的中部;2.认真检查各联结件是否正确安装、紧固情况;3.检查各传感器信号线连接的正确性;4.系统上电预热30分钟五、试验内容1.测量单自由度系统强迫振动的幅频特性曲线;2.根据幅频特性曲线确定系统的固有频率和阻尼比六、试验方法1.开机进入DASP2000波状态;2.把ZJY-601A型振动教学试验仪的频率按钮用手动搜索一下简支梁当前的共振频率,调节放大倍数道“1”挡,不要让共振时的信号过载。
机械结构固有频率分析与优化机械结构是人工制造出来的具有特定功能的物体,如汽车发动机、桥梁、飞机机翼等。
在设计和制造机械结构时,固有频率分析与优化是一个非常重要的步骤。
通过对机械结构的固有频率进行分析和优化,可以提高结构的稳定性和可靠性,减少结构的振动和疲劳破坏,从而延长结构的使用寿命。
固有频率是指机械结构在没有外部激励的情况下自由振动的频率。
每个机械结构都有多个固有频率,对应于不同的振动模态。
固有频率的高低直接影响着机械结构的动态响应和振动特性。
较低的固有频率可能导致结构共振,造成动态失稳和结构破坏;而较高的固有频率则可以减小结构振动的幅度和响应,提高结构的稳定性和工作效率。
固有频率的分析可以通过有限元方法进行。
有限元方法是一种将复杂结构分割成小的有限单元,通过计算每个单元的振动特性,然后将这些单元牵连起来得到整个结构的振动响应的数值计算方法。
在有限元分析中,固有频率一般通过求解结构的特征方程得到。
特征方程是一个关于固有频率与振型的本征值问题,通过数值求解可以得到结构的固有频率和相应的振动模态。
固有频率分析的结果可以用来指导结构的优化设计。
在机械结构的优化设计中,通常需要对结构的材料、构型和连接等参数进行调整,以使得结构的固有频率达到设计要求。
例如,对于桥梁结构来说,为了防止共振和减小结构的振动,可以增大桥梁的自然频率,有助于提高桥梁的稳定性和承载能力。
而对于飞机机翼来说,需要根据不同飞行状态和工作要求,调整机翼的结构参数,以提高固有频率,减小结构的振动。
除了固有频率的分析和优化,机械结构的动态特性还包括振动模态、振动幅值和振动形态等。
在进行固有频率分析时,也可以得到结构的不同振动模态的形态和频率。
振动幅值和振动形态可以通过模态分析和振动实验得到,用来评估结构在不同振动状态下的响应和振幅。
根据振动特性的分析结果,可以对结构的材料和构造进行优化设计,以提高结构的稳定性和工作效率。
综上所述,机械结构固有频率分析与优化是设计和制造过程中不可或缺的一环。
机械振动学中的固有频率与振型分析机械振动学是研究机械系统在受到外界激励作用下产生振动现象的一门学科。
在机械系统中,固有频率与振型分析是非常重要的内容,可以用来描述系统的动态特性和振动行为。
本文将介绍机械振动学中固有频率与振型分析的基本概念和应用。
一、固有频率固有频率是指机械系统在没有外界激励下自由振动的频率。
对于一个简单的振动系统,其固有频率可以通过运动方程的解析解求得。
固有频率是系统的固有特性之一,可以用来描述系统的动态响应特性和结构的刚度、质量、阻尼等参数。
在实际工程应用中,固有频率的计算对于系统结构设计和振动控制至关重要。
通过对系统的固有频率进行分析,可以避免共振现象的发生,减小系统动态响应,提高系统的稳定性和可靠性。
二、振型分析振型分析是指对机械系统的振动模式和振动幅值进行分析和描述。
振型是指系统在特定频率下的振动模式,可以通过振动实验和有限元分析等方法得到。
振型分析可以提供系统的模态形式和振动幅值信息,有助于分析系统的受力情况和结构设计。
振型分析在工程实践中具有广泛的应用,可以用于评估系统的结构健康状况、辅助设计优化和振动控制。
通过对系统的振型进行分析,可以找到系统的薄弱环节和潜在问题,及时进行改进和优化,提高系统的性能和可靠性。
三、结语固有频率与振型分析是机械振动学中重要的内容,对于机械系统的设计和性能评估具有重要意义。
通过对系统的固有频率和振型进行分析,可以优化系统的结构设计,降低系统的动态响应,提高系统的稳定性和可靠性。
希望本文的介绍能够帮助读者更好地理解机械振动学中固有频率与振型分析的相关知识。
机械振动与谐振现象分析机械振动是工程中不可避免的现象,对于机械系统的设计与性能优化有着重要的影响。
在机械振动中,谐振现象是一个常见而引人思考的问题。
本文将对机械振动的基本概念进行介绍,并分析谐振现象的原因和其在实际应用中的意义。
1. 机械振动的基本概念机械振动指的是物体围绕平衡位置做周期性往复运动的现象。
在机械工程中,振动往往指的是机械系统由于外界激励或内源扰动导致的振动。
机械振动常见的分类包括自由振动、受迫振动和阻尼振动等。
2. 谐振现象的原因谐振现象指的是机械系统在某一特定频率下振幅达到最大的现象。
谐振现象的原因在于机械系统的固有频率与外界激励频率相匹配时,能量传递效率最高,振幅达到最大值。
通俗地说,谐振现象就相当于把音乐中的“共鸣”现象应用于机械系统。
3. 谐振现象的实际应用谐振现象在实际应用中有着广泛的应用价值。
首先,谐振现象可用于机械系统的故障预警与故障诊断。
例如,工业生产中的轴承故障往往伴随着特定频率的振动,通过监测与分析振动信号的频谱特征,可以判断轴承的健康状况并采取相应的维护措施。
其次,谐振现象可以用于能量收集与利用。
如某些发电技术利用海浪、风能等机械振动源的谐振现象,将其转化为电能。
另外,谐振现象还广泛应用于音乐乐器的设计和声学领域的研究。
4. 机械振动分析的方法机械振动的分析方法众多,常用的方法包括频率分析、时域分析和模态分析等。
频率分析是通过将振动信号转化为频谱图进行分析,找出振动信号中的不同频率分量。
时域分析则是通过观察振动信号的时间序列图,分析振动信号的波形特征和幅值变化趋势。
模态分析是通过分析机械系统的固有频率和振型形状,了解机械系统的振动特性和模态参数。
5. 如何减小谐振现象的影响谐振现象对机械系统的稳定性和可靠性有着不利的影响,因此需要采取一些措施来减小谐振现象的影响。
首先,在机械系统的设计中,应选择合适的材料和结构,避免出现固有频率与外界激励频率相匹配的情况。
其次,可以通过增加机械系统的阻尼来抑制谐振现象的发生。